applied-ai-018's picture
Add files using upload-large-folder tool
734b6a1 verified
raw
history blame
7.03 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from ..module_inject.replace_policy import HFBertLayerPolicy, replace_policies
from deepspeed.accelerator import get_accelerator
class WeightQuantization(object):
def __init__(self, mlp_extra_grouping=True, mp_size=1):
self.dense_scales = []
self.qkv_scales = []
self.mlp4hh_scales = []
self.mlph4h_scales = []
self.mlp_extra_grouping = mlp_extra_grouping
self.mp_size = mp_size
def quantize_data(self, data, quantize_bits, groups, key=None):
data_groups = torch.split(data.float().view(-1), data.numel() // groups)
max_d = [max(g.max(), g.min().abs()) for g in data_groups]
data_scale = [float(1 << quantize_bits) / (2 * mx + 1e-5) for mx in max_d]
data_int = [(g * s) for g, s in zip(data_groups, data_scale)]
data_int = [
di.round().clamp(-(1 << (quantize_bits - 1)), (((1 << (quantize_bits - 1)) - 1))) for di in data_int
]
data_int = torch.cat(data_int).reshape(data.shape)
data_int = data_int.to(torch.int8)
data_scale = torch.cat([s.unsqueeze(0).unsqueeze(0) for s in data_scale])
return data_int, data_scale
def is_mlp(self, data, merge_count=1):
return ((self.mp_size *data.shape[0] * merge_count) / data.shape[1] == 4 or \
(self.mp_size *data.shape[1] * merge_count) / data.shape[0] == 4)
def is_qkv(self, data):
return ((self.mp_size * data.shape[0]) / data.shape[1] == 3 or \
(self.mp_size * data.shape[1]) / data.shape[0] == 3)
def Quantize(self, value_list, quantize_bits, groups, key, merge_dim=0):
if self.mlp_extra_grouping and self.is_mlp(value_list[0], merge_count=len(value_list)):
groups *= 2
q_scale = []
index = 0
for data in value_list:
data_int, data_scale = self.quantize_data(data, quantize_bits, groups, key)
q_scale.append(data_scale)
value_list[index] = data_int
index += 1
q_scale = (1 /
torch.cat(q_scale, dim=merge_dim).to(get_accelerator().current_device_name()).view(-1).unsqueeze(0))
if "mlp.dense_4h_to_h.weight" in key:
self.mlp4hh_scales.append(q_scale)
elif "mlp.dense_h_to_4h.weight" in key:
self.mlph4h_scales.append(q_scale)
elif "attention.query_key_value.weight" in key:
self.qkv_scales.append(q_scale)
else:
self.dense_scales.append(q_scale)
return value_list
def merge_layer_scales(self, layer_scales):
max_dim = max([s.shape[-1] for s in layer_scales])
layer_scales = [
torch.cat((s, torch.zeros((1, max_dim - s.shape[-1]), device=get_accelerator().current_device_name())),
dim=-1) if s.shape[-1] < max_dim else s for s in layer_scales
]
return torch.cat(layer_scales).unsqueeze(0)
def merge_scales(self):
all_scales = []
for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \
zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales):
all_scales.append(self.merge_layer_scales([qkv_scale, dense_scale, mh4h_scale, m4hh_scale]))
return torch.cat(all_scales)
def merge_scales_split(self, split_count):
all_scales = [[] for _ in range(split_count)]
for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \
zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales):
dense_scale = torch.split(dense_scale, dense_scale.numel() // split_count)
qkv_scale = torch.split(qkv_scale, qkv_scale.numel() // split_count)
m4hh_scale = torch.split(m4hh_scale, m4hh_scale.numel() // split_count)
mh4h_scale = torch.split(mh4h_scale, mh4h_scale.numel() // split_count)
for s in range(split_count):
all_scales[s].append(
torch.cat([
torch.cat((qkv_scale[s], torch.zeros_like(qkv_scale[s])), dim=1),
torch.cat((dense_scale[s], torch.zeros_like(dense_scale[s])), dim=1), mh4h_scale[s],
m4hh_scale[s]
]).unsqueeze(0))
for scales_a in all_scales:
torch.cat(scales_a)
return all_scales
def sd_quantize_megatron(self, sd, quantize_bits, groups):
keys = sd.keys()
for key in keys:
value_list = [sd[key]]
if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key or \
"mlp.dense_h_to_4h.weight" in key or "attention.query_key_value.weight" in key:
value_list = self.Quantize(value_list, quantize_bits, groups, key=key)
sd[key] = value_list[0]
all_scales = self.merge_scales()
return sd, all_scales
def model_quantize(self, model, quantize_policy, quantize_bits, groups):
all_scales = []
def quantize_fn(layer, policy_cls):
policy = policy_cls(layer)
_, qkvw, _, dense_w, _, _ = policy.attention()
_, _h4h_w, _, _4hh_w, _ = policy.mlp()
keys = [qkvw, dense_w, _h4h_w, _4hh_w]
layer_scales = []
for key in range(len(keys)):
if self.mlp_extra_grouping and self.is_mlp(keys[key]):
data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 2)
elif policy_cls is HFBertLayerPolicy and self.is_qkv(keys[key]):
data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 3)
else:
data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups)
keys[key].copy_(data_quantized)
layer_scales.append((1 / data_scale.to(get_accelerator().current_device_name()).view(-1).unsqueeze(0)))
all_scales.append(self.merge_layer_scales(layer_scales))
return layer
def _quantize_module(model, policies):
for name, child in model.named_children():
if child.__class__ in policies:
quantize_fn, replace_policy = policies[child.__class__]
setattr(model, name, quantize_fn(child, replace_policy))
else:
_quantize_module(child, policies)
return model
policy = {}
if quantize_policy is not None:
for layer_name, replace_policy in quantize_policy.items():
policy.update({layer_name: (quantize_fn, replace_policy)})
else:
for plcy in replace_policies:
policy.update({plcy._orig_layer_class: (quantize_fn, plcy)})
quantized_module = _quantize_module(model, policy)
return quantized_module, torch.cat(all_scales)