applied-ai-018's picture
Add files using upload-large-folder tool
734b6a1 verified
raw
history blame
18 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Copyright NVIDIA/apex
This file is adapted from FP16_Optimizer in NVIDIA/apex
"""
from deepspeed.moe.utils import split_params_grads_into_shared_and_expert_params
import torch
from torch._utils import _flatten_dense_tensors
from deepspeed.runtime.base_optimizer import DeepSpeedOptimizer
from deepspeed.runtime.utils import get_global_norm, CheckOverflow, get_weight_norm
from deepspeed.runtime.fp16.loss_scaler import INITIAL_LOSS_SCALE, SCALE_WINDOW, MIN_LOSS_SCALE
from deepspeed.utils import logger
from deepspeed.utils.torch import required_torch_version
from deepspeed.checkpoint.constants import OPTIMIZER_STATE_DICT
from deepspeed.accelerator import get_accelerator
from deepspeed import comm as dist
class FP16_UnfusedOptimizer(DeepSpeedOptimizer):
"""
FP16 Optimizer without weight fusion to support LAMB optimizer
For usage example please see, TODO: DeepSpeed V2 Tutorial
"""
def __init__(self,
init_optimizer,
deepspeed=None,
static_loss_scale=1.0,
dynamic_loss_scale=False,
dynamic_loss_args=None,
verbose=True,
mpu=None,
clip_grad=0.0,
fused_lamb_legacy=False):
self.fused_lamb_legacy = fused_lamb_legacy
self._global_grad_norm = 0.
if dist.get_rank() == 0:
logger.info(f'Fused Lamb Legacy : {self.fused_lamb_legacy} ')
if not get_accelerator().is_available():
raise SystemError("Cannot use fp16 without accelerator.")
self.optimizer = init_optimizer
# param groups
self.fp16_groups = []
self.fp32_groups = []
# loop to deal with groups
for i, param_group in enumerate(self.optimizer.param_groups):
#fp16 weights that represents the actual model weights
self.fp16_groups.append(param_group['params'])
#creating a fp32 copy of the weights that will be updated first then
#copied to fp16 weights
fp32_group = [p.clone().float().detach() for p in param_group['params']]
#in case the internal optimizer needs it
for p in fp32_group:
p.requires_grad = True
#setting the param groups in the optimizer to point to fp32
#note these are not the weights used by the model
#the model uses the fp16 version that we added to fp16_group
self.fp32_groups.append(fp32_group)
param_group['params'] = self.fp32_groups[i]
# we may have a way of fusing dynamic scale. Do not support for now
if dynamic_loss_scale:
self.dynamic_loss_scale = True
self.cur_iter = 0
self.last_overflow_iter = -1
self.scale_factor = 2.0
if dynamic_loss_args is None:
self.cur_scale = 1.0 * 2**16
self.scale_window = 1000
self.min_loss_scale = 0.25
else:
self.cur_scale = dynamic_loss_args[INITIAL_LOSS_SCALE]
self.scale_window = dynamic_loss_args[SCALE_WINDOW]
self.min_loss_scale = dynamic_loss_args[MIN_LOSS_SCALE]
else:
self.dynamic_loss_scale = False
self.cur_iter = 0
self.cur_scale = static_loss_scale
self.custom_loss_scaler = False
self.external_loss_scale = None
self.verbose = verbose
self.clip_grad = clip_grad
self.norm_type = 2
if required_torch_version(max_version=0.4):
self.clip_grad_norm = torch.nn.utils.clip_grad_norm
else:
self.clip_grad_norm = torch.nn.utils.clip_grad_norm_
self.mpu = mpu
self.overflow = False
self.overflow_checker = CheckOverflow(self.fp16_groups, mpu=self.mpu, deepspeed=deepspeed)
self.initialize_optimizer_states()
def zero_grad(self, set_to_none=True):
"""
Zero FP16 parameter grads.
"""
# FP32 grad should never exist outside of the step function
# For speed, set model fp16 grad to None by default
for group in self.fp16_groups:
for p in group:
if set_to_none:
p.grad = None
else:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
def step_fused_lamb(self, closure=None):
"""
Not supporting closure.
