peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_sputils.py
""" Utility functions for sparse matrix module | |
""" | |
import sys | |
from typing import Any, Literal, Optional, Union | |
import operator | |
import numpy as np | |
from math import prod | |
import scipy.sparse as sp | |
from scipy._lib._util import np_long, np_ulong | |
__all__ = ['upcast', 'getdtype', 'getdata', 'isscalarlike', 'isintlike', | |
'isshape', 'issequence', 'isdense', 'ismatrix', 'get_sum_dtype'] | |
supported_dtypes = [np.bool_, np.byte, np.ubyte, np.short, np.ushort, np.intc, | |
np.uintc, np_long, np_ulong, np.longlong, np.ulonglong, | |
np.float32, np.float64, np.longdouble, | |
np.complex64, np.complex128, np.clongdouble] | |
_upcast_memo = {} | |
def upcast(*args): | |
"""Returns the nearest supported sparse dtype for the | |
combination of one or more types. | |
upcast(t0, t1, ..., tn) -> T where T is a supported dtype | |
Examples | |
-------- | |
>>> from scipy.sparse._sputils import upcast | |
>>> upcast('int32') | |
<type 'numpy.int32'> | |
>>> upcast('bool') | |
<type 'numpy.bool_'> | |
>>> upcast('int32','float32') | |
<type 'numpy.float64'> | |
>>> upcast('bool',complex,float) | |
<type 'numpy.complex128'> | |
""" | |
t = _upcast_memo.get(hash(args)) | |
if t is not None: | |
return t | |
upcast = np.result_type(*args) | |
for t in supported_dtypes: | |
if np.can_cast(upcast, t): | |
_upcast_memo[hash(args)] = t | |
return t | |
raise TypeError(f'no supported conversion for types: {args!r}') | |
def upcast_char(*args): | |
"""Same as `upcast` but taking dtype.char as input (faster).""" | |
t = _upcast_memo.get(args) | |
if t is not None: | |
return t | |
t = upcast(*map(np.dtype, args)) | |
_upcast_memo[args] = t | |
return t | |
def upcast_scalar(dtype, scalar): | |
"""Determine data type for binary operation between an array of | |
type `dtype` and a scalar. | |
""" | |
return (np.array([0], dtype=dtype) * scalar).dtype | |
def downcast_intp_index(arr): | |
""" | |
Down-cast index array to np.intp dtype if it is of a larger dtype. | |
Raise an error if the array contains a value that is too large for | |
intp. | |
""" | |
if arr.dtype.itemsize > np.dtype(np.intp).itemsize: | |
if arr.size == 0: | |
return arr.astype(np.intp) | |
maxval = arr.max() | |
minval = arr.min() | |
if maxval > np.iinfo(np.intp).max or minval < np.iinfo(np.intp).min: | |
raise ValueError("Cannot deal with arrays with indices larger " | |
"than the machine maximum address size " | |
"(e.g. 64-bit indices on 32-bit machine).") | |
return arr.astype(np.intp) | |
return arr | |
def to_native(A): | |
""" | |
Ensure that the data type of the NumPy array `A` has native byte order. | |
`A` must be a NumPy array. If the data type of `A` does not have native | |
byte order, a copy of `A` with a native byte order is returned. Otherwise | |
`A` is returned. | |
""" | |
dt = A.dtype | |
if dt.isnative: | |
# Don't call `asarray()` if A is already native, to avoid unnecessarily | |
# creating a view of the input array. | |
return A | |
return np.asarray(A, dtype=dt.newbyteorder('native')) | |
def getdtype(dtype, a=None, default=None): | |
"""Function used to simplify argument processing. If 'dtype' is not | |
specified (is None), returns a.dtype; otherwise returns a np.dtype | |
object created from the specified dtype argument. If 'dtype' and 'a' | |
are both None, construct a data type out of the 'default' parameter. | |
Furthermore, 'dtype' must be in 'allowed' set. | |
""" | |
# TODO is this really what we want? | |
if dtype is None: | |
try: | |
newdtype = a.dtype | |
except AttributeError as e: | |
if default is not None: | |
newdtype = np.dtype(default) | |
else: | |
raise TypeError("could not interpret data type") from e | |
else: | |
newdtype = np.dtype(dtype) | |
if newdtype == np.object_: | |
raise ValueError( | |
"object dtype is not supported by sparse matrices" | |
) | |
return newdtype | |
def getdata(obj, dtype=None, copy=False) -> np.ndarray: | |
""" | |
This is a wrapper of `np.array(obj, dtype=dtype, copy=copy)` | |
that will generate a warning if the result is an object array. | |
""" | |
data = np.array(obj, dtype=dtype, copy=copy) | |
# Defer to getdtype for checking that the dtype is OK. | |
# This is called for the validation only; we don't need the return value. | |
getdtype(data.dtype) | |
return data | |
def get_index_dtype(arrays=(), maxval=None, check_contents=False): | |
""" | |
Based on input (integer) arrays `a`, determine a suitable index data | |
