applied-ai-018's picture
Add files using upload-large-folder tool
dd3126b verified
raw
history blame
45.3 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Use to partition the activations stored for backward propagation
Therefore reduces the memory consumption
Also implements CPU checkpointing and contiguous memory checkpointing
Reduces memory consumption and memory fragmentation
Code for rng checkpointing taken from NVIDIA Megatron-LM mpu/random.py
b886b7bb972afe72bac0f5de4f42a4a7bae8ebef
"""
# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch
import copy
import torch
import contextlib
from deepspeed import comm as dist
import weakref
import mmap
from torch import _C
from deepspeed.runtime.config import DeepSpeedConfig
from deepspeed.utils import logger
from deepspeed.runtime.utils import copy_to_device, move_to_device, see_memory_usage
from deepspeed.utils.timer import SynchronizedWallClockTimer as Timers, FORWARD_GLOBAL_TIMER
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank
from deepspeed.accelerator import get_accelerator
# DeepSpeed Checkpointing Enabled or Disabled
deepspeed_checkpointing_enabled = False
# MP parameters
mpu = None
mp_rank = None
mp_size = None
mp_group = None
# Model Parameters
num_layers = None
# Checkpointing buffers
contiguous_data_buffers = []
data_offsets = []
contiguous_size_buffers = []
size_offsets = []
timers = None
# optimization flags
PARTITION_ACTIVATIONS = False
CPU_CHECKPOINT = False
CONTIGUOUS_CHECKPOINTING = False
SYNCHRONIZE = False
PROFILE_TIME = False
# Default name for the model parallel rng tracker.
_MODEL_PARALLEL_RNG_TRACKER_NAME = 'model-parallel-rng'
transport_stream = None
cuda_device = None
def detach_variable(inputs, device=None):
if isinstance(inputs, tuple):
out = []
for inp in inputs:
if not isinstance(inp, torch.Tensor):
out.append(inp)
continue
requires_grad = inp.requires_grad
if device is not None:
x = inp.to(device=device)
else:
x = inp
x = x.detach()
x.requires_grad = requires_grad
out.append(x)
return tuple(out)
else:
raise RuntimeError("Only tuple of tensors is supported. Got Unsupported input type: ", type(inputs).__name__)
def _set_cuda_rng_state(new_state, device=-1):
"""Sets the random number generator state of the current GPU.
Arguments:
new_state (torch.ByteTensor): The desired state
This function is adapted from PyTorch repo (torch.cuda.set_rng_state) #ignore-cuda
with a single change: the input state is not cloned. Cloning caused
major performance issues for +4 GPU cases.
"""
if hasattr(_C, '_cuda_setRNGState') and callable(_C._cuda_setRNGState):
# older PyTorch
def cb():
with get_accelerator().device(device):
_C._cuda_setRNGState(new_state)
else:
# newer PyTorch
if device == -1:
device = torch.device(get_accelerator().device_name())
elif isinstance(device, str):
device = torch.device(device)
elif isinstance(device, int):
device = torch.device(get_accelerator().device_name(), device)
def cb():
idx = device.index
if idx is None:
idx = get_accelerator().current_device()
default_generator = get_accelerator().default_generator(idx)
default_generator.set_state(new_state)
get_accelerator().lazy_call(cb)
class CudaRNGStatesTracker:
"""Tracker for the cuda RNG states.
Using the `add` method, a cuda rng state is initialized based on
the input `seed` and is assigned to `name`. Later, by forking the
rng state, we can perform operations and return to our starting
cuda state.
"""
def __init__(self):
# Map from a string name to the cuda rng state.
self.states_ = {}
# Seeds are just for book keeping and ensure no seed is set twice.
self.seeds_ = set()
def reset(self):
"""Set to the initial state (no tracker)."""
self.states_ = {}
self.seeds_ = set()
def get_states(self):
"""Get rng states. Copy the dictionary so we have direct
pointers to the states, not just a pointer to the dictionary."""
return copy.copy(self.states_)
def set_states(self, states):
"""Set the rng states. For efficiency purposes, we do not check
the size of seed for compatibility."""
self.states_ = states
def add(self, name, seed):
"""Track the rng state."""
# Check seed is not already used.
if seed in self.seeds_:
raise Exception('seed {} already exists'.format(seed))
self.seeds_.add(seed)
# Check that state is not already defined.
if name in self.states_:
raise Exception('cuda rng state {} already exists'.format(name))
# Get the current rng state.
orig_rng_state = get_accelerator().get_rng_state()
# Set the new state and store it.
get_accelerator().manual_seed(seed)
self.states_[name] = get_accelerator().get_rng_state()
# Reset rng state to what it was.
_set_cuda_rng_state(orig_rng_state)
@contextlib.contextmanager
def fork(self, name=_MODEL_PARALLEL_RNG_TRACKER_NAME):
"""Fork the cuda rng state, perform operations, and exit with
the original state."""
