applied-ai-018's picture
Add files using upload-large-folder tool
0cee4ac verified
raw
history blame
41.6 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
from typing import Union
from enum import Enum
import torch
import json
import hjson
import copy
import base64
from .constants import *
from .fp16.loss_scaler import (
INITIAL_LOSS_SCALE,
SCALE_WINDOW,
DELAYED_SHIFT,
CONSECUTIVE_HYSTERESIS,
MIN_LOSS_SCALE,
)
from .config_utils import (
get_scalar_param,
dict_raise_error_on_duplicate_keys,
ScientificNotationEncoder,
)
from .zero.config import get_zero_config, ZeroStageEnum
from .activation_checkpointing.config import DeepSpeedActivationCheckpointingConfig
from ..comm.config import DeepSpeedCommsConfig
from ..monitor.config import get_monitor_config
from ..inference.config import WeightQuantConfig
from .compiler import get_compile_config
from deepspeed import comm as dist
from deepspeed.runtime.config_utils import DeepSpeedConfigModel
from ..git_version_info import version as __version__
from ..utils import logger
from ..elasticity import (
elasticity_enabled,
compute_elastic_config,
ensure_immutable_elastic_config,
)
from ..elasticity.config import ElasticityConfigError
from ..elasticity.constants import (
ELASTICITY,
IGNORE_NON_ELASTIC_BATCH_INFO,
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT,
MODEL_PARALLEL_SIZE,
MODEL_PARALLEL_SIZE_DEFAULT,
NUM_GPUS_PER_NODE,
NUM_GPUS_PER_NODE_DEFAULT,
)
from ..profiling.config import DeepSpeedFlopsProfilerConfig
from ..autotuning.config import DeepSpeedAutotuningConfig
from ..nebula.config import DeepSpeedNebulaConfig
from ..compression.config import get_compression_config, get_quantize_enabled
from ..compression.constants import *
from .swap_tensor.aio_config import get_aio_config
from .data_pipeline.config import get_data_efficiency_enabled, get_data_efficiency_config, get_curriculum_enabled_legacy, get_curriculum_params_legacy
from .data_pipeline.constants import *
TENSOR_CORE_ALIGN_SIZE = 8
ADAGRAD_OPTIMIZER = 'adagrad'
ADAM_OPTIMIZER = 'adam'
ADAMW_OPTIMIZER = 'adamw'
LAMB_OPTIMIZER = 'lamb'
ONEBIT_ADAM_OPTIMIZER = 'onebitadam'
ZERO_ONE_ADAM_OPTIMIZER = 'zerooneadam'
ONEBIT_LAMB_OPTIMIZER = 'onebitlamb'
MUADAM_OPTIMIZER = 'muadam'
MUADAMW_OPTIMIZER = 'muadamw'
MUSGD_OPTIMIZER = 'musgd'
LION_OPTIMIZER = 'lion'
DEEPSPEED_OPTIMIZERS = [
ADAGRAD_OPTIMIZER, ADAM_OPTIMIZER, ADAMW_OPTIMIZER, LAMB_OPTIMIZER, ONEBIT_ADAM_OPTIMIZER, ONEBIT_LAMB_OPTIMIZER,
ZERO_ONE_ADAM_OPTIMIZER, MUADAM_OPTIMIZER, MUADAMW_OPTIMIZER, MUSGD_OPTIMIZER, LION_OPTIMIZER
]
# extra optimizer parameters for adam/adamw
TORCH_ADAM_PARAM = "torch_adam"
# default to adamw logic for adam/adamw optimizers unless user explicitly opts out
ADAM_W_MODE = "adam_w_mode"
ADAM_W_MODE_DEFAULT = True
class DeepSpeedConfigError(Exception):
pass
class DtypeEnum(Enum):
# The torch dtype must always be the first value (so we return torch.dtype)
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half"
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float"
int8 = torch.int8, "torch.int8", "int8"
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16"
# Copied from https://stackoverflow.com/a/43210118
# Allows us to use multiple values for each Enum index and returns first
# listed value when Enum is called
def __new__(cls, *values):
obj = object.__new__(cls)
# first value is canonical value
obj._value_ = values[0]
for other_value in values[1:]:
cls._value2member_map_[other_value] = obj
obj._all_values = values
return obj
def __repr__(self):
return "<%s.%s: %s>" % (
self.__class__.__name__,
self._name_,
", ".join([repr(v) for v in self._all_values]),
)
def get_pld_enabled(param_dict):
if PROGRESSIVE_LAYER_DROP in param_dict.keys():
return get_scalar_param(param_dict[PROGRESSIVE_LAYER_DROP], PLD_ENABLED, PLD_ENABLED_DEFAULT)
else:
return False
def get_pld_params(param_dict):
if PROGRESSIVE_LAYER_DROP in param_dict.keys():
pld_params = copy.copy(param_dict[PROGRESSIVE_LAYER_DROP])
pld_params.pop(PLD_ENABLED)
return pld_params
else:
