peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/__init__.py
from __future__ import annotations | |
import os | |
import warnings | |
__docformat__ = "restructuredtext" | |
# Let users know if they're missing any of our hard dependencies | |
_hard_dependencies = ("numpy", "pytz", "dateutil") | |
_missing_dependencies = [] | |
for _dependency in _hard_dependencies: | |
try: | |
__import__(_dependency) | |
except ImportError as _e: # pragma: no cover | |
_missing_dependencies.append(f"{_dependency}: {_e}") | |
if _missing_dependencies: # pragma: no cover | |
raise ImportError( | |
"Unable to import required dependencies:\n" + "\n".join(_missing_dependencies) | |
) | |
del _hard_dependencies, _dependency, _missing_dependencies | |
try: | |
# numpy compat | |
from pandas.compat import ( | |
is_numpy_dev as _is_numpy_dev, # pyright: ignore[reportUnusedImport] # noqa: F401 | |
) | |
except ImportError as _err: # pragma: no cover | |
_module = _err.name | |
raise ImportError( | |
f"C extension: {_module} not built. If you want to import " | |
"pandas from the source directory, you may need to run " | |
"'python setup.py build_ext' to build the C extensions first." | |
) from _err | |
from pandas._config import ( | |
get_option, | |
set_option, | |
reset_option, | |
describe_option, | |
option_context, | |
options, | |
) | |
# let init-time option registration happen | |
import pandas.core.config_init # pyright: ignore[reportUnusedImport] # noqa: F401 | |
from pandas.core.api import ( | |
# dtype | |
ArrowDtype, | |
Int8Dtype, | |
Int16Dtype, | |
Int32Dtype, | |
Int64Dtype, | |
UInt8Dtype, | |
UInt16Dtype, | |
UInt32Dtype, | |
UInt64Dtype, | |
Float32Dtype, | |
Float64Dtype, | |
CategoricalDtype, | |
PeriodDtype, | |
IntervalDtype, | |
DatetimeTZDtype, | |
StringDtype, | |
BooleanDtype, | |
# missing | |
NA, | |
isna, | |
isnull, | |
notna, | |
notnull, | |
# indexes | |
Index, | |
CategoricalIndex, | |
RangeIndex, | |
MultiIndex, | |
IntervalIndex, | |
TimedeltaIndex, | |
DatetimeIndex, | |
PeriodIndex, | |
IndexSlice, | |
# tseries | |
NaT, | |
Period, | |
period_range, | |
Timedelta, | |
timedelta_range, | |
Timestamp, | |
date_range, | |
bdate_range, | |
Interval, | |
interval_range, | |
DateOffset, | |
# conversion | |
to_numeric, | |
to_datetime, | |
to_timedelta, | |
# misc | |
Flags, | |
Grouper, | |
factorize, | |
unique, | |
value_counts, | |
NamedAgg, | |
array, | |
Categorical, | |
set_eng_float_format, | |
Series, | |
DataFrame, | |
) | |
from pandas.core.dtypes.dtypes import SparseDtype | |
from pandas.tseries.api import infer_freq | |
from pandas.tseries import offsets | |
from pandas.core.computation.api import eval | |
from pandas.core.reshape.api import ( | |
concat, | |
lreshape, | |
melt, | |
wide_to_long, | |
merge, | |
merge_asof, | |
merge_ordered, | |
crosstab, | |
pivot, | |
pivot_table, | |
get_dummies, | |
from_dummies, | |
cut, | |
qcut, | |
) | |
from pandas import api, arrays, errors, io, plotting, tseries | |
from pandas import testing | |
from pandas.util._print_versions import show_versions | |
from pandas.io.api import ( | |
# excel | |
ExcelFile, | |
ExcelWriter, | |
read_excel, | |
# parsers | |
read_csv, | |
read_fwf, | |
read_table, | |
# pickle | |
read_pickle, | |
to_pickle, | |
# pytables | |
HDFStore, | |
read_hdf, | |
# sql | |
read_sql, | |
read_sql_query, | |
read_sql_table, | |
# misc | |
read_clipboard, | |
read_parquet, | |
read_orc, | |
read_feather, | |
read_gbq, | |
read_html, | |
read_xml, | |
read_json, | |
read_stata, | |
read_sas, | |
read_spss, | |
) | |
from pandas.io.json._normalize import json_normalize | |
from pandas.util._tester import test | |
# use the closest tagged version if possible | |
_built_with_meson = False | |
try: | |
from pandas._version_meson import ( # pyright: ignore [reportMissingImports] | |
__version__, | |
__git_version__, | |
) | |
_built_with_meson = True | |
except ImportError: | |
from pandas._version import get_versions | |
v = get_versions() | |
__version__ = v.get("closest-tag", v["version"]) | |
__git_version__ = v.get("full-revisionid") | |
del get_versions, v | |
# GH#55043 - deprecation of the data_manager option | |
if "PANDAS_DATA_MANAGER" in os.environ: | |
warnings.warn( | |
"The env variable PANDAS_DATA_MANAGER is set. The data_manager option is " | |
"deprecated and will be removed in a future version. Only the BlockManager " | |