# Check if we have added the state
if name not in self.states_:
raise Exception('cuda rng state {} is not added'.format(name))
# Store current rng state.
orig_cuda_rng_state = get_accelerator().get_rng_state()
# Set rng state to the desired one
_set_cuda_rng_state(self.states_[name])
# Do the stuff we wanted to do.
try:
yield
finally:
# Update the current rng state for later use.
self.states_[name] = get_accelerator().get_rng_state()
# And set the state to the original state we started with.
_set_cuda_rng_state(orig_cuda_rng_state)
# RNG tracker object.
_CUDA_RNG_STATE_TRACKER = CudaRNGStatesTracker()
def get_cuda_rng_tracker():
"""Get cuda rng tracker."""
return _CUDA_RNG_STATE_TRACKER
def model_parallel_cuda_manual_seed(seed):
"""Initialize model parallel cuda seed.
This function should be called after the model parallel is
initialized. Also, no get_accelerator().manual_seed should be called
after this function. Basically, this is replacement for that
function.
Two set of RNG states are tracked:
default state: This is for data parallelism and is the same among a
set of model parallel GPUs but different across
different model parallel groups. This is used for
example for dropout in the non-model-parallel regions.
model-parallel state: This state is different among a set of model
parallel GPUs, but the same across data parallel
groups. This is used for example for dropout in
model parallel regions.
"""
global mpu
tp_rank = bwc_tensor_model_parallel_rank(mpu)
# 2718 is just for fun and any POSITIVE value will work.
offset = seed + 2718
model_parallel_seed = offset + tp_rank
# Data parallel gets the original seed.
data_parallel_seed = seed
if dist.get_rank() == 0:
logger.info(
'> initializing model parallel cuda seeds on global rank {}, '
'model parallel rank {}, and data parallel rank {} with '
'model parallel seed: {} and data parallel seed: {}'.format(dist.get_rank(), tp_rank,
mpu.get_data_parallel_rank(),
model_parallel_seed, data_parallel_seed), )
_CUDA_RNG_STATE_TRACKER.reset()
# Set the default state.
get_accelerator().manual_seed(data_parallel_seed)
# and model parallel state.
_CUDA_RNG_STATE_TRACKER.add(_MODEL_PARALLEL_RNG_TRACKER_NAME, model_parallel_seed)
def model_parallel_reconfigure_tp_seed(seed):
global mpu
tp_rank = bwc_tensor_model_parallel_rank(mpu)
model_parallel_seed = seed + 2718 + tp_rank
with _CUDA_RNG_STATE_TRACKER.fork():
get_accelerator().manual_seed(model_parallel_seed)
def get_partition_start(item):
global mp_rank, mp_size, mp_group
size = item.numel()
partition_size = size / mp_size
start = partition_size * mp_rank
return int(start)
def get_partition_size(item):
global mp_rank, mp_size, mp_group
size = item.numel()
assert size % mp_size == 0, "Doesn't handle if partition activation if item is not divisible by mp size"
partition_size = size / mp_size
return int(partition_size)
def gather_partitioned_activations(tensors, device=None):
global mp_rank, mp_size, mp_group
assert len(tensors) % 2 == 0, f'Expected even count of tensors, instead got {len(tensors)}'
inputs = []
num_args = int(len(tensors) / 2)
for i in range(num_args):
item = tensors[2 * i]
size = tensors[2 * i + 1]
if not is_activation_to_checkpoint(item):
inputs.append(item)
continue
# don't need to do all_gather if model parallel is not enabled
if mp_group is None or mp_size == 1:
item = item.view(list(size.numpy()))
if device is not None:
item = item.to(device)
inputs.append(item)
continue
partition_size = item.numel()
tensor_size = partition_size * mp_size
if device is not None:
flat_tensor = torch.zeros([tensor_size], dtype=item.dtype, device=device)
else:
flat_tensor = torch.zeros([tensor_size], dtype=item.dtype, device=item.device)
part = flat_tensor.narrow(0, partition_size * mp_rank, partition_size)
part.copy_(item)
dist.all_gather_into_tensor(flat_tensor, part, group=mp_group)
input_tensor = flat_tensor.view(list(size.numpy()))
item.data = input_tensor.data
inputs.append(item)
return tuple(inputs)
def extract_tensors(all_objects):
"""
Separate objects in list/tuple into tensors and non-tensors and create a mapping to enable re-aggregation.
The order of tensors and non-tensors is preserved in their respective output groups.
Parameters:
all_objects (list/tuple): Objects containing tensors and non-tensors to be split.
Returns:
tuple: Containing tensors, non-tensors, and bools of whether each position in original list/tuple was a tensor.
"""
tensor_objects = [v for v in all_objects if torch.is_tensor(v)]
non_tensor_objects = [v for v in all_objects if not torch.is_tensor(v)]
tensor_flags = [torch.is_tensor(v) for v in all_objects]
if type(all_objects) is tuple:
return tuple(tensor_objects), tuple(non_tensor_objects), tuple(tensor_flags)
return tensor_objects, non_tensor_objects, tensor_flags
def merge_tensors(tensor_objects, non_tensor_objects, tensor_flags):
"""
Merge two lists (or tuples) of tensors and non-tensors using a mapping of positions in merged list (or tuple).
