peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/arithmetic
/test_interval.py
import operator | |
import numpy as np | |
import pytest | |
from pandas.core.dtypes.common import is_list_like | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
Index, | |
Interval, | |
IntervalIndex, | |
Period, | |
Series, | |
Timedelta, | |
Timestamp, | |
date_range, | |
period_range, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.arrays import ( | |
BooleanArray, | |
IntervalArray, | |
) | |
from pandas.tests.arithmetic.common import get_upcast_box | |
def left_right_dtypes(request): | |
""" | |
Fixture for building an IntervalArray from various dtypes | |
""" | |
return request.param | |
def interval_array(left_right_dtypes): | |
""" | |
Fixture to generate an IntervalArray of various dtypes containing NA if possible | |
""" | |
left, right = left_right_dtypes | |
return IntervalArray.from_arrays(left, right) | |
def create_categorical_intervals(left, right, closed="right"): | |
return Categorical(IntervalIndex.from_arrays(left, right, closed)) | |
def create_series_intervals(left, right, closed="right"): | |
return Series(IntervalArray.from_arrays(left, right, closed)) | |
def create_series_categorical_intervals(left, right, closed="right"): | |
return Series(Categorical(IntervalIndex.from_arrays(left, right, closed))) | |
class TestComparison: | |
def op(self, request): | |
return request.param | |
def interval_constructor(self, request): | |
""" | |
Fixture for all pandas native interval constructors. | |
To be used as the LHS of IntervalArray comparisons. | |
""" | |
return request.param | |
def elementwise_comparison(self, op, interval_array, other): | |
""" | |
Helper that performs elementwise comparisons between `array` and `other` | |
""" | |
other = other if is_list_like(other) else [other] * len(interval_array) | |
expected = np.array([op(x, y) for x, y in zip(interval_array, other)]) | |
if isinstance(other, Series): | |
return Series(expected, index=other.index) | |
return expected | |
def test_compare_scalar_interval(self, op, interval_array): | |
# matches first interval | |
other = interval_array[0] | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_numpy_array_equal(result, expected) | |
# matches on a single endpoint but not both | |
other = Interval(interval_array.left[0], interval_array.right[1]) | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_compare_scalar_interval_mixed_closed(self, op, closed, other_closed): | |
interval_array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed) | |
other = Interval(0, 1, closed=other_closed) | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_compare_scalar_na(self, op, interval_array, nulls_fixture, box_with_array): | |
box = box_with_array | |
obj = tm.box_expected(interval_array, box) | |
result = op(obj, nulls_fixture) | |
if nulls_fixture is pd.NA: | |
# GH#31882 | |
exp = np.ones(interval_array.shape, dtype=bool) | |
expected = BooleanArray(exp, exp) | |
else: | |
expected = self.elementwise_comparison(op, interval_array, nulls_fixture) | |
if not (box is Index and nulls_fixture is pd.NA): | |
# don't cast expected from BooleanArray to ndarray[object] | |
xbox = get_upcast_box(obj, nulls_fixture, True) | |
expected = tm.box_expected(expected, xbox) | |
tm.assert_equal(result, expected) | |
rev = op(nulls_fixture, obj) | |
tm.assert_equal(rev, expected) | |
def test_compare_scalar_other(self, op, interval_array, other): | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_compare_list_like_interval(self, op, interval_array, interval_constructor): | |
# same endpoints | |
other = interval_constructor(interval_array.left, interval_array.right) | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_equal(result, expected) | |
# different endpoints | |
other = interval_constructor( | |
interval_array.left[::-1], interval_array.right[::-1] | |
) | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_equal(result, expected) | |
# all nan endpoints | |
other = interval_constructor([np.nan] * 4, [np.nan] * 4) | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_equal(result, expected) | |
def test_compare_list_like_interval_mixed_closed( | |
self, op, interval_constructor, closed, other_closed | |
): | |
interval_array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed) | |
other = interval_constructor(range(2), range(1, 3), closed=other_closed) | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_equal(result, expected) | |
def test_compare_list_like_object(self, op, interval_array, other): | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_compare_list_like_nan(self, op, interval_array, nulls_fixture): | |
other = [nulls_fixture] * 4 | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_equal(result, expected) | |
def test_compare_list_like_other(self, op, interval_array, other): | |
result = op(interval_array, other) | |
expected = self.elementwise_comparison(op, interval_array, other) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_compare_length_mismatch_errors(self, op, other_constructor, length): | |
interval_array = IntervalArray.from_arrays(range(4), range(1, 5)) | |
other = other_constructor([Interval(0, 1)] * length) | |
with pytest.raises(ValueError, match="Lengths must match to compare"): | |
op(interval_array, other) | |
def test_index_series_compat(self, op, constructor, expected_type, assert_func): | |
# IntervalIndex/Series that rely on IntervalArray for comparisons | |
breaks = range(4) | |
index = constructor(IntervalIndex.from_breaks(breaks)) | |
# scalar comparisons | |
other = index[0] | |
result = op(index, other) | |
expected = expected_type(self.elementwise_comparison(op, index, other)) | |
assert_func(result, expected) | |
other = breaks[0] | |
result = op(index, other) | |
expected = expected_type(self.elementwise_comparison(op, index, other)) | |
assert_func(result, expected) | |
# list-like comparisons | |
other = IntervalArray.from_breaks(breaks) | |
result = op(index, other) | |
expected = expected_type(self.elementwise_comparison(op, index, other)) | |
assert_func(result, expected) | |
other = [index[0], breaks[0], "foo"] | |
result = op(index, other) | |
expected = expected_type(self.elementwise_comparison(op, index, other)) | |
assert_func(result, expected) | |
def test_comparison_operations(self, scalars): | |
# GH #28981 | |
expected = Series([False, False]) | |
s = Series([Interval(0, 1), Interval(1, 2)], dtype="interval") | |
result = s == scalars | |
tm.assert_series_equal(result, expected) | |