applied-ai-018's picture
Add files using upload-large-folder tool
0cee4ac verified
raw
history blame
25.4 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from collections import OrderedDict
import torch
import sys
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from deepspeed import comm as dist
from deepspeed.runtime.constants import PIPE_REPLICATED
from deepspeed.runtime.base_optimizer import ZeROOptimizer
from packaging import version as pkg_version
from deepspeed.git_version_info import version
from deepspeed.runtime.utils import (get_global_norm_of_tensors, clip_tensors_by_global_norm, DummyOptim,
align_dense_tensors, all_gather_dp_groups, is_model_parallel_parameter,
see_memory_usage, graph_process, get_norm_with_moe_layers)
from deepspeed.utils import link_hp_params, lazy_init_hp_params_optimizer_state, fragment_address, groups
from deepspeed.moe.utils import is_moe_param, is_moe_param_group
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank
from deepspeed.checkpoint import enable_universal_checkpoint
from deepspeed.checkpoint.constants import (DS_VERSION, PARTITION_COUNT, BASE_OPTIMIZER_STATE,
SINGLE_PARTITION_OF_FP32_GROUPS, CLIP_GRAD, GROUP_PADDINGS,
PARAM_SLICE_MAPPINGS)
setattr(sys.modules[__name__], 'fragment_address', fragment_address)
class BF16_Optimizer(ZeROOptimizer):
def __init__(self,
init_optimizer,
param_names,
mpu=None,
clip_grad=0.0,
norm_type=2,
allgather_bucket_size=5000000000,
dp_process_group=None,
timers=None,
grad_acc_dtype=None,
graph_harvesting=False,
immediate_grad_update=False,
has_moe_layers=False):
super().__init__()
see_memory_usage('begin bf16_optimizer', force=True)
self.timers = timers
self.optimizer = init_optimizer
self.param_names = param_names
self.using_real_optimizer = not isinstance(self.optimizer, DummyOptim)
assert grad_acc_dtype in [torch.float32, torch.bfloat16
], f"BF16Optimizer: Unsupported gradient accumulation data type: {grad_acc_dtype}"
self.grad_acc_dtype = grad_acc_dtype
self.immediate_grad_update = immediate_grad_update
self.clip_grad = clip_grad
self.norm_type = norm_type
self.mpu = mpu
self.allgather_bucket_size = int(allgather_bucket_size)
self.dp_process_group = dp_process_group
self.dp_rank = dist.get_rank(group=self.dp_process_group)
self.has_moe_layers = has_moe_layers
self.non_expert_gradients = []
self.real_dp_process_group = [dp_process_group for i in range(len(self.optimizer.param_groups))]
if self.has_moe_layers:
self._configure_moe_settings()
# Use torch (un)flatten ops
self.flatten = _flatten_dense_tensors
self.unflatten = _unflatten_dense_tensors
#align nccl all-gather send buffers to 4-bye boundary
self.nccl_start_alignment_factor = 2 # 4-byte alignment/sizeof(fp16) = 2
# Build BF16/FP32 groups
self.bf16_groups = []
self.bf16_groups_flat = []
self.bf16_partitioned_groups = []
self.fp32_groups_flat_partition = []
# Maintain different fp32 gradients views for convenience
self.fp32_groups_gradients = []
self.fp32_groups_gradient_dict = {}
self.fp32_groups_gradients_flat = []
self.fp32_groups_actual_gradients_flat = []
self.fp32_groups_gradient_flat_partition = []
self.fp32_groups_has_gradients = []
self.group_paddings = []
self.graph_harvesting = graph_harvesting
if self.using_real_optimizer:
self._setup_for_real_optimizer()
see_memory_usage('end bf16_optimizer', force=True)
def _configure_moe_settings(self):
assert any(
[is_moe_param_group(group) for group in self.optimizer.param_groups]
), "The model has moe layers, but None of the param groups are marked as MoE. Create a param group with 'moe' key set to True before creating optimizer"
for i, group in enumerate(self.optimizer.param_groups):
if is_moe_param_group(group):
assert all([is_moe_param(param)
for param in group['params']]), "All params in MoE group must be MoE params"
self.real_dp_process_group[i] = groups._get_expert_data_parallel_group(group['name'])
self.expert_gradients = {}
if self.has_moe_layers:
for key in groups._get_expert_data_parallel_group_dict().keys():
self.expert_gradients[key] = []
def _setup_for_real_optimizer(self):
self.partition_count = [dist.get_world_size(group=pg) for pg in self.real_dp_process_group]
for i, param_group in enumerate(self.optimizer.param_groups):
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i])
see_memory_usage(f'before initializing group {i}', force=True)
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
# grab the original list
trainable_parameters = [param for param in param_group['params'] if param.requires_grad]