"will be available. Unset this environment variable to silence this warning.", | |
FutureWarning, | |
stacklevel=2, | |
) | |
del warnings, os | |
# module level doc-string | |
__doc__ = """ | |
pandas - a powerful data analysis and manipulation library for Python | |
===================================================================== | |
**pandas** is a Python package providing fast, flexible, and expressive data | |
structures designed to make working with "relational" or "labeled" data both | |
easy and intuitive. It aims to be the fundamental high-level building block for | |
doing practical, **real world** data analysis in Python. Additionally, it has | |
the broader goal of becoming **the most powerful and flexible open source data | |
analysis / manipulation tool available in any language**. It is already well on | |
its way toward this goal. | |
Main Features | |
------------- | |
Here are just a few of the things that pandas does well: | |
- Easy handling of missing data in floating point as well as non-floating | |
point data. | |
- Size mutability: columns can be inserted and deleted from DataFrame and | |
higher dimensional objects | |
- Automatic and explicit data alignment: objects can be explicitly aligned | |
to a set of labels, or the user can simply ignore the labels and let | |
`Series`, `DataFrame`, etc. automatically align the data for you in | |
computations. | |
- Powerful, flexible group by functionality to perform split-apply-combine | |
operations on data sets, for both aggregating and transforming data. | |
- Make it easy to convert ragged, differently-indexed data in other Python | |
and NumPy data structures into DataFrame objects. | |
- Intelligent label-based slicing, fancy indexing, and subsetting of large | |
data sets. | |
- Intuitive merging and joining data sets. | |
- Flexible reshaping and pivoting of data sets. | |
- Hierarchical labeling of axes (possible to have multiple labels per tick). | |
- Robust IO tools for loading data from flat files (CSV and delimited), | |
Excel files, databases, and saving/loading data from the ultrafast HDF5 | |
format. | |
- Time series-specific functionality: date range generation and frequency | |
conversion, moving window statistics, date shifting and lagging. | |
""" | |
# Use __all__ to let type checkers know what is part of the public API. | |
# Pandas is not (yet) a py.typed library: the public API is determined | |
# based on the documentation. | |
__all__ = [ | |
"ArrowDtype", | |
"BooleanDtype", | |
"Categorical", | |
"CategoricalDtype", | |
"CategoricalIndex", | |
"DataFrame", | |
"DateOffset", | |
"DatetimeIndex", | |
"DatetimeTZDtype", | |
"ExcelFile", | |
"ExcelWriter", | |
"Flags", | |
"Float32Dtype", | |
"Float64Dtype", | |
"Grouper", | |
"HDFStore", | |
"Index", | |
"IndexSlice", | |
"Int16Dtype", | |
"Int32Dtype", | |
"Int64Dtype", | |
"Int8Dtype", | |
"Interval", | |
"IntervalDtype", | |
"IntervalIndex", | |
"MultiIndex", | |
"NA", | |
"NaT", | |
"NamedAgg", | |
"Period", | |
"PeriodDtype", | |
"PeriodIndex", | |
"RangeIndex", | |
"Series", | |
"SparseDtype", | |
"StringDtype", | |
"Timedelta", | |
"TimedeltaIndex", | |
"Timestamp", | |
"UInt16Dtype", | |
"UInt32Dtype", | |
"UInt64Dtype", | |
"UInt8Dtype", | |
"api", | |
"array", | |
"arrays", | |
"bdate_range", | |
"concat", | |
"crosstab", | |
"cut", | |
"date_range", | |
"describe_option", | |
"errors", | |
"eval", | |
"factorize", | |
"get_dummies", | |
"from_dummies", | |
"get_option", | |
"infer_freq", | |
"interval_range", | |
"io", | |
"isna", | |
"isnull", | |
"json_normalize", | |
"lreshape", | |
"melt", | |
"merge", | |
"merge_asof", | |
"merge_ordered", | |
"notna", | |
"notnull", | |
"offsets", | |
"option_context", | |
"options", | |
"period_range", | |
"pivot", | |
"pivot_table", | |
"plotting", | |
"qcut", | |
"read_clipboard", | |
"read_csv", | |
"read_excel", | |
"read_feather", | |
"read_fwf", | |
"read_gbq", | |
"read_hdf", | |
"read_html", | |
"read_json", | |
"read_orc", | |
"read_parquet", | |
"read_pickle", | |
"read_sas", | |
"read_spss", | |
"read_sql", | |
"read_sql_query", | |
"read_sql_table", | |
"read_stata", | |
"read_table", | |
"read_xml", | |
"reset_option", | |
"set_eng_float_format", | |
"set_option", | |
"show_versions", | |
"test", | |
"testing", | |
"timedelta_range", | |
"to_datetime", | |
"to_numeric", | |
"to_pickle", | |
"to_timedelta", | |
"tseries", | |
"unique", | |
"value_counts", | |
"wide_to_long", | |
] | |