type that can hold the data in the arrays. | |
Parameters | |
---------- | |
arrays : tuple of array_like | |
Input arrays whose types/contents to check | |
maxval : float, optional | |
Maximum value needed | |
check_contents : bool, optional | |
Whether to check the values in the arrays and not just their types. | |
Default: False (check only the types) | |
Returns | |
------- | |
dtype : dtype | |
Suitable index data type (int32 or int64) | |
""" | |
int32min = np.int32(np.iinfo(np.int32).min) | |
int32max = np.int32(np.iinfo(np.int32).max) | |
# not using intc directly due to misinteractions with pythran | |
dtype = np.int32 if np.intc().itemsize == 4 else np.int64 | |
if maxval is not None: | |
maxval = np.int64(maxval) | |
if maxval > int32max: | |
dtype = np.int64 | |
if isinstance(arrays, np.ndarray): | |
arrays = (arrays,) | |
for arr in arrays: | |
arr = np.asarray(arr) | |
if not np.can_cast(arr.dtype, np.int32): | |
if check_contents: | |
if arr.size == 0: | |
# a bigger type not needed | |
continue | |
elif np.issubdtype(arr.dtype, np.integer): | |
maxval = arr.max() | |
minval = arr.min() | |
if minval >= int32min and maxval <= int32max: | |
# a bigger type not needed | |
continue | |
dtype = np.int64 | |
break | |
return dtype | |
def get_sum_dtype(dtype: np.dtype) -> np.dtype: | |
"""Mimic numpy's casting for np.sum""" | |
if dtype.kind == 'u' and np.can_cast(dtype, np.uint): | |
return np.uint | |
if np.can_cast(dtype, np.int_): | |
return np.int_ | |
return dtype | |
def isscalarlike(x) -> bool: | |
"""Is x either a scalar, an array scalar, or a 0-dim array?""" | |
return np.isscalar(x) or (isdense(x) and x.ndim == 0) | |
def isintlike(x) -> bool: | |
"""Is x appropriate as an index into a sparse matrix? Returns True | |
if it can be cast safely to a machine int. | |
""" | |
# Fast-path check to eliminate non-scalar values. operator.index would | |
# catch this case too, but the exception catching is slow. | |
if np.ndim(x) != 0: | |
return False | |
try: | |
operator.index(x) | |
except (TypeError, ValueError): | |
try: | |
loose_int = bool(int(x) == x) | |
except (TypeError, ValueError): | |
return False | |
if loose_int: | |
msg = "Inexact indices into sparse matrices are not allowed" | |
raise ValueError(msg) | |
return loose_int | |
return True | |
def isshape(x, nonneg=False, *, allow_1d=False) -> bool: | |
"""Is x a valid tuple of dimensions? | |
If nonneg, also checks that the dimensions are non-negative. | |
If allow_1d, shapes of length 1 or 2 are allowed. | |
""" | |
ndim = len(x) | |
if ndim != 2 and not (allow_1d and ndim == 1): | |
return False | |
for d in x: | |
if not isintlike(d): | |
return False | |
if nonneg and d < 0: | |
return False | |
return True | |
def issequence(t) -> bool: | |
return ((isinstance(t, (list, tuple)) and | |
(len(t) == 0 or np.isscalar(t[0]))) or | |
(isinstance(t, np.ndarray) and (t.ndim == 1))) | |
def ismatrix(t) -> bool: | |
return ((isinstance(t, (list, tuple)) and | |
len(t) > 0 and issequence(t[0])) or | |
(isinstance(t, np.ndarray) and t.ndim == 2)) | |
def isdense(x) -> bool: | |
return isinstance(x, np.ndarray) | |
def validateaxis(axis) -> None: | |
if axis is None: | |
return | |
axis_type = type(axis) | |
# In NumPy, you can pass in tuples for 'axis', but they are | |
# not very useful for sparse matrices given their limited | |
# dimensions, so let's make it explicit that they are not | |
# allowed to be passed in | |
if axis_type == tuple: | |
raise TypeError("Tuples are not accepted for the 'axis' parameter. " | |
"Please pass in one of the following: " | |
"{-2, -1, 0, 1, None}.") | |
# If not a tuple, check that the provided axis is actually | |
# an integer and raise a TypeError similar to NumPy's | |
if not np.issubdtype(np.dtype(axis_type), np.integer): | |
raise TypeError(f"axis must be an integer, not {axis_type.__name__}") | |
if not (-2 <= axis <= 1): | |
raise ValueError("axis out of range") | |
def check_shape(args, current_shape=None, *, allow_1d=False) -> tuple[int, ...]: | |
"""Imitate numpy.matrix handling of shape arguments | |
Parameters | |
---------- | |
args : array_like | |
Data structures providing information about the shape of the sparse array. | |
current_shape : tuple, optional | |
The current shape of the sparse array or matrix. | |
If None (default), the current shape will be inferred from args. | |
allow_1d : bool, optional | |
If True, then 1-D or 2-D arrays are accepted. | |
If False (default), then only 2-D arrays are accepted and an error is | |
