peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/fp16
/loss_scaler.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
""" | |
Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
Taken and modified for DeepSpeed from: | |
https://github.com/NVIDIA/Megatron-LM/blob/master/fp16/loss_scaler.py | |
Commit: 93ab4bea59dc5cbf97c079d313741866af4deac9 | |
""" | |
import torch | |
from deepspeed import comm as dist | |
from deepspeed.utils import logger | |
INITIAL_LOSS_SCALE = 'init_scale' | |
SCALE_WINDOW = 'scale_window' | |
DELAYED_SHIFT = 'delayed_shift' | |
CONSECUTIVE_HYSTERESIS = 'consecutive_hysteresis' | |
MIN_LOSS_SCALE = 'min_scale' | |
# item() is a recent addition, so this helps with backward compatibility. | |
def to_python_float(t): | |
if hasattr(t, 'item'): | |
return t.item() | |
return t[0] | |
class LossScalerBase: | |
"""LossScalarBase | |
Base class for a loss scaler | |
""" | |
def __init__(self, cur_scale): | |
self.cur_scale = cur_scale | |
self.dynamic = False | |
def loss_scale(self): | |
return self.cur_scale | |
def scale_gradient(self, module, grad_in, grad_out): | |
return tuple(self.loss_scale * g for g in grad_in) | |
def update_scale(self, overflow): | |
pass | |
def backward(self, loss, retain_graph=False): | |
scaled_loss = loss * self.loss_scale | |
scaled_loss.backward(retain_graph=retain_graph) | |
# print(f'LossScalerBackward: {scaled_loss=}') | |
class LossScaler(LossScalerBase): | |
""" | |
Class that manages a static loss scale. This class is intended to interact with | |
:class:`FP16_Optimizer`, and should not be directly manipulated by the user. | |
Use of :class:`LossScaler` is enabled via the ``static_loss_scale`` argument to | |
:class:`FP16_Optimizer`'s constructor. | |
Args: | |
scale (float, optional, default=1.0): The loss scale. | |
""" | |
def __init__(self, scale=1): | |
super(LossScaler, self).__init__(scale) | |
# `params` is a list / generator of torch.Variable | |
def has_overflow(self, params): | |
return False | |
# `x` is a torch.Tensor | |
def _has_inf_or_nan(x): | |
return False | |
class DynamicLossScaler(LossScalerBase): | |
""" | |
Class that manages dynamic loss scaling. It is recommended to use :class:`DynamicLossScaler` | |
indirectly, by supplying ``dynamic_loss_scale=True`` to the constructor of | |
:class:`FP16_Optimizer`. However, it's important to understand how :class:`DynamicLossScaler` | |
operates, because the default options can be changed using the | |
the ``dynamic_loss_args`` argument to :class:`FP16_Optimizer`'s constructor. | |
Loss scaling is designed to combat the problem of underflowing gradients encountered at long | |
times when training fp16 networks. Dynamic loss scaling begins by attempting a very high loss | |
scale. Ironically, this may result in OVERflowing gradients. If overflowing gradients are | |
encountered, :class:`DynamicLossScaler` informs :class:`FP16_Optimizer` that an overflow has | |
occurred. | |
:class:`FP16_Optimizer` then skips the update step for this particular iteration/minibatch, | |
and :class:`DynamicLossScaler` adjusts the loss scale to a lower value. | |
If a certain number of iterations occur without overflowing gradients detected, | |
:class:`DynamicLossScaler` increases the loss scale once more. | |
In this way :class:`DynamicLossScaler` attempts to "ride the edge" of | |
always using the highest loss scale possible without incurring overflow. | |
Args: | |
init_scale (float, optional, default=2**32): Initial loss scale attempted by :class:`DynamicLossScaler.` | |
scale_factor (float, optional, default=2.0): Factor used when adjusting the loss scale. If an overflow is encountered, the loss scale is readjusted to loss scale/``scale_factor``. If ``scale_window`` consecutive iterations take place without an overflow, the loss scale is readjusted to loss_scale*``scale_factor``. | |
scale_window (int, optional, default=1000): Number of consecutive iterations without an overflow to wait before increasing the loss scale. | |
consecutive_hysteresis (bool, optional, default=False): Whether to refill hysteresis if we reach an iteration that doesn't overflow | |
""" | |
def __init__(self, | |
init_scale=2**32, | |
scale_factor=2., | |
scale_window=1000, | |
min_scale=1, | |
delayed_shift=1, | |
consecutive_hysteresis=False, | |
raise_error_at_min_scale=True, | |
dtype=torch.half): | |
super(DynamicLossScaler, self).__init__(init_scale) | |
self.cur_iter = 0 | |
self.last_overflow_iter = -1 | |
self.scale_factor = scale_factor | |
self.scale_window = scale_window | |
self.min_scale = min_scale | |
self.delayed_shift = delayed_shift | |
self.cur_hysteresis = delayed_shift | |
self.consecutive_hysteresis = consecutive_hysteresis | |
self.raise_error_at_min_scale = raise_error_at_min_scale | |
self.dynamic = True | |
self.dtype = dtype | |
# `params` is a list / generator of torch.Variable | |
def has_overflow_serial(self, params): | |
for p in params: | |
if p.grad is not None and self._has_inf_or_nan(p.grad.data): | |
return True | |