self.bf16_groups.append(trainable_parameters)
# create flat bf16 params
self.bf16_groups_flat.append(
self._flatten_dense_tensors_aligned(self.bf16_groups[i],
self.nccl_start_alignment_factor * real_dp_world_size))
# Make bf16 params point to flat tensor storage
self._update_storage_to_flattened_tensor(tensor_list=self.bf16_groups[i],
flat_tensor=self.bf16_groups_flat[i])
# divide flat weights into equal sized partitions
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size
bf16_dp_partitions = [
self.bf16_groups_flat[i].narrow(0, dp_index * partition_size, partition_size)
for dp_index in range(real_dp_world_size)
]
self.bf16_partitioned_groups.append(bf16_dp_partitions)
# create fp32 params partition
self.fp32_groups_flat_partition.append(bf16_dp_partitions[partition_id].clone().float().detach())
self.fp32_groups_flat_partition[i].requires_grad = True
num_elem_list = [t.numel() for t in self.bf16_groups[i]]
# create fp32 gradients
fp32_flat_buffer = torch.zeros_like(self.bf16_groups_flat[i], dtype=self.grad_acc_dtype)
self.fp32_groups_gradients_flat.append(fp32_flat_buffer)
if self.has_moe_layers and is_moe_param_group(param_group):
self.expert_gradients[param_group['name']].append(fp32_flat_buffer)
else:
self.non_expert_gradients.append(fp32_flat_buffer)
# track individual fp32 gradients for entire model
fp32_gradients = self._split_flat_tensor(flat_tensor=self.fp32_groups_gradients_flat[i],
num_elem_list=num_elem_list)
self.fp32_groups_gradients.append(fp32_gradients)
self.fp32_groups_gradient_dict[i] = fp32_gradients
# flat tensor corresponding to actual fp32 gradients (i.e., minus alignment padding)
length_without_padding = sum(num_elem_list)
self.fp32_groups_actual_gradients_flat.append(
torch.narrow(self.fp32_groups_gradients_flat[i], 0, 0, length_without_padding))
# flat tensor corresponding to gradient partition
self.fp32_groups_gradient_flat_partition.append(
torch.narrow(self.fp32_groups_gradients_flat[i], 0, partition_id * partition_size, partition_size))
# track fp32 gradient updates
self.fp32_groups_has_gradients.append([False] * len(self.bf16_groups[i]))
# Record padding required for alignment
if partition_id == dist.get_world_size(group=self.real_dp_process_group[i]) - 1:
padding = self.bf16_groups_flat[i].numel() - length_without_padding
else:
padding = 0
self.group_paddings.append(padding)
# update optimizer param groups to reference fp32 params partition
param_group['params'] = [self.fp32_groups_flat_partition[i]]
see_memory_usage(f'after initializing group {i}', force=True)
see_memory_usage('before initialize_optimizer', force=True)
self.initialize_optimizer_states()
see_memory_usage('end initialize_optimizer', force=True)
if self.immediate_grad_update:
self.create_grad_acc_hooks()
# Need optimizer states initialized before linking lp to optimizer state
self._link_all_hp_params()
self._hp_optimizer_states_linked = False
self._enable_universal_checkpoint()
self._param_slice_mappings = self._create_param_mapping()
def _enable_universal_checkpoint(self):
for lp_param_group in self.bf16_groups:
enable_universal_checkpoint(param_list=lp_param_group)
def _create_param_mapping(self):
param_mapping = []
for i, _ in enumerate(self.optimizer.param_groups):
param_mapping_per_group = OrderedDict()
for lp in self.bf16_groups[i]:
if lp._hp_mapping is not None:
lp_name = self.param_names[lp]
param_mapping_per_group[lp_name] = lp._hp_mapping.get_hp_fragment_address()
param_mapping.append(param_mapping_per_group)
return param_mapping
def _link_all_hp_params(self):
for i, _ in enumerate(self.optimizer.param_groups):
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i])
# Link bf16 and fp32 params in partition
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size
flat_hp_partition = self.fp32_groups_flat_partition[i]
link_hp_params(lp_param_list=self.bf16_groups[i],
flat_hp_partition=flat_hp_partition,
gradient_dict=self.fp32_groups_gradient_dict,
offload_gradient_dict=None,
use_offload=False,
param_group_index=i,
partition_start=partition_id * partition_size,
partition_size=partition_size,
dp_group=self.real_dp_process_group[i])
def _lazy_init_hp_params_optimizer_state(self):
if not self._hp_optimizer_states_linked:
for i, _ in enumerate(self.optimizer.param_groups):
lazy_init_hp_params_optimizer_state(self.bf16_groups[i], self.fp32_groups_flat_partition[i],
self.optimizer.state)
self._hp_optimizer_states_linked = True
def initialize_optimizer_states(self):
"""Take an optimizer step with zero-valued gradients to allocate internal
optimizer state.