Parameters:
tensor_objects (list/tuple): Tensors to merge.
non_tensor_objects (list/tuple): Non-tensors to merge.
tensor_flags (list/tuple): Indicates whether each position in output is a tensor.
Returns:
tuple: Merge of tensors and non-tensors
"""
merged_objects = []
tensor_idx = 0
non_tensor_idx = 0
real_tensor_flags = None
# remove the flags that are assigned to the size of the flattened tensors
if PARTITION_ACTIVATIONS:
real_tensor_flags = []
previous_flag = False
for flag in tensor_flags:
if previous_flag:
previous_flag = False
continue
previous_flag = flag
real_tensor_flags.append(flag)
else:
real_tensor_flags = tensor_flags
for is_tensor in real_tensor_flags:
if is_tensor:
merged_objects.append(tensor_objects[tensor_idx])
tensor_idx += 1
else:
merged_objects.append(non_tensor_objects[non_tensor_idx])
non_tensor_idx += 1
return tuple(merged_objects)
def is_activation_to_checkpoint(item):
"""
Is an activation to be checkpointed
"""
global mp_size
return torch.is_tensor(item) and item.is_floating_point() and item.numel() >= mp_size
def partition_activations(args, cpu_checkpoint, contiguous_checkpoint):
global contiguous_data_buffers, data_offsets
inputs = []
num_non_fp_tensors = 0
for arg_index, item in enumerate(args):
if not is_activation_to_checkpoint(item):
inputs.append(item)
num_non_fp_tensors += 1
continue
i = arg_index - num_non_fp_tensors
partition_size = get_partition_size(item)
partition = item.detach().contiguous().view(-1).narrow(0, get_partition_start(item), partition_size).clone()
buffer_device = torch.device('cpu') if cpu_checkpoint else partition.device
if contiguous_checkpoint:
if i >= len(contiguous_data_buffers):
tensor_list = [
torch.tensor(()).new_empty([partition_size], dtype=partition.dtype, device=buffer_device)
for _ in range(num_layers)
]
contiguous_data_buffers.append(tensor_list)
data_offsets.append(0)
elif contiguous_data_buffers[i] is None:
tensor_list = [
torch.tensor(()).new_empty([partition_size], dtype=partition.dtype, device=buffer_device)
for _ in range(num_layers)
]
contiguous_data_buffers[i] = tensor_list
data_offsets[i] = 0
# Because the 'new_empty' returns uninitialized pages,
# the pages need to be populated during the cudaMemcpy time
# which increases the data copy time. To avoid this, we
# pre-populate these pages by simply writing 0 ahead of
# the actual cudaMemcpy operation time. Due to the
# previously launched GPU kernels, there is a small
# window of time here for CPUs to populate pages asynchronously.
contiguous_data_buffers[i][data_offsets[i]].data[range(
0, contiguous_data_buffers[i][data_offsets[i]].data.shape[0],
int(mmap.PAGESIZE / contiguous_data_buffers[i][data_offsets[i]].data.element_size()))] = 0
contiguous_partition = contiguous_data_buffers[i][data_offsets[i]].data.copy_(partition.data)
data_offsets[i] = data_offsets[i] + 1
inputs.append(contiguous_partition)
else:
partition = partition.cpu() if CPU_CHECKPOINT else partition
inputs.append(partition)
return inputs
def get_partitioned_activations_for_backward(args, inputs, contiguous_checkpoint):
global contiguous_size_buffers, size_offsets
new_args = []
num_non_fp_tensors = 0
for arg_index, (arg, inp) in enumerate(zip(args, inputs)):
size = torch.tensor(arg.size()) if torch.is_tensor(arg) else None
if not is_activation_to_checkpoint(arg):
new_args.append(arg)
new_args.append(size)
num_non_fp_tensors += 1
continue
arg.data = torch.empty([], device=arg.device).data
arg.saved_data = inp.data
new_args.append(arg)
i = arg_index - num_non_fp_tensors
if contiguous_checkpoint:
numel = size.numel()
if i >= len(contiguous_size_buffers):
tmp = torch.tensor(())
contiguous_size_buffers.append(
tmp.new_empty([numel * num_layers], dtype=size.dtype, device=size.device))
size_offsets.append(0)
elif contiguous_size_buffers[i] is None:
tmp = torch.tensor(())
contiguous_size_buffers[i] = tmp.new_empty([numel * num_layers], dtype=size.dtype, device=size.device)
size_offsets[i] = 0
contiguous_size = contiguous_size_buffers[i].narrow(0, size_offsets[i], numel).data.copy_(size.data)
contiguous_size = contiguous_size.view_as(size)
size_offsets[i] = size_offsets[i] + numel
new_args.append(contiguous_size)
else:
new_args.append(size)
return new_args
def get_cpu_activations_for_backward(args, inputs):
new_args = []
for i, (arg, inp) in enumerate(zip(args, inputs)):
if not is_activation_to_checkpoint(arg):
new_args.append(arg)
continue
arg.data = torch.empty([], device=arg.device).data
arg.saved_data = inp.data
new_args.append(arg)
return new_args
class CheckpointFunction(torch.autograd.Function):
"""This function is adapted from torch.utils.checkpoint with
two main changes:
1) torch.cuda.set_rng_state is replaced with `_set_cuda_rng_state` #ignore-cuda
2) the states in the model parallel tracker are also properly
tracked/set/reset.