"""
# First compute norm for all group so we know if there is overflow
grads_groups_flat = []
grads_groups = []
norm_groups = []
expert_norm_groups = []
for i, group in enumerate(self.fp16_groups):
grads = [
torch.zeros(p.size(), dtype=p.dtype, device=p.device) if p.grad is None else p.grad for p in group
]
grads_groups.append(grads)
grads_groups_flat.append(_flatten_dense_tensors(grads))
grads_for_norm, expert_grads_for_norm = split_params_grads_into_shared_and_expert_params(group)
norm_group_value = 0.0
if len(grads_for_norm) > 0:
norm_group_value = get_weight_norm(_flatten_dense_tensors(grads_for_norm), mpu=self.mpu)
norm_groups.append(norm_group_value)
expert_norm_group_value = 0.0
if len(expert_grads_for_norm) > 0:
expert_norm_group_value = get_weight_norm(_flatten_dense_tensors(expert_grads_for_norm), mpu=self.mpu)
expert_norm_groups.append(expert_norm_group_value)
self.overflow = self.overflow_checker.check_using_norm(norm_groups + expert_norm_groups)
prev_scale = self.cur_scale
self._update_scale(self.overflow)
if self.overflow:
if self.verbose:
logger.info("[deepspeed] fp16 dynamic loss scale overflow! Skipping step. Attempted loss "
"scale: {}, reducing to {}".format(prev_scale, self.cur_scale))
return self.overflow
self._global_grad_norm = get_global_norm(norm_list=norm_groups)
combined_scale = self.unscale_and_clip_grads(self._global_grad_norm, apply_scale=False)
self.optimizer.step(grads=grads_groups, output_params=self.fp16_groups, scale=combined_scale)
for fp32_group, fp16_group in zip(self.fp32_groups, self.fp16_groups):
for idx, (fp32_param, fp16_param) in enumerate(zip(fp32_group, fp16_group)):
#remove the fp32 grad
fp32_param.grad = None
#copy data from fp32 to fp16
fp16_param.data.copy_(fp32_param.data)
return self.overflow
def set_lr(self, lr):
"""Set the learning rate."""
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
def get_lr(self):
"""Return the current learning rate."""
return self.optimizer.param_groups[0]["lr"]
def override_loss_scale(self, loss_scale):
if loss_scale != self.external_loss_scale:
logger.info(f'[deepspeed] setting loss scale from {self.external_loss_scale} -> {loss_scale}')
self.custom_loss_scaler = True
self.external_loss_scale = loss_scale
def step(self, closure=None):
"""
Not supporting closure.
"""
if self.fused_lamb_legacy:
return self.step_fused_lamb()
self.overflow = self.overflow_checker.check()
prev_scale = self.cur_scale
self._update_scale(self.overflow)
if self.overflow:
if self.verbose:
logger.info("[deepspeed] fp16 dynamic loss scale overflow! Skipping step. Attempted loss "
"scale: {}, reducing to {}".format(prev_scale, self.cur_scale))
return self.overflow
norm_groups = []
for i, group in enumerate(self.fp16_groups):
grads_for_norm, _ = split_params_grads_into_shared_and_expert_params(group)
norm_group_value = 0.0
if len(grads_for_norm) > 0:
norm_group_value = get_weight_norm(grads_for_norm, mpu=self.mpu)
norm_groups.append(norm_group_value)
# copying gradients to fp32 to work with fp32 parameters
for fp32_param, fp16_param in zip(self.fp32_groups[i], self.fp16_groups[i]):
if fp16_param.grad is None:
fp32_param.grad = torch.zeros(fp16_param.size(), dtype=fp32_param.dtype, device=fp32_param.device)
else:
fp32_param.grad = fp16_param.grad.to(fp32_param.dtype)
self._global_grad_norm = get_global_norm(norm_list=norm_groups)
self.unscale_and_clip_grads(self._global_grad_norm)
self.optimizer.step()
for fp32_group, fp16_group in zip(self.fp32_groups, self.fp16_groups):
for idx, (fp32_param, fp16_param) in enumerate(zip(fp32_group, fp16_group)):
#remove the fp32 grad
fp32_param.grad = None
#copy data from fp32 to fp16
fp16_param.data.copy_(fp32_param.data)
return self.overflow
def unscale_and_clip_grads(self, total_norm, apply_scale=True):
# compute combined scale factor for this group
combined_scale = self.cur_scale
if self.clip_grad > 0.:
# norm is in fact norm*scale
clip = ((total_norm / self.cur_scale) + 1e-6) / self.clip_grad
if clip > 1:
combined_scale = clip * self.cur_scale
if apply_scale:
for group in self.fp32_groups:
for param in group:
if param.grad is not None:
param.grad.data.mul_(1. / combined_scale)
return combined_scale
def backward(self, loss, create_graph=False, retain_graph=False):
"""
:attr:`backward` performs the following steps:
1. fp32_loss = loss.float()
2. scaled_loss = fp32_loss*loss_scale
3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves
"""
if self.custom_loss_scaler:
scaled_loss = self.external_loss_scale * loss
scaled_loss.backward()
else:
scaled_loss = (loss.float()) * self.cur_scale
scaled_loss.backward(create_graph=create_graph, retain_graph=retain_graph)
def _update_scale(self, skip):
if self.dynamic_loss_scale:
prev_scale = self.cur_scale
if skip:
self.cur_scale = max(self.cur_scale / self.scale_factor, self.min_loss_scale)
self.last_overflow_iter = self.cur_iter
if self.verbose:
logger.info("Grad overflow on iteration: %s", self.cur_iter)
logger.info(f"Reducing dynamic loss scale from {prev_scale} to {self.cur_scale}")