return False | |
# `x` is a torch.Tensor | |
def _has_inf_or_nan(x): | |
try: | |
# if x is half, the .float() incurs an additional deep copy, but it's necessary if | |
# Pytorch's .sum() creates a one-element tensor of the same type as x | |
# (which is true for some recent version of pytorch). | |
cpu_sum = float(x.float().sum()) | |
# More efficient version that can be used if .sum() returns a Python scalar | |
# cpu_sum = float(x.sum()) | |
except RuntimeError as instance: | |
# We want to check if inst is actually an overflow exception. | |
# RuntimeError could come from a different error. | |
# If so, we still want the exception to propagate. | |
if "value cannot be converted" not in instance.args[0]: | |
raise | |
return True | |
else: | |
if cpu_sum in [float('inf'), -float('inf')] or cpu_sum != cpu_sum: | |
return True | |
return False | |
# `overflow` is boolean indicating whether the gradient overflowed | |
def update_scale(self, overflow): | |
if overflow: | |
# self.cur_scale /= self.scale_factor | |
if self.delayed_shift == 1 or self.cur_hysteresis == 1: | |
if (self.cur_scale == self.min_scale) and self.raise_error_at_min_scale: | |
raise Exception( | |
"Current loss scale already at minimum - cannot decrease scale anymore. Exiting run.") | |
else: | |
next_scale = max(self.cur_scale / self.scale_factor, self.min_scale) | |
if dist.get_rank() == 0: | |
overflow_msg = f"[deepspeed] OVERFLOW! Rank {dist.get_rank()} Skipping step." | |
if self.dtype == torch.half: | |
overflow_msg += f" Attempted loss scale: {int(self.cur_scale)}, reducing to {int(next_scale)}" | |
logger.info(overflow_msg) | |
self.cur_scale = next_scale | |
else: | |
if dist.get_rank() == 0: | |
overflow_msg = f"[deepspeed] OVERFLOW! Rank {dist.get_rank()} Skipping step." | |
if self.dtype == torch.half: | |
overflow_msg += f" Attempted loss scale: {int(self.cur_scale)}, but hysteresis is {self.cur_hysteresis}. Reducing hysteresis to {self.cur_hysteresis-1}" | |
logger.info(overflow_msg) | |
self.cur_hysteresis -= 1 | |
self.last_overflow_iter = self.cur_iter | |
else: | |
if self.consecutive_hysteresis: | |
if dist.get_rank() == 0: | |
hysteresis_msg = f"Consecutive hysteresis is enabled. Restoring hysteresis to {self.delayed_shift}" | |
logger.info(hysteresis_msg) | |
self.cur_hysteresis = self.delayed_shift | |
if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0: | |
if not self.consecutive_hysteresis: | |
self.cur_hysteresis = self.delayed_shift | |
self.cur_scale *= self.scale_factor | |
self.cur_iter += 1 | |
# Although loss scaling is only defined for fp16, yet for backwards compatibility | |
# we still create a scaler for other dtypes (fp32, bf16) which does not perform any scaling. | |
def CreateLossScaler(dtype, static_loss_scale, dynamic_scaling, dynamic_loss_args): | |
if dtype == torch.half and dynamic_scaling: | |
if dynamic_loss_args is None: | |
return DynamicLossScaler(dtype=dtype) | |
return DynamicLossScaler(dtype=dtype, **dynamic_loss_args) | |
loss_scale_value = static_loss_scale if dtype == torch.half else 1.0 | |
return LossScaler(scale=loss_scale_value) | |
############################################################## | |
# Example usage below here -- assuming it's in a separate file | |
############################################################## | |
""" | |
TO-DO separate out into an example. | |
if __name__ == "__main__": | |
import torch | |
from torch.autograd import Variable | |
from dynamic_loss_scaler import DynamicLossScaler | |
# N is batch size; D_in is input dimension; | |
# H is hidden dimension; D_out is output dimension. | |
N, D_in, H, D_out = 64, 1000, 100, 10 | |
# Create random Tensors to hold inputs and outputs, and wrap them in Variables. | |
x = Variable(torch.randn(N, D_in), requires_grad=False) | |
y = Variable(torch.randn(N, D_out), requires_grad=False) | |
w1 = Variable(torch.randn(D_in, H), requires_grad=True) | |
w2 = Variable(torch.randn(H, D_out), requires_grad=True) | |
parameters = [w1, w2] | |
learning_rate = 1e-6 | |
optimizer = torch.optim.SGD(parameters, lr=learning_rate) | |
loss_scaler = DynamicLossScaler() | |
for t in range(500): | |
y_pred = x.mm(w1).clamp(min=0).mm(w2) | |
loss = (y_pred - y).pow(2).sum() * loss_scaler.loss_scale | |
print('Iter {} loss scale: {}'.format(t, loss_scaler.loss_scale)) | |
print('Iter {} scaled loss: {}'.format(t, loss.data[0])) | |
print('Iter {} unscaled loss: {}'.format(t, loss.data[0] / loss_scaler.loss_scale)) | |
# Run backprop | |
optimizer.zero_grad() | |
loss.backward() | |
# Check for overflow | |
has_overflow = DynamicLossScaler.has_overflow(parameters) | |
# If no overflow, unscale grad and update as usual | |
if not has_overflow: | |
for param in parameters: | |
param.grad.data.mul_(1. / loss_scaler.loss_scale) | |
optimizer.step() | |
# Otherwise, don't do anything -- ie, skip iteration | |
else: | |
print('fp16 dynamic loss scale overflow!') | |
# Update loss scale for next iteration | |
loss_scaler.update_scale(has_overflow) | |
""" | |