This helps prevent memory fragmentation by allocating optimizer state at the
beginning of training instead of after activations have been allocated.
"""
for param_partition, grad_partition in zip(self.fp32_groups_flat_partition,
self.fp32_groups_gradient_flat_partition):
# In case of grad acc dtype different than FP32, need to cast to high precision.
param_partition.grad = grad_partition.to(
param_partition.dtype) if grad_partition.dtype != param_partition.dtype else grad_partition
if self.grad_acc_dtype is not torch.float32:
for param_partition in self.fp32_groups_flat_partition:
param_partition.grad = None
self.clear_hp_grads()
def _split_flat_tensor(self, flat_tensor, num_elem_list):
assert sum(num_elem_list) <= flat_tensor.numel()
tensor_list = []
offset = 0
for num_elem in num_elem_list:
dense_tensor = torch.narrow(flat_tensor, 0, offset, num_elem)
tensor_list.append(dense_tensor)
offset += num_elem
return tensor_list
def _update_storage_to_flattened_tensor(self, tensor_list, flat_tensor):
updated_params = self.unflatten(flat_tensor, tensor_list)
for p, q in zip(tensor_list, updated_params):
p.data = q.data
def _flatten_dense_tensors_aligned(self, tensor_list, alignment):
return self.flatten(align_dense_tensors(tensor_list, alignment))
@torch.no_grad()
def step(self, closure=None):
if closure is not None:
raise NotImplementedError(f'{self.__class__} does not support closure.')
non_expert_grads_for_norm, expert_grads_for_norm = self.get_grads_for_norm()
non_expert_groups_norm = get_global_norm_of_tensors(input_tensors=non_expert_grads_for_norm,
mpu=self.mpu,
norm_type=self.norm_type,
use_graph=self.graph_harvesting)
all_groups_norm = non_expert_groups_norm
if self.has_moe_layers:
all_groups_norm = get_norm_with_moe_layers(non_expert_groups_norm,
mpu=self.mpu,
expert_tensors=expert_grads_for_norm,
norm_type=self.norm_type)
self._global_grad_norm = all_groups_norm
assert all_groups_norm > 0.
if self.clip_grad > 0.:
clip_tensors_by_global_norm(input_tensors=self.get_grads_for_norm(for_clipping=True),
max_norm=self.clip_grad,
global_norm=all_groups_norm,
mpu=self.mpu,
use_graph=self.graph_harvesting)
self.optimizer.step()
# We need to link optimizer state after the first step() call
self._lazy_init_hp_params_optimizer_state()
self.update_lp_params()
self.clear_hp_grads()
def backward(self, loss, update_hp_grads=True, clear_lp_grads=False, **bwd_kwargs):
"""Perform a backward pass and copy the low-precision gradients to the
high-precision copy.
We copy/accumulate to the high-precision grads now to prevent accumulating in the
bf16 grads after successive backward() calls (i.e., grad accumulation steps > 1)
The low-precision grads are deallocated during this procedure.