3) Performance activation partitioning, contiguous memory optimization
4) CPU Checkpointing
5) Profile forward and backward functions
"""
@staticmethod
def forward(ctx, run_function, all_outputs, *args):
global mpu, timers, SYNCHRONIZE, PROFILE_TIME
def save_args_for_backward(*all_args):
tensor_args, non_tensor_args, tensor_flags = extract_tensors(all_objects=all_args)
ctx.deepspeed_saved_tensors = tensor_args
ctx.non_tensor_args = non_tensor_args
ctx.tensor_flags = tensor_flags
if SYNCHRONIZE:
get_accelerator().synchronize()
if timers is None and PROFILE_TIME:
timers = Timers()
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).start()
ctx.run_function = run_function
global num_layers
global mp_rank, mp_size, mp_group
global contiguous_data_buffers, contiguous_size_buffers
global data_offsets, size_offsets
if mp_rank is None:
if mpu is not None:
if hasattr(mpu, 'get_tensor_model_parallel_rank'):
mp_rank = mpu.get_tensor_model_parallel_rank()
mp_size = mpu.get_tensor_model_parallel_world_size()
mp_group = mpu.get_tensor_model_parallel_group()
else:
mp_rank = mpu.get_model_parallel_rank()
mp_size = mpu.get_model_parallel_world_size()
mp_group = mpu.get_model_parallel_group()
else:
mp_rank = 0
mp_size = 1
mp_group = None
global cuda_device, transport_stream, PARTITION_ACTIVATIONS, buffer_0, buffer_1, buffer_0_offset, buffer_1_offset
if cuda_device is None:
see_memory_usage("First Forward Beginning", force=False)
if dist.get_rank() == 0:
logger.info(f"Activation Checkpointing Information")
logger.info(f"----Partition Activations {PARTITION_ACTIVATIONS}, CPU CHECKPOINTING {CPU_CHECKPOINT}")
logger.info(
f"----contiguous Memory Checkpointing {CONTIGUOUS_CHECKPOINTING} with {num_layers} total layers")
logger.info(f"----Synchronization {SYNCHRONIZE}")
logger.info(f"----Profiling time in checkpointing {PROFILE_TIME}")
cuda_device = get_accelerator().current_device_name()
transport_stream = get_accelerator().Stream(device=cuda_device)
if PARTITION_ACTIVATIONS:
inputs = partition_activations(args, CPU_CHECKPOINT, CONTIGUOUS_CHECKPOINTING)
elif CPU_CHECKPOINT:
inputs = copy_to_device(args, device=torch.device('cpu'), criterion_func=is_activation_to_checkpoint)
# just in case something funky is happening such as reuse of inputs
inputs_cuda = copy_to_device(args, device=cuda_device, criterion_func=is_activation_to_checkpoint)
# Copy the rng states.
ctx.fwd_cpu_rng_state = torch.get_rng_state()
ctx.fwd_cuda_rng_state = get_accelerator().get_rng_state()
ctx.fwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
see_memory_usage("Before running forward on the layer", force=False)
# ctx.save_for_backward(*args)
with torch.no_grad():
outputs = run_function(*inputs_cuda)
see_memory_usage("After running forward on the layer", force=False)
del inputs_cuda
if PARTITION_ACTIVATIONS:
new_args = get_partitioned_activations_for_backward(args, inputs, CONTIGUOUS_CHECKPOINTING)
assert len(new_args) % 2 == 0, f'save_for_backward called with odd number of args, {len(new_args)}'
save_args_for_backward(*new_args)
elif CPU_CHECKPOINT:
new_args = get_cpu_activations_for_backward(args, inputs)
save_args_for_backward(*new_args)
else:
save_args_for_backward(*args)
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).stop()
timers.log([FORWARD_GLOBAL_TIMER])
if SYNCHRONIZE:
get_accelerator().synchronize()
