peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/computation
/test_eval.py
from __future__ import annotations | |
from functools import reduce | |
from itertools import product | |
import operator | |
import numpy as np | |
import pytest | |
from pandas.compat import PY312 | |
from pandas.errors import ( | |
NumExprClobberingError, | |
PerformanceWarning, | |
UndefinedVariableError, | |
) | |
import pandas.util._test_decorators as td | |
from pandas.core.dtypes.common import ( | |
is_bool, | |
is_float, | |
is_list_like, | |
is_scalar, | |
) | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
Series, | |
date_range, | |
period_range, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.computation import ( | |
expr, | |
pytables, | |
) | |
from pandas.core.computation.engines import ENGINES | |
from pandas.core.computation.expr import ( | |
BaseExprVisitor, | |
PandasExprVisitor, | |
PythonExprVisitor, | |
) | |
from pandas.core.computation.expressions import ( | |
NUMEXPR_INSTALLED, | |
USE_NUMEXPR, | |
) | |
from pandas.core.computation.ops import ( | |
ARITH_OPS_SYMS, | |
SPECIAL_CASE_ARITH_OPS_SYMS, | |
_binary_math_ops, | |
_binary_ops_dict, | |
_unary_math_ops, | |
) | |
from pandas.core.computation.scope import DEFAULT_GLOBALS | |
def engine(request): | |
return request.param | |
def parser(request): | |
return request.param | |
def _eval_single_bin(lhs, cmp1, rhs, engine): | |
c = _binary_ops_dict[cmp1] | |
if ENGINES[engine].has_neg_frac: | |
try: | |
return c(lhs, rhs) | |
except ValueError as e: | |
if str(e).startswith( | |
"negative number cannot be raised to a fractional power" | |
): | |
return np.nan | |
raise | |
return c(lhs, rhs) | |
# TODO: using range(5) here is a kludge | |
def lhs(request): | |
nan_df1 = DataFrame(np.random.default_rng(2).standard_normal((10, 5))) | |
nan_df1[nan_df1 > 0.5] = np.nan | |
opts = ( | |
DataFrame(np.random.default_rng(2).standard_normal((10, 5))), | |
Series(np.random.default_rng(2).standard_normal(5)), | |
Series([1, 2, np.nan, np.nan, 5]), | |
nan_df1, | |
np.random.default_rng(2).standard_normal(), | |
) | |
return opts[request.param] | |
rhs = lhs | |
midhs = lhs | |
def idx_func_dict(): | |
return { | |
"i": lambda n: Index(np.arange(n), dtype=np.int64), | |
"f": lambda n: Index(np.arange(n), dtype=np.float64), | |
"s": lambda n: Index([f"{i}_{chr(i)}" for i in range(97, 97 + n)]), | |
"dt": lambda n: date_range("2020-01-01", periods=n), | |
"td": lambda n: timedelta_range("1 day", periods=n), | |
"p": lambda n: period_range("2020-01-01", periods=n, freq="D"), | |
} | |
class TestEval: | |
def test_complex_cmp_ops(self, cmp1, cmp2, binop, lhs, rhs, engine, parser): | |
if parser == "python" and binop in ["and", "or"]: | |
msg = "'BoolOp' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)" | |
pd.eval(ex, engine=engine, parser=parser) | |
return | |
lhs_new = _eval_single_bin(lhs, cmp1, rhs, engine) | |
rhs_new = _eval_single_bin(lhs, cmp2, rhs, engine) | |
expected = _eval_single_bin(lhs_new, binop, rhs_new, engine) | |
ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)" | |
result = pd.eval(ex, engine=engine, parser=parser) | |
tm.assert_equal(result, expected) | |
def test_simple_cmp_ops(self, cmp_op, lhs, rhs, engine, parser): | |
lhs = lhs < 0 | |
rhs = rhs < 0 | |
if parser == "python" and cmp_op in ["in", "not in"]: | |
msg = "'(In|NotIn)' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
ex = f"lhs {cmp_op} rhs" | |
pd.eval(ex, engine=engine, parser=parser) | |
return | |
ex = f"lhs {cmp_op} rhs" | |
msg = "|".join( | |
[ | |
r"only list-like( or dict-like)? objects are allowed to be " | |