return False
def get_amp_enabled(param_dict):
if AMP in param_dict.keys():
return get_scalar_param(param_dict[AMP], AMP_ENABLED, AMP_ENABLED_DEFAULT)
else:
return False
def get_amp_params(param_dict):
if AMP in param_dict.keys():
amp_params = copy.copy(param_dict[AMP])
amp_params.pop(AMP_ENABLED)
return amp_params
else:
return False
def get_fp16_enabled(param_dict):
if FP16 in param_dict.keys():
return get_scalar_param(param_dict[FP16], FP16_ENABLED, FP16_ENABLED_DEFAULT)
else:
return False
def get_bfloat16_enabled(param_dict):
for key in [BFLOAT16, BFLOAT16_OLD]:
if key in param_dict.keys():
return get_scalar_param(param_dict[key], BFLOAT16_ENABLED, BFLOAT16_ENABLED_DEFAULT)
return False
def get_bfloat16_immediate_grad_update(param_dict):
for key in [BFLOAT16, BFLOAT16_OLD]:
if key in param_dict.keys():
return get_scalar_param(param_dict[key], BFLOAT16_IMMEDIATE_GRAD_UPDATE,
BFLOAT16_IMMEDIATE_GRAD_UPDATE_DEFAULT)
return False
def get_fp16_master_weights_and_grads_enabled(param_dict):
if get_fp16_enabled(param_dict):
return get_scalar_param(param_dict[FP16], FP16_MASTER_WEIGHTS_AND_GRADS, FP16_MASTER_WEIGHTS_AND_GRADS_DEFAULT)
else:
return False
def get_fp16_auto_cast(param_dict):
if get_fp16_enabled(param_dict):
return get_scalar_param(param_dict[FP16], FP16_AUTO_CAST, FP16_AUTO_CAST_DEFAULT)
def get_loss_scale(param_dict):
if get_fp16_enabled(param_dict):
return get_scalar_param(param_dict[FP16], FP16_LOSS_SCALE, FP16_LOSS_SCALE_DEFAULT)
elif get_bfloat16_enabled(param_dict):
return 1.0
else:
return FP16_LOSS_SCALE_DEFAULT
def get_initial_dynamic_scale(param_dict):
if get_fp16_enabled(param_dict):
initial_scale_power = get_scalar_param(param_dict[FP16], FP16_INITIAL_SCALE_POWER,
FP16_INITIAL_SCALE_POWER_DEFAULT)
elif get_bfloat16_enabled(param_dict):
initial_scale_power = 0
else:
initial_scale_power = FP16_INITIAL_SCALE_POWER_DEFAULT
return 2**initial_scale_power
def get_dynamic_loss_scale_args(param_dict):
loss_scale_args = None
if get_fp16_enabled(param_dict):
fp16_dict = param_dict[FP16]
dynamic_loss_args = [
FP16_INITIAL_SCALE_POWER,
FP16_LOSS_SCALE_WINDOW,
FP16_MIN_LOSS_SCALE,
FP16_HYSTERESIS,
FP16_CONSECUTIVE_HYSTERESIS,
]
if any(arg in list(fp16_dict.keys()) for arg in dynamic_loss_args):
init_scale = get_scalar_param(fp16_dict, FP16_INITIAL_SCALE_POWER, FP16_INITIAL_SCALE_POWER_DEFAULT)
scale_window = get_scalar_param(fp16_dict, FP16_LOSS_SCALE_WINDOW, FP16_LOSS_SCALE_WINDOW_DEFAULT)
delayed_shift = get_scalar_param(fp16_dict, FP16_HYSTERESIS, FP16_HYSTERESIS_DEFAULT)
consecutive_hysteresis = get_scalar_param(fp16_dict, FP16_CONSECUTIVE_HYSTERESIS,
FP16_CONSECUTIVE_HYSTERESIS_DEFAULT)
min_loss_scale = get_scalar_param(fp16_dict, FP16_MIN_LOSS_SCALE, FP16_MIN_LOSS_SCALE_DEFAULT)
loss_scale_args = {
INITIAL_LOSS_SCALE: 2**init_scale,
SCALE_WINDOW: scale_window,
DELAYED_SHIFT: delayed_shift,
CONSECUTIVE_HYSTERESIS: consecutive_hysteresis,
MIN_LOSS_SCALE: min_loss_scale,
}
return loss_scale_args
def get_gradient_accumulation_steps(param_dict):
return get_scalar_param(param_dict, GRADIENT_ACCUMULATION_STEPS, GRADIENT_ACCUMULATION_STEPS_DEFAULT)
def get_sparse_gradients_enabled(param_dict):
return get_scalar_param(param_dict, SPARSE_GRADIENTS, SPARSE_GRADIENTS_DEFAULT)
def get_communication_data_type(param_dict,
comm_type=COMMUNICATION_DATA_TYPE,
comm_data_type_default=COMMUNICATION_DATA_TYPE_DEFAULT):
val = get_scalar_param(param_dict, comm_type, comm_data_type_default)
val = val.lower() if val is not None else val
if val is None:
return val # we must determine it by other parameters
elif val == "fp32":
return torch.float32
elif val == "fp16":
return torch.float16
elif val == "bf16":
return torch.bfloat16
raise ValueError(f"Invalid communication_data_type. Supported data types: ['fp16', 'bf16', 'fp32']. Got: {val}")
def get_prescale_gradients(param_dict):
return get_scalar_param(param_dict, PRESCALE_GRADIENTS, PRESCALE_GRADIENTS_DEFAULT)
def get_gradient_predivide_factor(param_dict):
return get_scalar_param(param_dict, GRADIENT_PREDIVIDE_FACTOR, GRADIENT_PREDIVIDE_FACTOR_DEFAULT)