# Tensors returned from forward() may not be differentiable.
if torch.is_tensor(outputs):
non_grad_outputs = [outputs] if not outputs.is_floating_point() else []
else:
non_grad_outputs = [o for o in outputs if torch.is_tensor(o) and not o.is_floating_point()]
ctx.mark_non_differentiable(*non_grad_outputs)
if torch.is_tensor(outputs):
all_outputs += [outputs]
return outputs
else:
all_outputs += outputs
outputs, _, _ = extract_tensors(all_objects=outputs)
return tuple(outputs)
@staticmethod
def backward(ctx, *grads):
global timers
see_memory_usage("In backward", force=False)
# removing pointers to the contiguous buffer memory
# so that they can be garbage collected once the checkpoints
# have been used
if SYNCHRONIZE:
get_accelerator().synchronize()
if PROFILE_TIME:
timers('backward').start()
if CONTIGUOUS_CHECKPOINTING:
global data_offsets, size_offsets
global contiguous_data_buffers, contiguous_size_buffers
for buffers in contiguous_data_buffers:
buffers = []
# frees up all the pointers to the checkpoints except for the ones
# stored by save for backward
contiguous_data_buffers = []
contiguous_size_buffers = []
data_offsets = []
size_offsets = []
see_memory_usage("In backward checkpointing code", force=False)
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError("Checkpointing is not compatible with .grad(), "
"please use .backward() if possible")
global cuda_device, transport_stream, PARTITION_ACTIVATIONS
# Rebuild deepspeed_saved_tensors
for t in ctx.deepspeed_saved_tensors:
if t is not None and hasattr(t, 'saved_data') and t.saved_data is not None:
t.data = t.saved_data.to(t.device)
t.saved_data = None
if PARTITION_ACTIVATIONS:
# with get_accelerator().stream(transport_stream):
inputs = gather_partitioned_activations(ctx.deepspeed_saved_tensors,
device=cuda_device if CPU_CHECKPOINT else None)
detached_inputs = detach_variable(inputs)
elif CPU_CHECKPOINT:
inputs = move_to_device(ctx.deepspeed_saved_tensors, cuda_device, is_activation_to_checkpoint)
detached_inputs = detach_variable(inputs)
else:
inputs = ctx.deepspeed_saved_tensors
detached_inputs = detach_variable(inputs)
# Add non tensor input args
detached_inputs = merge_tensors(tensor_objects=detached_inputs,
non_tensor_objects=ctx.non_tensor_args,
tensor_flags=ctx.tensor_flags)
# Store the current states.
bwd_cpu_rng_state = torch.get_rng_state()
bwd_cuda_rng_state = get_accelerator().get_rng_state()
bwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
# Set the states to what it used to be before the forward pass.
torch.set_rng_state(ctx.fwd_cpu_rng_state)
_set_cuda_rng_state(ctx.fwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(ctx.fwd_cuda_rng_state_tracker)
# if PARTITION_ACTIVATIONS:
# current_stream=get_accelerator().current_stream()
# current_stream.wait_stream(transport_stream)
see_memory_usage("In backward checkpointing code before forward", force=False)
with torch.enable_grad():
outputs = ctx.run_function(*detached_inputs)
see_memory_usage("In backward checkpointing code after forward", force=False)
# Set the states back to what it was at the start of this function.
torch.set_rng_state(bwd_cpu_rng_state)
_set_cuda_rng_state(bwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker)
if isinstance(outputs, torch.Tensor):
outputs = (outputs, )
# Filter out non tensor outputs
outputs, _, _ = extract_tensors(all_objects=outputs)
# Construct arguments to autograd.backward().
# This is usually just outputs and grads, but forward() can return tensors that
# are not differentiable.
output_tensors = []
grad_tensors = []
for out, grad in zip(outputs, grads):
if out.requires_grad:
output_tensors.append(out)
grad_tensors.append(grad)
see_memory_usage("In backward checkpointing code before backward", force=False)
torch.autograd.backward(output_tensors, grad_tensors)
# Force clear our stashed tensors to prevent a memory leak in certain scenarios
ctx.deepspeed_saved_tensors = None
ctx.non_tensor_args = None
ctx.tensor_flags = None
see_memory_usage("After backward checkpointing code after backward", force=False)
if PROFILE_TIME:
timers('backward').stop()
timers.log(['backward'])
if SYNCHRONIZE:
get_accelerator().synchronize()
ret_list = [None, None] # first None for ctx
for inp in detached_inputs:
if torch.is_tensor(inp):
ret_list.append(inp.grad)
else:
ret_list.append(None)
return tuple(ret_list)
def non_reentrant_checkpoint(function, *args):
"""This function is union of `torch.utils.checkpoint._checkpoint_without_reentrant` and `CheckpointFunction` in this module
This function is aim to solve the back probagation error raised from all input requires no grad.
* has already been implemented in pytorch for a while, the solution is stable at most time except for jit module mode.
* can help to solve the issue which is hacked by `deepspeed.runtime.pipe.module.PipelineModule._is_checkpointable`
Main modifications compared to the implementation of torch:
1. adapt to the signature of `checkpoint` function in this module
2. solve the non-deterministic by random state management consistent with deepspeed `CheckpointFunction`
3. when there is partition or cpu checkpointing, gather them in the unpack_hook during back probagation
4. make all after backward blocks in the hook which will executed after all leaf nodes backward execution.