"""
self.clear_lp_grads()
loss.backward(**bwd_kwargs)
if update_hp_grads:
self.update_hp_grads(clear_lp_grads=clear_lp_grads)
@torch.no_grad()
def _update_hp_grad(self, lp, group_idx, param_idx, clear_lp_grads):
if lp.grad is None:
return
hp_grad = self.fp32_groups_gradients[group_idx][param_idx]
assert hp_grad is not None, \
f'high precision param has no gradient, lp param_id = {id(lp)} group_info = [{group_idx}][{param_idx}]'
hp_grad.data.add_(lp.grad.data.to(hp_grad.dtype).view(hp_grad.shape))
lp._hp_grad = hp_grad
self.fp32_groups_has_gradients[group_idx][param_idx] = True
# clear gradients
if clear_lp_grads:
lp.grad.zero_()
@torch.no_grad()
def _update_hp_grads_func(self, clear_lp_grads=False):
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
self._update_hp_grad(lp, i, j, clear_lp_grads)
@torch.no_grad()
def update_hp_grads(self, clear_lp_grads=False):
if self.immediate_grad_update:
return
if self.graph_harvesting:
graph_process(False, self._update_hp_grads_func, clear_lp_grads)
else:
self._update_hp_grads_func(clear_lp_grads)
#cpu op
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
if lp.grad is None:
continue
self.fp32_groups_has_gradients[i][j] = True
@torch.no_grad()
def get_grads_for_reduction(self):
if self.has_moe_layers:
return self.non_expert_gradients, self.expert_gradients
return self.non_expert_gradients, {}
@torch.no_grad()
def get_grads_for_norm(self, for_clipping=False):
"""
Returns:
tuple[list[Tensor], dict[ep_name, List[Tensor]] | list:
If for_clipping, return all gradients.
Otherwise, separate and return dict of expert_grad and list of non_expert_grad
"""
# (grads, expert_group_name)
expert_grads_for_norm = {}
# grads
non_expert_grads_for_norm = []
all_grads_for_clip = []
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=self.mpu)
assert len(self.bf16_groups) == len(self.optimizer.param_groups)
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
if not for_clipping:
if hasattr(lp, PIPE_REPLICATED) and lp.ds_pipe_replicated:
continue
# skip duplicated parameters. perform norm only on cards with tp_rank=0.
# non-duplicated parameters include:
# - Parameters with tp: Use allreducesum of mp_group.
# - Moe Parameters with ep: Use allreducesum of ep_group.
if not (tensor_mp_rank == 0 or is_model_parallel_parameter(lp) or is_moe_param(lp)):
continue
if not self.fp32_groups_has_gradients[i][j]:
continue
if not for_clipping:
param_group = self.optimizer.param_groups[i]
if self.has_moe_layers and is_moe_param_group(param_group):
if param_group['name'] not in expert_grads_for_norm:
expert_grads_for_norm[param_group['name']] = []
expert_grads_for_norm[param_group['name']].append(self.fp32_groups_gradients[i][j])
else:
non_expert_grads_for_norm.append(self.fp32_groups_gradients[i][j])
else:
all_grads_for_clip.append(self.fp32_groups_gradients[i][j])
if not for_clipping:
return non_expert_grads_for_norm, expert_grads_for_norm
return all_grads_for_clip
@torch.no_grad()
def update_lp_params(self):
for i, (bf16_partitions,
fp32_partition) in enumerate(zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition)):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
bf16_partitions[partition_id].data.copy_(fp32_partition.data)
# print_rank_0(f'update_lp_params {i=} {partition_id=}', force=True)
# if i == 0:
# print_rank_0(f'{fp32_partition[:10]=}', force=True)
all_gather_dp_groups(groups_flat=self.bf16_groups_flat,
partitioned_param_groups=self.bf16_partitioned_groups,
dp_process_group=self.real_dp_process_group,
start_alignment_factor=self.nccl_start_alignment_factor,
allgather_bucket_size=self.allgather_bucket_size)
def clear_hp_grads(self):
for flat_gradients in self.fp32_groups_gradients_flat:
flat_gradients.zero_()
for i, group in enumerate(self.fp32_groups_gradients):
self.fp32_groups_has_gradients[i] = [False] * len(group)
def clear_lp_grads(self):