def get_steps_per_print(param_dict):
return get_scalar_param(param_dict, STEPS_PER_PRINT, STEPS_PER_PRINT_DEFAULT)
def get_disable_allgather(param_dict):
return get_scalar_param(param_dict, DISABLE_ALLGATHER, DISABLE_ALLGATHER_DEFAULT)
def get_dump_state(param_dict):
return get_scalar_param(param_dict, DUMP_STATE, DUMP_STATE_DEFAULT)
def get_gradient_clipping(param_dict):
return get_scalar_param(param_dict, GRADIENT_CLIPPING, GRADIENT_CLIPPING_DEFAULT)
def get_graph_harvesting(param_dict):
return get_scalar_param(param_dict, GRAPH_HARVESTING, GRAPH_HARVESTING_DEFAULT)
def get_sparse_attention(param_dict):
if SPARSE_ATTENTION in param_dict.keys():
sparsity = param_dict[SPARSE_ATTENTION]
mode = get_sparse_attention_mode(sparsity)
if mode == SPARSE_DENSE_MODE:
return get_sparse_dense_config(sparsity)
elif mode == SPARSE_FIXED_MODE:
return get_sparse_fixed_config(sparsity)
elif mode == SPARSE_VARIABLE_MODE:
return get_sparse_variable_config(sparsity)
elif mode == SPARSE_BIGBIRD_MODE:
return get_sparse_bigbird_config(sparsity)
elif mode == SPARSE_BSLONGFORMER_MODE:
return get_sparse_bslongformer_config(sparsity)
else:
raise NotImplementedError(f"Given sparsity mode, {mode}, has not been implemented yet!")
else:
return None
def get_sparse_dense_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
return {SPARSE_MODE: SPARSE_DENSE_MODE, SPARSE_BLOCK: block}
def get_sparse_fixed_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_local_blocks = get_scalar_param(sparsity, SPARSE_NUM_LOCAL_BLOCKS, SPARSE_NUM_LOCAL_BLOCKS_DEFAULT)
num_global_blocks = get_scalar_param(sparsity, SPARSE_NUM_GLOBAL_BLOCKS, SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT)
attention = get_scalar_param(sparsity, SPARSE_ATTENTION_TYPE, SPARSE_ATTENTION_TYPE_DEFAULT)
horizontal_global_attention = get_scalar_param(
sparsity,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT,
)
num_different_global_patterns = get_scalar_param(
sparsity,
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS,
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS_DEFAULT,
)
return {
SPARSE_MODE: SPARSE_FIXED_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_LOCAL_BLOCKS: num_local_blocks,
SPARSE_NUM_GLOBAL_BLOCKS: num_global_blocks,
SPARSE_ATTENTION_TYPE: attention,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION: horizontal_global_attention,
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS: num_different_global_patterns,
}
def get_sparse_variable_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_random_blocks = get_scalar_param(sparsity, SPARSE_NUM_RANDOM_BLOCKS, SPARSE_NUM_RANDOM_BLOCKS_DEFAULT)
local_window_blocks = get_scalar_param(sparsity, SPARSE_LOCAL_WINDOW_BLOCKS, SPARSE_LOCAL_WINDOW_BLOCKS_DEFAULT)
global_block_indices = get_scalar_param(sparsity, SPARSE_GLOBAL_BLOCK_INDICES, SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT)
global_block_end_indices = get_scalar_param(
sparsity,
SPARSE_GLOBAL_BLOCK_END_INDICES,
SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT,
)
attention = get_scalar_param(sparsity, SPARSE_ATTENTION_TYPE, SPARSE_ATTENTION_TYPE_DEFAULT)
horizontal_global_attention = get_scalar_param(
sparsity,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT,
)
return {
SPARSE_MODE: SPARSE_VARIABLE_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_RANDOM_BLOCKS: num_random_blocks,
SPARSE_LOCAL_WINDOW_BLOCKS: local_window_blocks,
SPARSE_GLOBAL_BLOCK_INDICES: global_block_indices,
SPARSE_GLOBAL_BLOCK_END_INDICES: global_block_end_indices,
SPARSE_ATTENTION_TYPE: attention,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION: horizontal_global_attention,
}
def get_sparse_bigbird_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_random_blocks = get_scalar_param(sparsity, SPARSE_NUM_RANDOM_BLOCKS, SPARSE_NUM_RANDOM_BLOCKS_DEFAULT)
num_sliding_window_blocks = get_scalar_param(
sparsity,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT,
)