5. above 4. is inspired by `torch.autograd.graph.register_multi_grad_hook`, which is only implemented after 2.0.0
"""
global mpu, timers, SYNCHRONIZE, PROFILE_TIME
deepspeed_saved_tensors = None
non_tensor_args = None
tensor_flags = None
def save_args_for_backward(*all_args):
"""keep this function to reduce the modification from original implementation"""
nonlocal deepspeed_saved_tensors, non_tensor_args, tensor_flags
tensor_args, non_tensor_args, tensor_flags = extract_tensors(all_objects=all_args)
deepspeed_saved_tensors = tensor_args
non_tensor_args = non_tensor_args
tensor_flags = tensor_flags
if SYNCHRONIZE:
get_accelerator().synchronize()
if timers is None and PROFILE_TIME:
timers = Timers()
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).start()
global num_layers
global mp_rank, mp_size, mp_group
global contiguous_data_buffers, contiguous_size_buffers
global data_offsets, size_offsets
if mp_rank is None:
if mpu is not None:
if hasattr(mpu, 'get_tensor_model_parallel_rank'):
mp_rank = mpu.get_tensor_model_parallel_rank()
mp_size = mpu.get_tensor_model_parallel_world_size()
mp_group = mpu.get_tensor_model_parallel_group()
else:
mp_rank = mpu.get_model_parallel_rank()
mp_size = mpu.get_model_parallel_world_size()
mp_group = mpu.get_model_parallel_group()
else:
mp_rank = 0
mp_size = 1
mp_group = None
global cuda_device, transport_stream, PARTITION_ACTIVATIONS, buffer_0, buffer_1, buffer_0_offset, buffer_1_offset
if cuda_device is None:
see_memory_usage("First Forward Beginning", force=False)
if dist.get_rank() == 0:
logger.info(f"Activation Checkpointing Information")
logger.info(f"----Partition Activations {PARTITION_ACTIVATIONS}, CPU CHECKPOINTING {CPU_CHECKPOINT}")
logger.info(
f"----contiguous Memory Checkpointing {CONTIGUOUS_CHECKPOINTING} with {num_layers} total layers")
logger.info(f"----Synchronization {SYNCHRONIZE}")
logger.info(f"----Profiling time in checkpointing {PROFILE_TIME}")
cuda_device = get_accelerator().current_device_name()
transport_stream = get_accelerator().Stream(device=cuda_device)
if PARTITION_ACTIVATIONS:
inputs = partition_activations(args, CPU_CHECKPOINT, CONTIGUOUS_CHECKPOINTING)
elif CPU_CHECKPOINT:
inputs = copy_to_device(args, device=torch.device('cpu'), criterion_func=is_activation_to_checkpoint)
# just in case something funky is happening such as reuse of inputs
inputs_cuda = copy_to_device(args, device=cuda_device, criterion_func=is_activation_to_checkpoint)
# Copy the rng states.
fwd_cpu_rng_state = torch.get_rng_state()
fwd_cuda_rng_state = get_accelerator().get_rng_state()
fwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
if PARTITION_ACTIVATIONS:
new_args = get_partitioned_activations_for_backward(args, inputs, CONTIGUOUS_CHECKPOINTING)
assert len(new_args) % 2 == 0, f'save_for_backward called with odd number of args, {len(new_args)}'
save_args_for_backward(*new_args)
elif CPU_CHECKPOINT:
new_args = get_cpu_activations_for_backward(args, inputs)
save_args_for_backward(*new_args)
else:
save_args_for_backward(*args)
class Holder():
"""the place holder object used as activations to save memory"""
pass
# weakref seems utilized to discover the tensor deletion before a whole
# forward backward pair loop finished
storage: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
weak_holder_list = []
leaf_tensors = []
backward_visited_leaf_nodes = 0
def checkpoint_pack(tensor_from_forward):
"""used to record the activation order in the `weak_holder_list`
the activation order in holder list is consistent between the first forward and recomputing forward.
* the jit compiled forward will break the order consistency *
"""
res = Holder()
weak_holder_list.append(weakref.ref(res))
# if this is a leaf tensor, save it for backward progression trace
# leaf tensor used to be input or parameters, which is not activations and
# has no memory overhead
if tensor_from_forward.requires_grad and tensor_from_forward.is_leaf:
leaf_tensors.append(tensor_from_forward)
return res
def checkpoint_unpack(holder_from_backward):
"""retrieve the activations from recompute"""
nonlocal deepspeed_saved_tensors, non_tensor_args, tensor_flags
# if this is the first step of backward probagation, recompute the graph and save
# all the activations with the same order as `checkpoint_pack` does
if len(storage) == 0:
unpack_counter = 0
def replay_pack(tensor_from_replay):
"""save recompute activations"""
nonlocal unpack_counter
unpack_counter += 1
if weak_holder_list[unpack_counter - 1]() is None:
return
detached_activations = tensor_from_replay.detach()
storage[weak_holder_list[unpack_counter - 1]()] = detached_activations
return
def replay_unpack(none_value):
"""recompute graph need not to backward"""
raise RuntimeError("You are calling backwards on a tensor that is never exposed.")