r"passed to (DataFrame\.)?isin\(\), you passed a " | |
r"(`|')bool(`|')", | |
"argument of type 'bool' is not iterable", | |
] | |
) | |
if cmp_op in ("in", "not in") and not is_list_like(rhs): | |
with pytest.raises(TypeError, match=msg): | |
pd.eval( | |
ex, | |
engine=engine, | |
parser=parser, | |
local_dict={"lhs": lhs, "rhs": rhs}, | |
) | |
else: | |
expected = _eval_single_bin(lhs, cmp_op, rhs, engine) | |
result = pd.eval(ex, engine=engine, parser=parser) | |
tm.assert_equal(result, expected) | |
def test_compound_invert_op(self, op, lhs, rhs, request, engine, parser): | |
if parser == "python" and op in ["in", "not in"]: | |
msg = "'(In|NotIn)' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
ex = f"~(lhs {op} rhs)" | |
pd.eval(ex, engine=engine, parser=parser) | |
return | |
if ( | |
is_float(lhs) | |
and not is_float(rhs) | |
and op in ["in", "not in"] | |
and engine == "python" | |
and parser == "pandas" | |
): | |
mark = pytest.mark.xfail( | |
reason="Looks like expected is negative, unclear whether " | |
"expected is incorrect or result is incorrect" | |
) | |
request.applymarker(mark) | |
skip_these = ["in", "not in"] | |
ex = f"~(lhs {op} rhs)" | |
msg = "|".join( | |
[ | |
r"only list-like( or dict-like)? objects are allowed to be " | |
r"passed to (DataFrame\.)?isin\(\), you passed a " | |
r"(`|')float(`|')", | |
"argument of type 'float' is not iterable", | |
] | |
) | |
if is_scalar(rhs) and op in skip_these: | |
with pytest.raises(TypeError, match=msg): | |
pd.eval( | |
ex, | |
engine=engine, | |
parser=parser, | |
local_dict={"lhs": lhs, "rhs": rhs}, | |
) | |
else: | |
# compound | |
if is_scalar(lhs) and is_scalar(rhs): | |
lhs, rhs = (np.array([x]) for x in (lhs, rhs)) | |
expected = _eval_single_bin(lhs, op, rhs, engine) | |
if is_scalar(expected): | |
expected = not expected | |
else: | |
expected = ~expected | |
result = pd.eval(ex, engine=engine, parser=parser) | |
tm.assert_almost_equal(expected, result) | |
def test_chained_cmp_op(self, cmp1, cmp2, lhs, midhs, rhs, engine, parser): | |
mid = midhs | |
if parser == "python": | |
ex1 = f"lhs {cmp1} mid {cmp2} rhs" | |
msg = "'BoolOp' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(ex1, engine=engine, parser=parser) | |
return | |
lhs_new = _eval_single_bin(lhs, cmp1, mid, engine) | |
rhs_new = _eval_single_bin(mid, cmp2, rhs, engine) | |
if lhs_new is not None and rhs_new is not None: | |
ex1 = f"lhs {cmp1} mid {cmp2} rhs" | |
ex2 = f"lhs {cmp1} mid and mid {cmp2} rhs" | |
ex3 = f"(lhs {cmp1} mid) & (mid {cmp2} rhs)" | |
expected = _eval_single_bin(lhs_new, "&", rhs_new, engine) | |
for ex in (ex1, ex2, ex3): | |
result = pd.eval(ex, engine=engine, parser=parser) | |
tm.assert_almost_equal(result, expected) | |
def test_binary_arith_ops(self, arith1, lhs, rhs, engine, parser): | |
ex = f"lhs {arith1} rhs" | |
result = pd.eval(ex, engine=engine, parser=parser) | |
expected = _eval_single_bin(lhs, arith1, rhs, engine) | |
tm.assert_almost_equal(result, expected) | |
ex = f"lhs {arith1} rhs {arith1} rhs" | |
result = pd.eval(ex, engine=engine, parser=parser) | |
nlhs = _eval_single_bin(lhs, arith1, rhs, engine) | |
try: | |
nlhs, ghs = nlhs.align(rhs) | |
except (ValueError, TypeError, AttributeError): | |
# ValueError: series frame or frame series align | |
# TypeError, AttributeError: series or frame with scalar align | |
return | |
else: | |
if engine == "numexpr": | |
import numexpr as ne | |
# direct numpy comparison | |
expected = ne.evaluate(f"nlhs {arith1} ghs") | |
# Update assert statement due to unreliable numerical | |
# precision component (GH37328) | |
# TODO: update testing code so that assert_almost_equal statement | |
# can be replaced again by the assert_numpy_array_equal statement | |
tm.assert_almost_equal(result.values, expected) | |