raised otherwise. | |
Returns | |
------- | |
new_shape: tuple | |
The new shape after validation. | |
""" | |
if len(args) == 0: | |
raise TypeError("function missing 1 required positional argument: " | |
"'shape'") | |
if len(args) == 1: | |
try: | |
shape_iter = iter(args[0]) | |
except TypeError: | |
new_shape = (operator.index(args[0]), ) | |
else: | |
new_shape = tuple(operator.index(arg) for arg in shape_iter) | |
else: | |
new_shape = tuple(operator.index(arg) for arg in args) | |
if current_shape is None: | |
if allow_1d: | |
if len(new_shape) not in (1, 2): | |
raise ValueError('shape must be a 1- or 2-tuple of positive ' | |
'integers') | |
elif len(new_shape) != 2: | |
raise ValueError('shape must be a 2-tuple of positive integers') | |
if any(d < 0 for d in new_shape): | |
raise ValueError("'shape' elements cannot be negative") | |
else: | |
# Check the current size only if needed | |
current_size = prod(current_shape) | |
# Check for negatives | |
negative_indexes = [i for i, x in enumerate(new_shape) if x < 0] | |
if not negative_indexes: | |
new_size = prod(new_shape) | |
if new_size != current_size: | |
raise ValueError('cannot reshape array of size {} into shape {}' | |
.format(current_size, new_shape)) | |
elif len(negative_indexes) == 1: | |
skip = negative_indexes[0] | |
specified = prod(new_shape[:skip] + new_shape[skip+1:]) | |
unspecified, remainder = divmod(current_size, specified) | |
if remainder != 0: | |
err_shape = tuple('newshape' if x < 0 else x for x in new_shape) | |
raise ValueError('cannot reshape array of size {} into shape {}' | |
''.format(current_size, err_shape)) | |
new_shape = new_shape[:skip] + (unspecified,) + new_shape[skip+1:] | |
else: | |
raise ValueError('can only specify one unknown dimension') | |
if len(new_shape) != 2 and not (allow_1d and len(new_shape) == 1): | |
raise ValueError('matrix shape must be two-dimensional') | |
return new_shape | |
def check_reshape_kwargs(kwargs): | |
"""Unpack keyword arguments for reshape function. | |
This is useful because keyword arguments after star arguments are not | |
allowed in Python 2, but star keyword arguments are. This function unpacks | |
'order' and 'copy' from the star keyword arguments (with defaults) and | |
throws an error for any remaining. | |
""" | |
order = kwargs.pop('order', 'C') | |
copy = kwargs.pop('copy', False) | |
if kwargs: # Some unused kwargs remain | |
raise TypeError('reshape() got unexpected keywords arguments: {}' | |
.format(', '.join(kwargs.keys()))) | |
return order, copy | |
def is_pydata_spmatrix(m) -> bool: | |
""" | |
Check whether object is pydata/sparse matrix, avoiding importing the module. | |
""" | |
base_cls = getattr(sys.modules.get('sparse'), 'SparseArray', None) | |
return base_cls is not None and isinstance(m, base_cls) | |
def convert_pydata_sparse_to_scipy( | |
arg: Any, target_format: Optional[Literal["csc", "csr"]] = None | |
) -> Union[Any, "sp.spmatrix"]: | |
""" | |
Convert a pydata/sparse array to scipy sparse matrix, | |
pass through anything else. | |
""" | |
if is_pydata_spmatrix(arg): | |
arg = arg.to_scipy_sparse() | |
if target_format is not None: | |
arg = arg.asformat(target_format) | |
elif arg.format not in ("csc", "csr"): | |
arg = arg.tocsc() | |
return arg | |
############################################################################### | |
# Wrappers for NumPy types that are deprecated | |
# Numpy versions of these functions raise deprecation warnings, the | |
# ones below do not. | |
def matrix(*args, **kwargs): | |
return np.array(*args, **kwargs).view(np.matrix) | |
def asmatrix(data, dtype=None): | |
if isinstance(data, np.matrix) and (dtype is None or data.dtype == dtype): | |
return data | |
return np.asarray(data, dtype=dtype).view(np.matrix) | |
############################################################################### | |
def _todata(s) -> np.ndarray: | |
"""Access nonzero values, possibly after summing duplicates. | |
Parameters | |
---------- | |
s : sparse array | |
Input sparse array. | |
Returns | |
------- | |
data: ndarray | |
Nonzero values of the array, with shape (s.nnz,) | |
""" | |
if isinstance(s, sp._data._data_matrix): | |
return s._deduped_data() | |
if isinstance(s, sp.dok_array): | |
return np.fromiter(s.values(), dtype=s.dtype, count=s.nnz) | |
if isinstance(s, sp.lil_array): | |
data = np.empty(s.nnz, dtype=s.dtype) | |
sp._csparsetools.lil_flatten_to_array(s.data, data) | |
return data | |
return s.tocoo()._deduped_data() | |