global timers
see_memory_usage("In backward", force=False)
# removing pointers to the contiguous buffer memory
# so that they can be garbage collected once the checkpoints
# have been used
if SYNCHRONIZE:
get_accelerator().synchronize()
if PROFILE_TIME:
timers('backward').start()
if CONTIGUOUS_CHECKPOINTING:
global data_offsets, size_offsets
global contiguous_data_buffers, contiguous_size_buffers
for buffers in contiguous_data_buffers:
buffers = []
# frees up all the pointers to the checkpoints except for the ones
# stored by save for backward
contiguous_data_buffers = []
contiguous_size_buffers = []
data_offsets = []
size_offsets = []
see_memory_usage("In backward checkpointing code", force=False)
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError("Checkpointing is not compatible with .grad(), "
"please use .backward() if possible")
global cuda_device, transport_stream, PARTITION_ACTIVATIONS
# gather inputs which is partitioned or checkpointed before first forward
if PARTITION_ACTIVATIONS:
# with get_accelerator().stream(transport_stream):
inputs = gather_partitioned_activations(deepspeed_saved_tensors,
device=cuda_device if CPU_CHECKPOINT else None)
detached_inputs = detach_variable(inputs)
elif CPU_CHECKPOINT:
inputs = move_to_device(deepspeed_saved_tensors, cuda_device, is_activation_to_checkpoint)
detached_inputs = detach_variable(inputs)
else:
inputs = deepspeed_saved_tensors
detached_inputs = detach_variable(inputs)
# Add non tensor input args
detached_inputs = merge_tensors(tensor_objects=detached_inputs,
non_tensor_objects=non_tensor_args,
tensor_flags=tensor_flags)
# Store the current states.
bwd_cpu_rng_state = torch.get_rng_state()
bwd_cuda_rng_state = get_accelerator().get_rng_state()
bwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
# Set the states to what it used to be before the forward pass.
torch.set_rng_state(fwd_cpu_rng_state)
_set_cuda_rng_state(fwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(fwd_cuda_rng_state_tracker)
see_memory_usage("In backward checkpointing code before forward", force=False)
with torch.enable_grad(), torch.autograd.graph.saved_tensors_hooks(replay_pack, replay_unpack):
_unused = function(*detached_inputs)
see_memory_usage("In backward checkpointing code after forward", force=False)
# Set the states back to what it was at the start of this function.
torch.set_rng_state(bwd_cpu_rng_state)
_set_cuda_rng_state(bwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker)
deepspeed_saved_tensors = None
non_tensor_args = None
tensor_flags = None
if holder_from_backward not in storage:
raise RuntimeError("Attempt to retrieve a tensor saved by autograd multiple times without checkpoint"
" recomputation being triggered in between, this is not currently supported.")
return storage[holder_from_backward]
def after_backward_hook(_nonuse_grads):
"""the hook registered to all leaf tensors"""
nonlocal leaf_tensors, backward_visited_leaf_nodes
backward_visited_leaf_nodes += 1
if backward_visited_leaf_nodes == len(leaf_tensors):
see_memory_usage("After backward checkpointing code after backward", force=False)
if PROFILE_TIME:
timers('backward').stop()
timers.log(['backward'])
if SYNCHRONIZE:
get_accelerator().synchronize()
with torch.autograd.graph.saved_tensors_hooks(checkpoint_pack, checkpoint_unpack):
outputs = function(*inputs_cuda)
for leaf_tensor in leaf_tensors:
leaf_tensor.register_hook(after_backward_hook)
see_memory_usage("After running forward on the layer", force=False)
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).stop()
timers.log([FORWARD_GLOBAL_TIMER])
if SYNCHRONIZE:
get_accelerator().synchronize()
all_outputs = []
if torch.is_tensor(outputs):
all_outputs += [outputs]
else:
all_outputs += outputs
if len(all_outputs) == 1:
return all_outputs[0]
else:
return tuple(all_outputs)
def checkpoint(function, *args):
"""Checkpoint a model or part of the model.
This has been directly copied from torch.utils.checkpoint. """
all_outputs = []
CheckpointFunction.apply(function, all_outputs, *args)
if len(all_outputs) == 1:
return all_outputs[0]
else:
return tuple(all_outputs)
def partition_activations_in_checkpoint(partition_activation):
global PARTITION_ACTIVATIONS
PARTITION_ACTIVATIONS = partition_activation
if dist.get_rank() == 0:
logger.info(f"**************Partition Activations {PARTITION_ACTIVATIONS}************")
def set_num_layers(nlayers):
global num_layers
num_layers = nlayers
def reset():
"""Resets memory buffers related to contiguous memory optimizations.
