peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/data_pipeline
/config.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from .constants import * | |
import copy | |
from ..config_utils import get_scalar_param | |
# TODO: Reducing config verbosity by returning None or {} when disabled. | |
# One challenge is that we still need to somehow include the default values, | |
# for example the *_ENABLED has default of false. | |
def get_data_efficiency_config(param_dict): | |
output = {} | |
output[DATA_EFFICIENCY_ENABLED] = get_data_efficiency_enabled(param_dict) | |
output[DATA_EFFICIENCY_SEED] = get_data_efficiency_seed(param_dict) | |
if DATA_EFFICIENCY not in param_dict.keys(): | |
param_dict[DATA_EFFICIENCY] = {} | |
sub_param_dict = param_dict[DATA_EFFICIENCY] | |
output[DATA_SAMPLING] = get_data_sampling(sub_param_dict) | |
output[DATA_ROUTING] = get_data_routing(sub_param_dict) | |
return output | |
def get_data_efficiency_enabled(param_dict): | |
if DATA_EFFICIENCY in param_dict.keys(): | |
return get_scalar_param(param_dict[DATA_EFFICIENCY], DATA_EFFICIENCY_ENABLED, DATA_EFFICIENCY_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_data_efficiency_seed(param_dict): | |
if DATA_EFFICIENCY in param_dict.keys(): | |
return get_scalar_param(param_dict[DATA_EFFICIENCY], DATA_EFFICIENCY_SEED, DATA_EFFICIENCY_SEED_DEFAULT) | |
else: | |
return DATA_EFFICIENCY_SEED_DEFAULT | |
def get_data_sampling(param_dict): | |
output = {} | |
output[DATA_SAMPLING_ENABLED] = get_data_sampling_enabled(param_dict) | |
output[DATA_SAMPLING_NUM_EPOCHS] = get_data_sampling_num_epochs(param_dict) | |
output[DATA_SAMPLING_NUM_WORKERS] = get_data_sampling_num_workers(param_dict) | |
if DATA_SAMPLING not in param_dict.keys(): | |
param_dict[DATA_SAMPLING] = {} | |
sub_param_dict = param_dict[DATA_SAMPLING] | |
output[CURRICULUM_LEARNING] = get_curriculum_learning(sub_param_dict) | |
return output | |
def get_data_sampling_enabled(param_dict): | |
if DATA_SAMPLING in param_dict.keys(): | |
return get_scalar_param(param_dict[DATA_SAMPLING], DATA_SAMPLING_ENABLED, DATA_SAMPLING_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_data_sampling_num_epochs(param_dict): | |
if DATA_SAMPLING in param_dict.keys(): | |
return get_scalar_param(param_dict[DATA_SAMPLING], DATA_SAMPLING_NUM_EPOCHS, DATA_SAMPLING_NUM_EPOCHS_DEFAULT) | |
else: | |
return DATA_SAMPLING_NUM_EPOCHS_DEFAULT | |
def get_data_sampling_num_workers(param_dict): | |
if DATA_SAMPLING in param_dict.keys(): | |
return get_scalar_param(param_dict[DATA_SAMPLING], DATA_SAMPLING_NUM_WORKERS, | |
DATA_SAMPLING_NUM_WORKERS_DEFAULT) | |
else: | |
return DATA_SAMPLING_NUM_WORKERS_DEFAULT | |
def get_curriculum_learning(param_dict): | |
output = {} | |
output[CURRICULUM_LEARNING_ENABLED] = get_curriculum_learning_enabled(param_dict) | |
if CURRICULUM_LEARNING not in param_dict.keys(): | |
param_dict[CURRICULUM_LEARNING] = {} | |
sub_param_dict = param_dict[CURRICULUM_LEARNING] | |
if output[CURRICULUM_LEARNING_ENABLED]: | |
assert CURRICULUM_LEARNING_METRICS in sub_param_dict.keys( | |
), f"Curriculum learning is enabled, {CURRICULUM_LEARNING_METRICS} must be specified" | |
for key, val in get_curriculum_learning_params(param_dict).items(): | |
output[key] = val | |
return output | |
def get_curriculum_learning_enabled(param_dict): | |
if CURRICULUM_LEARNING in param_dict.keys(): | |
return get_scalar_param(param_dict[CURRICULUM_LEARNING], CURRICULUM_LEARNING_ENABLED, | |
CURRICULUM_LEARNING_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_curriculum_learning_params(param_dict): | |
if CURRICULUM_LEARNING in param_dict.keys(): | |
curriculum_learning_params = copy.copy(param_dict[CURRICULUM_LEARNING]) | |
curriculum_learning_params.pop(CURRICULUM_LEARNING_ENABLED) | |
return curriculum_learning_params | |
else: | |
return {} | |
def get_curriculum_enabled_legacy(param_dict): | |
if CURRICULUM_LEARNING_LEGACY in param_dict.keys(): | |
return get_scalar_param(param_dict[CURRICULUM_LEARNING_LEGACY], CURRICULUM_ENABLED_LEGACY, | |
CURRICULUM_ENABLED_DEFAULT_LEGACY) | |
else: | |
return False | |
def get_curriculum_params_legacy(param_dict): | |
if CURRICULUM_LEARNING_LEGACY in param_dict.keys(): | |
curriculum_params = copy.copy(param_dict[CURRICULUM_LEARNING_LEGACY]) | |
curriculum_params.pop(CURRICULUM_ENABLED_LEGACY) | |
return curriculum_params | |
else: | |
return False | |
def get_data_routing(param_dict): | |
output = {} | |
output[DATA_ROUTING_ENABLED] = get_data_routing_enabled(param_dict) | |
if DATA_ROUTING not in param_dict.keys(): | |
param_dict[DATA_ROUTING] = {} | |
sub_param_dict = param_dict[DATA_ROUTING] | |
output[RANDOM_LTD] = get_random_ltd(sub_param_dict) | |
return output | |
def get_data_routing_enabled(param_dict): | |
if DATA_ROUTING in param_dict.keys(): | |
return get_scalar_param(param_dict[DATA_ROUTING], DATA_ROUTING_ENABLED, DATA_ROUTING_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_random_ltd(param_dict): | |
output = {} | |
output[RANDOM_LTD_ENABLED] = RANDOM_LTD_ENABLED_DEFAULT | |
output[RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE] = {} | |
output[RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE][ | |
RANDOM_LTD_LAYER_TOKEN_LR_ENABLED] = RANDOM_LTD_LAYER_TOKEN_LR_ENABLED_DEFAULT | |
if get_random_ltd_enabled(param_dict): | |
output[RANDOM_LTD_ENABLED] = get_random_ltd_enabled(param_dict) | |
for key, val in get_random_ltd_params(param_dict).items(): | |
output[key] = val | |
return output | |
def get_random_ltd_enabled(param_dict): | |
if RANDOM_LTD in param_dict.keys(): | |
return get_scalar_param(param_dict[RANDOM_LTD], RANDOM_LTD_ENABLED, RANDOM_LTD_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_random_ltd_params(param_dict): | |
if RANDOM_LTD in param_dict.keys(): | |
random_ltd_params = copy.copy(param_dict[RANDOM_LTD]) | |
random_ltd_params.pop(RANDOM_LTD_ENABLED) | |
return random_ltd_params | |
else: | |
return {} | |