else: | |
expected = eval(f"nlhs {arith1} ghs") | |
tm.assert_almost_equal(result, expected) | |
# modulus, pow, and floor division require special casing | |
def test_modulus(self, lhs, rhs, engine, parser): | |
ex = r"lhs % rhs" | |
result = pd.eval(ex, engine=engine, parser=parser) | |
expected = lhs % rhs | |
tm.assert_almost_equal(result, expected) | |
if engine == "numexpr": | |
import numexpr as ne | |
expected = ne.evaluate(r"expected % rhs") | |
if isinstance(result, (DataFrame, Series)): | |
tm.assert_almost_equal(result.values, expected) | |
else: | |
tm.assert_almost_equal(result, expected.item()) | |
else: | |
expected = _eval_single_bin(expected, "%", rhs, engine) | |
tm.assert_almost_equal(result, expected) | |
def test_floor_division(self, lhs, rhs, engine, parser): | |
ex = "lhs // rhs" | |
if engine == "python": | |
res = pd.eval(ex, engine=engine, parser=parser) | |
expected = lhs // rhs | |
tm.assert_equal(res, expected) | |
else: | |
msg = ( | |
r"unsupported operand type\(s\) for //: 'VariableNode' and " | |
"'VariableNode'" | |
) | |
with pytest.raises(TypeError, match=msg): | |
pd.eval( | |
ex, | |
local_dict={"lhs": lhs, "rhs": rhs}, | |
engine=engine, | |
parser=parser, | |
) | |
def test_pow(self, lhs, rhs, engine, parser): | |
# odd failure on win32 platform, so skip | |
ex = "lhs ** rhs" | |
expected = _eval_single_bin(lhs, "**", rhs, engine) | |
result = pd.eval(ex, engine=engine, parser=parser) | |
if ( | |
is_scalar(lhs) | |
and is_scalar(rhs) | |
and isinstance(expected, (complex, np.complexfloating)) | |
and np.isnan(result) | |
): | |
msg = "(DataFrame.columns|numpy array) are different" | |
with pytest.raises(AssertionError, match=msg): | |
tm.assert_numpy_array_equal(result, expected) | |
else: | |
tm.assert_almost_equal(result, expected) | |
ex = "(lhs ** rhs) ** rhs" | |
result = pd.eval(ex, engine=engine, parser=parser) | |
middle = _eval_single_bin(lhs, "**", rhs, engine) | |
expected = _eval_single_bin(middle, "**", rhs, engine) | |
tm.assert_almost_equal(result, expected) | |
def test_check_single_invert_op(self, lhs, engine, parser): | |
# simple | |
try: | |
elb = lhs.astype(bool) | |
except AttributeError: | |
elb = np.array([bool(lhs)]) | |
expected = ~elb | |
result = pd.eval("~elb", engine=engine, parser=parser) | |
tm.assert_almost_equal(expected, result) | |
def test_frame_invert(self, engine, parser): | |
expr = "~lhs" | |
# ~ ## | |
# frame | |
# float always raises | |
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2))) | |
if engine == "numexpr": | |
msg = "couldn't find matching opcode for 'invert_dd'" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
else: | |
msg = "ufunc 'invert' not supported for the input types" | |
with pytest.raises(TypeError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
# int raises on numexpr | |
lhs = DataFrame(np.random.default_rng(2).integers(5, size=(5, 2))) | |
if engine == "numexpr": | |
msg = "couldn't find matching opcode for 'invert" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
else: | |
expect = ~lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_frame_equal(expect, result) | |
# bool always works | |
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5) | |
expect = ~lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_frame_equal(expect, result) | |
# object raises | |
lhs = DataFrame( | |
{"b": ["a", 1, 2.0], "c": np.random.default_rng(2).standard_normal(3) > 0.5} | |
) | |
if engine == "numexpr": | |
with pytest.raises(ValueError, match="unknown type object"): | |