num_global_blocks = get_scalar_param(sparsity, SPARSE_NUM_GLOBAL_BLOCKS, SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT)
return {
SPARSE_MODE: SPARSE_BIGBIRD_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_RANDOM_BLOCKS: num_random_blocks,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS: num_sliding_window_blocks,
SPARSE_NUM_GLOBAL_BLOCKS: num_global_blocks,
}
def get_sparse_bslongformer_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_sliding_window_blocks = get_scalar_param(
sparsity,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT,
)
global_block_indices = get_scalar_param(sparsity, SPARSE_GLOBAL_BLOCK_INDICES, SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT)
global_block_end_indices = get_scalar_param(
sparsity,
SPARSE_GLOBAL_BLOCK_END_INDICES,
SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT,
)
return {
SPARSE_MODE: SPARSE_BSLONGFORMER_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS: num_sliding_window_blocks,
SPARSE_GLOBAL_BLOCK_INDICES: global_block_indices,
SPARSE_GLOBAL_BLOCK_END_INDICES: global_block_end_indices,
}
def get_sparse_attention_mode(param_dict):
if SPARSE_MODE in param_dict.keys():
return param_dict[SPARSE_MODE]
else:
return SPARSE_MODE_DEFAULT
def get_sparse_attention_type(param_dict):
if SPARSE_ATTENTION_TYPE in param_dict.keys():
return param_dict[SPARSE_ATTENTION_TYPE]
else:
return SPARSE_ATTENTION_TYPE_DEFAULT
def get_pipeline_config(param_dict):
"""Parses pipeline engine configuration. """
default_pipeline = {
"stages": "auto",
"partition": "best",
"seed_layers": False,
"activation_checkpoint_interval": 0,
"pipe_partitioned": True,
"grad_partitioned": True,
}
config = default_pipeline
for key, val in param_dict.get("pipeline", {}).items():
config[key] = val
return config
def get_optimizer_name(param_dict):
if OPTIMIZER in param_dict.keys() and TYPE in param_dict[OPTIMIZER].keys():
return param_dict[OPTIMIZER][TYPE]
else:
return OPTIMIZER_TYPE_DEFAULT
def get_optimizer_params(param_dict):
if (get_optimizer_name(param_dict) is not None and OPTIMIZER_PARAMS in param_dict[OPTIMIZER].keys()):
return param_dict[OPTIMIZER][OPTIMIZER_PARAMS]
else:
return None
def get_optimizer_gradient_clipping(param_dict):
optimizer_params = get_optimizer_params(param_dict)
if optimizer_params is not None and MAX_GRAD_NORM in optimizer_params.keys():
return optimizer_params[MAX_GRAD_NORM]
else:
return None
def get_optimizer_legacy_fusion(param_dict):
if OPTIMIZER in param_dict.keys() and LEGACY_FUSION in param_dict[OPTIMIZER].keys():
return param_dict[OPTIMIZER][LEGACY_FUSION]
else:
return LEGACY_FUSION_DEFAULT
def get_zero_allow_untested_optimizer(param_dict):
return get_scalar_param(param_dict, ZERO_ALLOW_UNTESTED_OPTIMIZER, ZERO_ALLOW_UNTESTED_OPTIMIZER_DEFAULT)
def get_zero_force_ds_cpu_optimizer(param_dict):
return get_scalar_param(param_dict, ZERO_FORCE_DS_CPU_OPTIMIZER, ZERO_FORCE_DS_CPU_OPTIMIZER_DEFAULT)
def get_scheduler_name(param_dict):
if SCHEDULER in param_dict.keys() and TYPE in param_dict[SCHEDULER].keys():
return param_dict[SCHEDULER][TYPE]
else:
return SCHEDULER_TYPE_DEFAULT
def get_scheduler_params(param_dict):
if (get_scheduler_name(param_dict) is not None and SCHEDULER_PARAMS in param_dict[SCHEDULER].keys()):
return param_dict[SCHEDULER][SCHEDULER_PARAMS]
else:
return None
def get_train_batch_size(param_dict):
return get_scalar_param(param_dict, TRAIN_BATCH_SIZE, TRAIN_BATCH_SIZE_DEFAULT)
def get_train_micro_batch_size_per_gpu(param_dict):
return get_scalar_param(
param_dict,
TRAIN_MICRO_BATCH_SIZE_PER_GPU,
TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT,
)
def get_wall_clock_breakdown(param_dict):
return get_scalar_param(param_dict, WALL_CLOCK_BREAKDOWN, WALL_CLOCK_BREAKDOWN_DEFAULT)
def get_memory_breakdown(param_dict):
return get_scalar_param(param_dict, MEMORY_BREAKDOWN, MEMORY_BREAKDOWN_DEFAULT)
class HybridEngineConfig(DeepSpeedConfigModel):
enabled: bool = False
max_out_tokens: int = 512
inference_tp_size: int = 1
release_inference_cache: bool = False
pin_parameters: bool = True
