peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/progressive_layer_drop.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import numpy as np | |
from deepspeed.utils import log_dist | |
class ProgressiveLayerDrop(object): | |
r""" Progressive Layer Dropping (PLD) for model training. | |
This implements the PLD technique for compressed model training | |
from this paper: https://arxiv.org/pdf/2010.13369.pdf | |
Args: | |
theta (float): a hyper-parameter that controls the trade-off between training time and robustness. | |
The lower the theta value, the faster the training speed. Default value: 0.5. | |
gamma (float): a hyper-parameter that controls how fast the drop ratio increases. Default value: 0.001. | |
""" | |
def __init__(self, theta=0.5, gamma=0.001): | |
super().__init__() | |
self.theta = theta | |
self.gamma = gamma | |
self.current_theta = 1.0 | |
log_dist(f'Enabled progressive layer dropping (theta = {self.theta})', ranks=[0]) | |
def get_state(self): | |
kwargs = {'progressive_layer_drop': True, 'pld_theta': self.get_theta()} | |
return kwargs | |
def get_theta(self): | |
return self.current_theta | |
def update_state(self, global_step): | |
def _prob(x, gamma, p): | |
return (1. - p) * np.exp(-gamma * x) + p | |
self.current_theta = _prob(global_step, self.gamma, self.theta) | |