Should be called during eval when multiple forward propagations are
computed without any backward propagation that usually clears these
buffers.
Arguments:
None
Return:
None
"""
if CONTIGUOUS_CHECKPOINTING:
global data_offsets, size_offsets
global contiguous_data_buffers, contiguous_size_buffers
for buffers in contiguous_data_buffers:
buffers = []
# frees up all the pointers to the checkpoints except for the ones
# stored by save for backward
contiguous_data_buffers = []
contiguous_size_buffers = []
data_offsets = []
size_offsets = []
def _configure_using_config_file(config, mpu=None):
global num_layers, PARTITION_ACTIVATIONS, CONTIGUOUS_CHECKPOINTING, \
CPU_CHECKPOINT, SYNCHRONIZE, PROFILE_TIME
config = DeepSpeedConfig(config, mpu=mpu).activation_checkpointing_config
if dist.get_rank() == 0:
logger.info(config.repr())
PARTITION_ACTIVATIONS = config.partition_activations
CONTIGUOUS_CHECKPOINTING = config.contiguous_memory_optimization
num_layers = config.number_checkpoints
CPU_CHECKPOINT = config.cpu_checkpointing
SYNCHRONIZE = config.synchronize_checkpoint_boundary
PROFILE_TIME = config.profile
def _configure_defaults():
global mpu, num_layers, deepspeed_checkpointing_enabled
global PARTITION_ACTIVATIONS, CONTIGUOUS_CHECKPOINTING, \
CPU_CHECKPOINT, SYNCHRONIZE, PROFILE_TIME
PARTITION_ACTIVATIONS = False
CONTIGUOUS_CHECKPOINTING = False
num_layers = False
CPU_CHECKPOINT = False
SYNCHRONIZE = False
PROFILE_TIME = False
deepspeed_checkpointing_enabled = True
def configure(
mpu_,
deepspeed_config=None,
partition_activations=None,
contiguous_checkpointing=None,
num_checkpoints=None,
checkpoint_in_cpu=None,
synchronize=None,
profile=None,
):
"""Configure DeepSpeed Activation Checkpointing.
Arguments:
mpu_: Optional: An object that implements the following methods
get_model_parallel_rank/group/world_size, and get_data_parallel_rank/group/world_size
deepspeed_config: Optional: DeepSpeed Config json file when provided will be used to
configure DeepSpeed Activation Checkpointing
partition_activations: Optional: Partitions activation checkpoint across model parallel
GPUs when enabled. By default False. Will overwrite deepspeed_config if provided
contiguous_checkpointing: Optional: Copies activation checkpoints to a contiguous memory
buffer. Works only with homogeneous checkpoints when partition_activations is enabled.
Must provide num_checkpoints. By default False. Will overwrite deepspeed_config if
provided
num_checkpoints: Optional: Number of activation checkpoints stored during the forward
propagation of the model. Used to calculate the buffer size for contiguous_checkpointing
Will overwrite deepspeed_config if provided
checkpoint_in_cpu: Optional: Moves the activation checkpoint to CPU. Only works with
partition_activation. Default is false. Will overwrite deepspeed_config if provided
synchronize: Optional: Performs get_accelerator().synchronize() at the beginning and end of
each call to deepspeed.checkpointing.checkpoint for both forward and backward pass.
By default false. Will overwrite deepspeed_config if provided
profile: Optional: Logs the forward and backward time for each
deepspeed.checkpointing.checkpoint invocation. Will overwrite deepspeed_config
if provided
Returns:
None
"""
global mpu, num_layers, deepspeed_checkpointing_enabled
global PARTITION_ACTIVATIONS, CONTIGUOUS_CHECKPOINTING, \
CPU_CHECKPOINT, SYNCHRONIZE, PROFILE_TIME
_configure_defaults()
if mpu_ is not None:
mpu = mpu_
if deepspeed_config is not None:
_configure_using_config_file(deepspeed_config, mpu=mpu)
if partition_activations is not None:
PARTITION_ACTIVATIONS = partition_activations
if contiguous_checkpointing is not None:
CONTIGUOUS_CHECKPOINTING = contiguous_checkpointing
if num_checkpoints is not None:
num_layers = num_checkpoints
if checkpoint_in_cpu is not None:
CPU_CHECKPOINT = checkpoint_in_cpu
if synchronize is not None:
SYNCHRONIZE = synchronize
if profile is not None:
PROFILE_TIME = profile
if CONTIGUOUS_CHECKPOINTING:
assert PARTITION_ACTIVATIONS, "Contiguous Checkpointing is only available with partitioned activations. Set partitioned activations to true in deepspeed config"
if CONTIGUOUS_CHECKPOINTING:
assert num_layers is not None, "Must specify the number of layers with contiguous memory checkpointing"
def is_configured():
"""True if deepspeed activation checkpointing has been configured
by calling deepspeed.checkpointing.configure, else returns false
Arguments:
None
Return:
True of configured, else False
"""
return deepspeed_checkpointing_enabled