else:
# Ensure self.scale_window updates since last overflow
stable_interval = (self.cur_iter - self.last_overflow_iter) - 1
if (stable_interval > 0) and (stable_interval % self.scale_window == 0):
self.cur_scale *= self.scale_factor
if self.verbose:
logger.info(f"No Grad overflow for {self.scale_window} iterations")
logger.info(f"Increasing dynamic loss scale from {prev_scale} to {self.cur_scale}")
else:
if skip:
logger.info("Grad overflow on iteration %s", self.cur_iter)
logger.info("Using static loss scale of %s", self.cur_scale)
self.cur_iter += 1
return
# Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
def _get_state(self):
return self.optimizer.state
def _set_state(self, value):
self.optimizer.state = value
state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
return self.optimizer.param_groups
def _set_param_groups(self, value):
self.optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)
# Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
def _get_loss_scale(self):
if self.custom_loss_scaler:
return self.external_loss_scale
else:
return self.cur_scale
def _set_loss_scale(self, value):
self.loss_scaler.cur_scale = value
loss_scale = property(_get_loss_scale, _set_loss_scale)
def state_dict(self):
"""
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
of the contained Pytorch optimizer.
Example::
checkpoint = {}
checkpoint['model'] = model.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, "saved.pth")
"""
state_dict = {}
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
state_dict['cur_scale'] = self.cur_scale
state_dict['cur_iter'] = self.cur_iter
if state_dict['dynamic_loss_scale']:
state_dict['last_overflow_iter'] = self.last_overflow_iter
state_dict['scale_factor'] = self.scale_factor
state_dict['scale_window'] = self.scale_window
state_dict[OPTIMIZER_STATE_DICT] = self.optimizer.state_dict()
state_dict['fp32_groups'] = self.fp32_groups
return state_dict
# Refresh fp32 master params from fp16 copies
def refresh_fp32_params(self):
for current_group, saved_group in zip(self.fp32_groups, self.fp16_groups):
for current, saved in zip(current_group, saved_group):
current.data.copy_(saved.data)
def load_state_dict(self, state_dict, load_optimizer_states=True):
"""
Loads a state_dict created by an earlier call to state_dict().
If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
whose parameters in turn came from ``model``, it is expected that the user
will call ``model.load_state_dict()`` before
``fp16_optimizer_instance.load_state_dict()`` is called.
Example::
model = torch.nn.Linear(D_in, D_out).to(get_accelerator().device_name()).half()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
...
checkpoint = torch.load("saved.pth")
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
"""
# I think it should actually be ok to reload the optimizer before the model.
self.dynamic_loss_scale = state_dict['dynamic_loss_scale']
self.cur_scale = state_dict['cur_scale']
self.cur_iter = state_dict['cur_iter']
if state_dict['dynamic_loss_scale']:
self.last_overflow_iter = state_dict['last_overflow_iter']
self.scale_factor = state_dict['scale_factor']
self.scale_window = state_dict['scale_window']
if load_optimizer_states:
self.optimizer.load_state_dict(state_dict[OPTIMIZER_STATE_DICT])
# At this point, the optimizer's references to the model's fp32 parameters are up to date.
# The optimizer's hyperparameters and internal buffers are also up to date.
# However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
# out of date. There are two options.
# 1: Refresh the master params from the model's fp16 params.
# This requires less storage but incurs precision loss.
# 2: Save and restore the fp32 master copies separately.
# We choose option 2.
#
# Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
# of their associated parameters, because it's possible those buffers might not exist yet in
# the current optimizer instance. In our case, as long as the current FP16_Optimizer has been
# constructed in the same way as the one whose state_dict we are loading, the same master params
# are guaranteed to exist, so we can just copy_() from the saved master params.
for current_group, saved_group in zip(self.fp32_groups, state_dict['fp32_groups']):
for current, saved in zip(current_group, saved_group):
current.data.copy_(saved.data)
def __repr__(self):
return repr(self.optimizer)
def initialize_optimizer_states(self):
for i, group in enumerate(self.fp16_groups):
for param in group:
param.grad = torch.zeros(param.size(),
dtype=param.dtype,
device=get_accelerator().current_device_name())
for i, group in enumerate(self.fp32_groups):
for param in group:
param.grad = torch.zeros(param.size(),
dtype=param.dtype,
device=get_accelerator().current_device_name())
self.optimizer.step()
for i, group in enumerate(self.fp16_groups):
for param in group:
param.grad = None
for i, group in enumerate(self.fp32_groups):
for param in group:
param.grad = None