tp_gather_partition_size: int = 8
def get_hybrid_engine_config(param_dict):
hybrid_engine_config_dict = param_dict.get("hybrid_engine", {})
hybrid_engine_config = HybridEngineConfig(**hybrid_engine_config_dict)
return hybrid_engine_config
def get_expert_data_topo_config(param_dict):
return get_scalar_param(param_dict, USE_DATA_BEFORE_EXPERT_PARALLEL, USE_DATA_BEFORE_EXPERT_PARALLEL_DEFAULT)
def get_eigenvalue_config(param_dict):
if get_quantize_enabled(param_dict):
param_dict = param_dict[QUANTIZE_TRAINING]
assert not get_eigenvalue_enabled(param_dict), "Eigenvalue based MoQ is temporarily disabled"
return (
get_eigenvalue_enabled(param_dict),
get_eigenvalue_verbose(param_dict),
get_eigenvalue_max_iter(param_dict),
get_eigenvalue_tol(param_dict),
get_eigenvalue_stability(param_dict),
get_eigenvalue_gas_boundary_resolution(param_dict),
get_eigenvalue_layer_name(param_dict),
get_eigenvalue_layer_num(param_dict),
)
else:
return (
EIGENVALUE_ENABLED_DEFAULT,
EIGENVALUE_VERBOSE_DEFAULT,
EIGENVALUE_MAX_ITER_DEFAULT,
EIGENVALUE_TOL_DEFAULT,
EIGENVALUE_STABILITY_DEFAULT,
EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT,
EIGENVALUE_LAYER_NAME_DEFAULT,
EIGENVALUE_LAYER_NUM_DEFAULT,
)
def get_eigenvalue_enabled(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_ENABLED, EIGENVALUE_ENABLED_DEFAULT)
else:
return EIGENVALUE_ENABLED_DEFAULT
def get_eigenvalue_verbose(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_VERBOSE, EIGENVALUE_VERBOSE_DEFAULT)
else:
return EIGENVALUE_VERBOSE_DEFAULT
def get_eigenvalue_max_iter(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_MAX_ITER, EIGENVALUE_MAX_ITER_DEFAULT)
else:
return EIGENVALUE_MAX_ITER_DEFAULT
def get_eigenvalue_tol(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_TOL, EIGENVALUE_TOL_DEFAULT)
else:
return EIGENVALUE_TOL_DEFAULT
def get_eigenvalue_stability(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_STABILITY, EIGENVALUE_STABILITY_DEFAULT)
else:
return EIGENVALUE_STABILITY_DEFAULT
def get_eigenvalue_gas_boundary_resolution(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(
param_dict[EIGENVALUE],
EIGENVALUE_GAS_BOUNDARY_RESOLUTION,
EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT,
)
else:
return EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT
def get_eigenvalue_layer_name(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_LAYER_NAME, EIGENVALUE_LAYER_NAME_DEFAULT)
else:
return EIGENVALUE_LAYER_NAME_DEFAULT
def get_eigenvalue_layer_num(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_LAYER_NUM, EIGENVALUE_LAYER_NUM_DEFAULT)
else:
return EIGENVALUE_LAYER_NUM_DEFAULT
def get_checkpoint_params(param_dict):
return param_dict.get(CHECKPOINT, {})
def get_data_types_params(param_dict):
return param_dict.get(DATA_TYPES, {})
def get_checkpoint_tag_validation_mode(checkpoint_params):
tag_validation_mode = checkpoint_params.get(CHECKPOINT_TAG_VALIDATION, CHECKPOINT_TAG_VALIDATION_DEFAULT)
tag_validation_mode = tag_validation_mode.upper()
if tag_validation_mode in CHECKPOINT_TAG_VALIDATION_MODES:
return tag_validation_mode
else:
raise DeepSpeedConfigError(
"Checkpoint config contains invalid tag_validation "
f"value of {tag_validation_mode}, expecting one of {CHECKPOINT_TAG_VALIDATION_MODES}")
def get_checkpoint_parallel_write_pipeline(checkpoint_params):
par_write_params = checkpoint_params.get(CHECKPOINT_PARALLEL_WRITE, {})
par_write_pipeline = par_write_params.get(CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE,
CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE_DEFAULT)
if par_write_pipeline in [True, False]:
return par_write_pipeline
else:
raise DeepSpeedConfigError("checkpoint::parallel_write::pipeline_stage "
f"value of '{par_write_pipeline}' is invalid, expecting: true or false")
def get_dataloader_drop_last(param_dict):
return get_scalar_param(param_dict, DATALOADER_DROP_LAST, DATALOADER_DROP_LAST_DEFAULT)
'''Write deepspeed config files by modifying basic templates.
Can be used for quickly changing parameters via command line parameters.'''