# using zero_() fixed memory address for graph replay
set_to_none = False if self.graph_harvesting else True
zero_grads_list = []
for group in self.bf16_groups:
for param in group:
if set_to_none:
param.grad = None
elif param.grad is not None:
if param.grad.grad_fn is not None:
param.grad.detach_()
zero_grads_list.append(param.grad)
if not set_to_none and len(zero_grads_list) > 0:
torch._foreach_zero_(zero_grads_list)
def state_dict(self):
state_dict = {}
state_dict[CLIP_GRAD] = self.clip_grad
state_dict[BASE_OPTIMIZER_STATE] = self.optimizer.state_dict()
state_dict[SINGLE_PARTITION_OF_FP32_GROUPS] = self.fp32_groups_flat_partition
state_dict[GROUP_PADDINGS] = self.group_paddings
state_dict[PARTITION_COUNT] = self.partition_count
state_dict[DS_VERSION] = version
state_dict[PARAM_SLICE_MAPPINGS] = self._param_slice_mappings
return state_dict
# Restore base optimizer fp32 weights bfloat16 weights
def _restore_from_bit16_weights(self):
for i, group in enumerate(self.bf16_groups):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
for bf16_partitions, fp32_partition in zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition):
fp32_partition.data.copy_(bf16_partitions[partition_id].data)
def refresh_fp32_params(self):
self._restore_from_bit16_weights()
def load_state_dict(self,
state_dict_list,
checkpoint_folder,
load_optimizer_states=True,
load_from_fp32_weights=False,
load_serial=None):
if checkpoint_folder:
self._load_universal_checkpoint(checkpoint_folder, load_optimizer_states, load_from_fp32_weights)
else:
self._load_legacy_checkpoint(state_dict_list, load_optimizer_states, load_from_fp32_weights)
def _load_legacy_checkpoint(self, state_dict_list, load_optimizer_states=True, load_from_fp32_weights=False):
dp_rank = dist.get_rank(group=self.dp_process_group)
current_rank_sd = state_dict_list[dp_rank]
ckpt_version = current_rank_sd.get(DS_VERSION, False)
assert ckpt_version, f"Empty ds_version in checkpoint, not clear how to proceed"
ckpt_version = pkg_version.parse(ckpt_version)
self.clip_grad = current_rank_sd.get(CLIP_GRAD, self.clip_grad)
if load_optimizer_states:
print(f"_load_legacy_checkpoint current_rank_sd[BASE_OPTIMIZER_STATE]")
self.optimizer.load_state_dict(current_rank_sd[BASE_OPTIMIZER_STATE])
if load_from_fp32_weights:
for current, saved in zip(self.fp32_groups_flat_partition,
current_rank_sd[SINGLE_PARTITION_OF_FP32_GROUPS]):
src_tensor = _get_padded_tensor(saved, current.numel())
current.data.copy_(src_tensor.data)
if load_optimizer_states:
self._link_all_hp_params()
def _load_universal_checkpoint(self, checkpoint_folder, load_optimizer_states, load_from_fp32_weights):
self.load_hp_checkpoint_state_from_checkpoint_dir("bf16_groups", checkpoint_folder)
def _load_global_state(self, sd):
pass
@property
def param_groups(self):
"""Forward the wrapped optimizer's parameters."""
return self.optimizer.param_groups
def accumulate_hp_grads_and_remove_lp(self, lp_param, group_idx, param_idx):
assert self.immediate_grad_update
self._update_hp_grad(lp_param, group_idx, param_idx, clear_lp_grads=True)
def create_grad_acc_hooks(self):
self.grad_accs = []
for i, param_group in enumerate(self.bf16_groups):
for j, param in enumerate(param_group):
if param.requires_grad:
def wrapper(param, i, j):
param_tmp = param.expand_as(param)
grad_acc = param_tmp.grad_fn.next_functions[0][0]
def accumulate_hp_grads_and_remove_lp(*notneeded):
self.accumulate_hp_grads_and_remove_lp(param, i, j)
grad_acc.register_hook(accumulate_hp_grads_and_remove_lp)
self.grad_accs.append(grad_acc)
wrapper(param, i, j)
def _get_padded_tensor(src_tensor, size):
if src_tensor.numel() >= size:
return src_tensor
padded_tensor = torch.zeros(size, dtype=src_tensor.dtype, device=src_tensor.device)
slice_tensor = torch.narrow(padded_tensor, 0, 0, src_tensor.numel())
slice_tensor.data.copy_(src_tensor.data)
return padded_tensor