peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/compiler.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from typing import Union, Callable, Dict, Any | |
import importlib | |
import torch | |
from ..pydantic_v1 import validator | |
from .config_utils import DeepSpeedConfigModel | |
COMPILE_CONFIG = "compile" | |
def is_compile_supported(): | |
return hasattr(torch, "compiler") | |
def disable(func): | |
if is_compile_supported(): | |
return torch.compiler.disable(func) | |
return func | |
def get_compile_config(param_dict): | |
if COMPILE_CONFIG in param_dict: | |
compile_config_dict = param_dict[COMPILE_CONFIG] | |
else: | |
compile_config_dict = {} | |
return CompileConfig(**compile_config_dict) | |
def get_backend_fn(backend: Union[str, Callable]) -> Union[str, Callable]: | |
if isinstance(backend, Callable): | |
return backend | |
elif isinstance(backend, str): | |
if backend in torch._dynamo.list_backends(exclude_tags=()): | |
return backend | |
# Get module name from backend name | |
module_name = '.'.join(backend.split('.')[:-1]) | |
fn_name = backend.split('.')[-1] | |
try: | |
module = importlib.import_module(module_name) | |
backend_fn = getattr(module, fn_name) | |
except ImportError: | |
raise ValueError( | |
f"The backend {backend} is not in the list of available backends and could not be imported.") | |
return backend_fn | |
raise ValueError(f"backend for torch.compile must be a string or Callable: {backend}") | |
class CompileConfig(DeepSpeedConfigModel): | |
""" | |
[EXPERIMENTAL] This configuration enables users to activate `torch.compile` within DeepSpeed and customize its settings. | |
Please be aware that these features and API designs are experimental and subject to change. | |
""" | |
enabled: bool = False | |
""" | |
Enable torch.compile when True. | |
""" | |
backend: str = "inductor" | |
""" | |
Passed to `backend` argument of torch.compile. | |
If the given value is not in torch._dynamo.list_backends(), | |
DeepSpeed attempts to import and instantiate the module with the given name. | |
""" | |
kwargs: Dict[str, Any] = {} | |
""" | |
Passed to `kwargs` argument of torch.compile. | |
""" | |
def validate_enabled(cls, field_value, values): | |
if field_value and not is_compile_supported(): | |
raise ValueError("torch.compile is not supported on this version of PyTorch.") | |
return field_value | |
class CompiledModuleWrapper(torch.nn.Module): | |
def __init__(self, module, compile_config: Union[CompileConfig, None] = None): | |
super().__init__() | |
assert is_compile_supported(), "torch.compile is not supported on this version of PyTorch." | |
modules = self.__dict__.get('_modules') | |
modules['wrapped'] = module | |
self.__dict__['wrapped'] = module | |
self._is_compiled = False | |
self._backend = get_backend_fn(compile_config.backend) | |
self._compile_kwargs = compile_config.kwargs | |
self._compiler_fn = None | |
def __getattr__(self, name): | |
return getattr(self.__dict__['wrapped'], name) | |
def set_backend(self, backend: Union[str, Callable]): | |
"""Set the backend for torch.compile. | |
Args: | |
backend (Union[str, Callable]): backend name or a function that takes a torch.nn.Module and returns a compiled module. | |
You can directly pass a function that works as a backend. | |
See also `backend` field in `CompileConfig` for more details. | |
""" | |
self._backend = get_backend_fn(backend) | |
def set_torch_compile_kwargs(self, kwargs: Dict[str, Union[str, Any]]) -> None: | |
"""Set kwargs for torch.compile. Kwargs that are set in DeepSpeed config will be overwritten. | |
You can also pass a backend name with "backend" key to change the backend. | |
Args: | |
kwargs (Dict[str, Union[str, Any]]): kwargs passed to torch.compile. | |
""" | |
if "backend" in kwargs: | |
raise ValueError("backend cannot be set as compile kwargs. Use set_backend instead.") | |
self._compile_kwargs.update(kwargs) | |
def set_compiler_fn(self, compiler_fn: Callable) -> None: | |
"""Set a function to be used for compiling the module. | |
This function should take a torch.nn.Module as input and return a compiled module. | |
Note that other compile options are ignored when a compiler_fn is set. | |
Example: | |
```python | |
def my_compiler_fn(module: torch.nn.Module): | |
... | |
return torch.compile(module, ...) | |
engine.set_compiler_fn(my_compiler_fn) | |
``` | |
""" | |
self._compiler_fn = compiler_fn | |
def forward(self, *args, **kwargs) -> Any: | |
if not self.is_compiled: | |
if self._compiler_fn is None: | |
self.__dict__['wrapped'] = torch.compile(self.wrapped, backend=self._backend, **self._compile_kwargs) | |
else: | |
self.__dict__['wrapped'] = self._compiler_fn(self.wrapped) | |
self._is_compiled = True | |
return self.__dict__['wrapped'](*args, **kwargs) | |
def is_compiled(self) -> bool: | |
return self._is_compiled | |
def backend(self) -> Union[str, Callable]: | |
return self._backend | |
def torch_compile_kwargs(self) -> Dict[str, Any]: | |
return self._compile_kwargs | |
def compiler_fn(self) -> Union[Callable, None]: | |
return self._compiler_fn | |