class DeepSpeedConfigWriter:
def __init__(self, data=None):
self.data = data if data is not None else {}
def add_config(self, key, value):
self.data[key] = value
def load_config(self, filename):
self.data = json.load(open(filename, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys)
def write_config(self, filename):
with open(filename, "w") as outfile:
json.dump(self.data, outfile)
class DeepSpeedConfig(object):
def __init__(self, config: Union[str, dict], mpu=None):
super(DeepSpeedConfig, self).__init__()
if isinstance(config, dict):
self._param_dict = config
elif os.path.exists(config):
self._param_dict = hjson.load(open(config, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys)
else:
try:
config_decoded = base64.urlsafe_b64decode(config).decode('utf-8')
self._param_dict = hjson.loads(config_decoded)
except (UnicodeDecodeError, AttributeError):
raise ValueError(
f"Expected a string path to an existing deepspeed config, or a dictionary or a valid base64. Received: {config}"
)
try:
self.global_rank = dist.get_rank()
if mpu is None:
self.world_size = dist.get_world_size()
else:
self.world_size = mpu.get_data_parallel_world_size()
except:
self.global_rank = 0
self.world_size = 1
# If elastic-mode enabled, update compute + update _param_dict
self.elasticity_enabled = elasticity_enabled(self._param_dict)
if self.elasticity_enabled:
logger.info("DeepSpeed elasticity support enabled")
final_batch_size, valid_gpus, micro_batch_size = compute_elastic_config(
ds_config=self._param_dict,
target_deepspeed_version=__version__,
world_size=self.world_size,
)
elastic_dict = self._param_dict[ELASTICITY]
# Ensure the resource scheduler saw the same elastic config we are using at runtime
ensure_immutable_elastic_config(runtime_elastic_config_dict=elastic_dict)
self.elastic_model_parallel_size = elastic_dict.get(MODEL_PARALLEL_SIZE, MODEL_PARALLEL_SIZE_DEFAULT)
if self.elastic_model_parallel_size < 1:
raise ElasticityConfigError("Model-Parallel size cannot be less than 1, "
f"given model-parallel size: {self.elastic_model_parallel_size}")
self.num_gpus_per_node = elastic_dict.get(NUM_GPUS_PER_NODE, NUM_GPUS_PER_NODE_DEFAULT)
if self.num_gpus_per_node < 1:
raise ElasticityConfigError("NUmber of GPUs per node cannot be less than 1, "
f"given number of GPUs per node: {self.num_gpus_per_node}")
ignore_non_elastic_batch_info = elastic_dict.get(IGNORE_NON_ELASTIC_BATCH_INFO,
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT)
if not ignore_non_elastic_batch_info:
batch_params = [
TRAIN_BATCH_SIZE,
TRAIN_MICRO_BATCH_SIZE_PER_GPU,
GRADIENT_ACCUMULATION_STEPS,
]
if any(map(lambda t: t in self._param_dict, batch_params)):
raise ElasticityConfigError("One or more batch related parameters were found in your " \
f"ds_config ({TRAIN_BATCH_SIZE}, {TRAIN_MICRO_BATCH_SIZE_PER_GPU}, and/or " \
f"{GRADIENT_ACCUMULATION_STEPS}). These parameters *will not be used* since " \
"elastic training is enabled, which takes control of these parameters. " \
"If you want to suppress this error (the parameters will be silently ignored) " \
f"please set {IGNORE_NON_ELASTIC_BATCH_INFO}':true in your elasticity config.")
# micro_bsz * world_size * gas = total_batch_size
# gas = total_batch_size // (micro_bsz * world_size)
gradient_accu_steps = final_batch_size // (micro_batch_size * self.world_size)
if TRAIN_BATCH_SIZE in self._param_dict:
logger.warning("[Elasticity] overriding training_batch_size: "
f"{self._param_dict[TRAIN_BATCH_SIZE]} -> {final_batch_size}")
if TRAIN_MICRO_BATCH_SIZE_PER_GPU in self._param_dict:
logger.warning("[Elasticity] overriding train_micro_batch_size_per_gpu: "
f"{self._param_dict[TRAIN_MICRO_BATCH_SIZE_PER_GPU]} -> {micro_batch_size}")
if GRADIENT_ACCUMULATION_STEPS in self._param_dict:
logger.warning("[Elasticity] overriding gradient_accumulation_steps: "
f"{self._param_dict[GRADIENT_ACCUMULATION_STEPS]} -> {gradient_accu_steps}")
logger.info(f"[Elasticity] valid GPU counts: {valid_gpus}")
self._param_dict[TRAIN_BATCH_SIZE] = final_batch_size
self._param_dict[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = micro_batch_size
self._param_dict[GRADIENT_ACCUMULATION_STEPS] = gradient_accu_steps
# Pass a copy so that user json is unmodified, e.g. for logging
self._initialize_params(copy.copy(self._param_dict))
self._configure_train_batch_size()
self._do_sanity_check()
def _initialize_params(self, param_dict):
self.train_batch_size = get_train_batch_size(param_dict)
#print(f"beginning get_train_batch_size = {get_train_batch_size}")
self.train_micro_batch_size_per_gpu = get_train_micro_batch_size_per_gpu(param_dict)
self.gradient_accumulation_steps = get_gradient_accumulation_steps(param_dict)
self.steps_per_print = get_steps_per_print(param_dict)
self.dump_state = get_dump_state(param_dict)
self.disable_allgather = get_disable_allgather(param_dict)
self.communication_data_type = get_communication_data_type(param_dict)
self.seq_parallel_communication_data_type = get_communication_data_type(
param_dict, SEQ_PARALLEL_COMMUNICATION_DATA_TYPE, SEQ_PARALLEL_COMMUNICATION_DATA_TYPE_DEFAULT)
self.prescale_gradients = get_prescale_gradients(param_dict)
self.gradient_predivide_factor = get_gradient_predivide_factor(param_dict)
self.sparse_gradients_enabled = get_sparse_gradients_enabled(param_dict)
self.zero_config = get_zero_config(param_dict)
self.mics_shard_size = self.zero_config.mics_shard_size
self.mics_hierarchial_params_gather = self.zero_config.mics_hierarchical_params_gather
self.zero_optimization_stage = self.zero_config.stage
self.zero_enabled = self.zero_optimization_stage > 0
self.activation_checkpointing_config = DeepSpeedActivationCheckpointingConfig(param_dict)
self.comms_config = DeepSpeedCommsConfig(param_dict)
self.monitor_config = get_monitor_config(param_dict)
self.gradient_clipping = get_gradient_clipping(param_dict)
self.fp16_enabled = get_fp16_enabled(param_dict)
self.fp16_auto_cast = get_fp16_auto_cast(param_dict)
self.bfloat16_enabled = get_bfloat16_enabled(param_dict)
self.bfloat16_immediate_grad_update = get_bfloat16_immediate_grad_update(param_dict)
assert not (self.fp16_enabled
and self.bfloat16_enabled), 'bfloat16 and fp16 modes cannot be simultaneously enabled'
self.fp16_master_weights_and_gradients = get_fp16_master_weights_and_grads_enabled(param_dict)
self.amp_enabled = get_amp_enabled(param_dict)
self.amp_params = get_amp_params(param_dict)
self.loss_scale = get_loss_scale(param_dict)
self.initial_dynamic_scale = get_initial_dynamic_scale(param_dict)
self.dynamic_loss_scale_args = get_dynamic_loss_scale_args(param_dict)
self.compression_config = get_compression_config(param_dict)
self.graph_harvesting = get_graph_harvesting(param_dict)
self.optimizer_name = get_optimizer_name(param_dict)
if (self.optimizer_name is not None and self.optimizer_name.lower() in DEEPSPEED_OPTIMIZERS):
self.optimizer_name = self.optimizer_name.lower()
self.optimizer_params = get_optimizer_params(param_dict)
self.optimizer_legacy_fusion = get_optimizer_legacy_fusion(param_dict)
self.zero_allow_untested_optimizer = get_zero_allow_untested_optimizer(param_dict)
self.zero_force_ds_cpu_optimizer = get_zero_force_ds_cpu_optimizer(param_dict)
self.scheduler_name = get_scheduler_name(param_dict)
self.scheduler_params = get_scheduler_params(param_dict)
self.flops_profiler_config = DeepSpeedFlopsProfilerConfig(param_dict)
self.wall_clock_breakdown = (get_wall_clock_breakdown(param_dict) | self.flops_profiler_config.enabled)
self.memory_breakdown = get_memory_breakdown(param_dict)
self.autotuning_config = DeepSpeedAutotuningConfig(param_dict)
(
self.eigenvalue_enabled,
self.eigenvalue_verbose,
self.eigenvalue_max_iter,
self.eigenvalue_tol,
self.eigenvalue_stability,
self.eigenvalue_gas_boundary_resolution,
self.eigenvalue_layer_name,
self.eigenvalue_layer_num,
) = get_eigenvalue_config(param_dict)
self.use_data_before_expert_parallel_ = get_expert_data_topo_config(param_dict)
self.hybrid_engine = get_hybrid_engine_config(param_dict)
self.sparse_attention = get_sparse_attention(param_dict)
self.pipeline = get_pipeline_config(param_dict)
self.pld_enabled = get_pld_enabled(param_dict)
self.pld_params = get_pld_params(param_dict)
self.curriculum_enabled_legacy = get_curriculum_enabled_legacy(param_dict)
self.curriculum_params_legacy = get_curriculum_params_legacy(param_dict)
self.data_efficiency_enabled = get_data_efficiency_enabled(param_dict)
self.data_efficiency_config = get_data_efficiency_config(param_dict)
checkpoint_params = get_checkpoint_params(param_dict)
validation_mode = get_checkpoint_tag_validation_mode(checkpoint_params)
self.checkpoint_tag_validation_enabled = (validation_mode != ValidationMode.IGNORE)
self.checkpoint_tag_validation_fail = validation_mode == ValidationMode.FAIL
self.load_universal_checkpoint = checkpoint_params.get(LOAD_UNIVERSAL_CHECKPOINT,
LOAD_UNIVERSAL_CHECKPOINT_DEFAULT)
self.use_node_local_storage = checkpoint_params.get(USE_NODE_LOCAL_STORAGE_CHECKPOINT,
USE_NODE_LOCAL_STORAGE_CHECKPOINT_DEFAULT)
data_types_params = get_data_types_params(param_dict)
self.grad_accum_dtype = data_types_params.get(GRAD_ACCUM_DTYPE, GRAD_ACCUM_DTYPE_DEFAULT)
par_write_pipe = get_checkpoint_parallel_write_pipeline(checkpoint_params)
self.checkpoint_parallel_write_pipeline = par_write_pipe
self.aio_config = get_aio_config(param_dict)
self.dataloader_drop_last = get_dataloader_drop_last(param_dict)
self.nebula_config = DeepSpeedNebulaConfig(param_dict)
self.weight_quantization_config = WeightQuantConfig(
**param_dict['weight_quantization']) if 'weight_quantization' in param_dict else None
self.compile_config = get_compile_config(param_dict)
def _batch_assertion(self):
train_batch = self.train_batch_size
micro_batch = self.train_micro_batch_size_per_gpu
grad_acc = self.gradient_accumulation_steps
assert (train_batch > 0), f"Train batch size: {train_batch} has to be greater than 0"
assert (micro_batch > 0), f"Micro batch size per gpu: {micro_batch} has to be greater than 0"
assert (grad_acc > 0), f"Gradient accumulation steps: {grad_acc} has to be greater than 0"
assert train_batch == micro_batch * grad_acc * self.world_size, (
f"Check batch related parameters. train_batch_size is not equal "
"to micro_batch_per_gpu * gradient_acc_step * world_size "
f"{train_batch} != {micro_batch} * {grad_acc} * {self.world_size}")
def _set_batch_related_parameters(self):
train_batch = self.train_batch_size
micro_batch = self.train_micro_batch_size_per_gpu
grad_acc = self.gradient_accumulation_steps
#print(f"train_batch = {train_batch}, micro_batch={micro_batch}")
# all values are provided nothing needs to be set
if train_batch is not None and micro_batch is not None and grad_acc is not None:
return
# global_accumulation_steps needs to be set
elif train_batch is not None and micro_batch is not None:
grad_acc = train_batch // micro_batch
grad_acc //= self.world_size
self.gradient_accumulation_steps = grad_acc
# micro_batch_per_gpu needs to be set
elif train_batch is not None and grad_acc is not None:
micro_batch = train_batch // self.world_size
micro_batch //= grad_acc
self.train_micro_batch_size_per_gpu = micro_batch
# train_batch_size needs to be set
elif micro_batch is not None and grad_acc is not None:
train_batch_size = micro_batch * grad_acc
train_batch_size *= self.world_size
self.train_batch_size = train_batch_size
# gradient_accumulation_steps and micro_batch_per_gpus is set
elif train_batch is not None:
self.gradient_accumulation_steps = 1
self.train_micro_batch_size_per_gpu = train_batch // self.world_size
# train_batch_size and gradient_accumulation_step is set
elif micro_batch is not None:
self.train_batch_size = micro_batch * self.world_size
self.gradient_accumulation_steps = 1
# either none of the three parameters are provided or just gradient_accumulation_step is provided
else:
assert False, \
'Either train_batch_size or train_micro_batch_size_per_gpu needs to be provided'
def _configure_train_batch_size(self):
self._set_batch_related_parameters()
self._batch_assertion()
def _do_sanity_check(self):
self._do_error_check()
self._do_warning_check()
def print_user_config(self):
logger.info(" json = {}".format(
json.dumps(
self._param_dict,
sort_keys=True,
indent=4,
cls=ScientificNotationEncoder,
separators=(",", ":"),
)))
def print(self, name):
logger.info("{}:".format(name))
for arg in sorted(vars(self)):
if arg != "_param_dict":
dots = "." * (29 - len(arg))
logger.info(" {} {} {}".format(arg, dots, getattr(self, arg)))
self.print_user_config()
def _do_error_check(self):
assert (self.train_micro_batch_size_per_gpu
), "DeepSpeedConfig: {} is not defined".format(TRAIN_MICRO_BATCH_SIZE_PER_GPU)
assert (
self.gradient_accumulation_steps), "DeepSpeedConfig: {} is not defined".format(GRADIENT_ACCUMULATION_STEPS)
if self.zero_enabled:
assert (self.zero_optimization_stage <=
ZeroStageEnum.max_stage), "DeepSpeedConfig: Maximum supported ZeRO stage is {}".format(
ZeroStageEnum.max_stage)
if self.fp16_master_weights_and_gradients:
assert self.zero_enabled and self.zero_optimization_stage == ZeroStageEnum.gradients, "Fp16_master_weights_and_grads is only supported with ZeRO Stage 2 for now."
def _do_warning_check(self):
fp16_enabled = self.fp16_enabled
vocabulary_size = self._param_dict.get(VOCABULARY_SIZE, VOCABULARY_SIZE_DEFAULT)
if vocabulary_size and vocabulary_size % TENSOR_CORE_ALIGN_SIZE != 0:
logger.warning(
"DeepSpeedConfig: vocabulary size {} is not aligned to {}, may import tensor core utilization.".format(
vocabulary_size, TENSOR_CORE_ALIGN_SIZE))
if (self.optimizer_params is not None and MAX_GRAD_NORM in self.optimizer_params.keys()
and self.optimizer_params[MAX_GRAD_NORM] > 0):
if fp16_enabled:
if self.global_rank == 0:
logger.warning("DeepSpeedConfig: In FP16 mode, DeepSpeed will pass {}:{} to FP16 wrapper".format(
MAX_GRAD_NORM, self.optimizer_params[MAX_GRAD_NORM]))
else:
if self.global_rank == 0:
logger.warning(
"DeepSpeedConfig: In FP32 mode, DeepSpeed does not permit MAX_GRAD_NORM ({}) > 0, setting to zero"
.format(self.optimizer_params[MAX_GRAD_NORM]))
self.optimizer_params[MAX_GRAD_NORM] = 0.0