pd.eval(expr, engine=engine, parser=parser) | |
else: | |
msg = "bad operand type for unary ~: 'str'" | |
with pytest.raises(TypeError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
def test_series_invert(self, engine, parser): | |
# ~ #### | |
expr = "~lhs" | |
# series | |
# float raises | |
lhs = Series(np.random.default_rng(2).standard_normal(5)) | |
if engine == "numexpr": | |
msg = "couldn't find matching opcode for 'invert_dd'" | |
with pytest.raises(NotImplementedError, match=msg): | |
result = pd.eval(expr, engine=engine, parser=parser) | |
else: | |
msg = "ufunc 'invert' not supported for the input types" | |
with pytest.raises(TypeError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
# int raises on numexpr | |
lhs = Series(np.random.default_rng(2).integers(5, size=5)) | |
if engine == "numexpr": | |
msg = "couldn't find matching opcode for 'invert" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
else: | |
expect = ~lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_series_equal(expect, result) | |
# bool | |
lhs = Series(np.random.default_rng(2).standard_normal(5) > 0.5) | |
expect = ~lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_series_equal(expect, result) | |
# float | |
# int | |
# bool | |
# object | |
lhs = Series(["a", 1, 2.0]) | |
if engine == "numexpr": | |
with pytest.raises(ValueError, match="unknown type object"): | |
pd.eval(expr, engine=engine, parser=parser) | |
else: | |
msg = "bad operand type for unary ~: 'str'" | |
with pytest.raises(TypeError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
def test_frame_negate(self, engine, parser): | |
expr = "-lhs" | |
# float | |
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2))) | |
expect = -lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_frame_equal(expect, result) | |
# int | |
lhs = DataFrame(np.random.default_rng(2).integers(5, size=(5, 2))) | |
expect = -lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_frame_equal(expect, result) | |
# bool doesn't work with numexpr but works elsewhere | |
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5) | |
if engine == "numexpr": | |
msg = "couldn't find matching opcode for 'neg_bb'" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
else: | |
expect = -lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_frame_equal(expect, result) | |
def test_series_negate(self, engine, parser): | |
expr = "-lhs" | |
# float | |
lhs = Series(np.random.default_rng(2).standard_normal(5)) | |
expect = -lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_series_equal(expect, result) | |
# int | |
lhs = Series(np.random.default_rng(2).integers(5, size=5)) | |
expect = -lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_series_equal(expect, result) | |
# bool doesn't work with numexpr but works elsewhere | |
lhs = Series(np.random.default_rng(2).standard_normal(5) > 0.5) | |
if engine == "numexpr": | |
msg = "couldn't find matching opcode for 'neg_bb'" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(expr, engine=engine, parser=parser) | |
else: | |
expect = -lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_series_equal(expect, result) | |
def test_frame_pos(self, lhs, engine, parser): | |
expr = "+lhs" | |
expect = lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_frame_equal(expect, result) | |
def test_series_pos(self, lhs, engine, parser): | |
expr = "+lhs" | |
expect = lhs | |
result = pd.eval(expr, engine=engine, parser=parser) | |
tm.assert_series_equal(expect, result) | |
def test_scalar_unary(self, engine, parser): | |
msg = "bad operand type for unary ~: 'float'" | |
warn = None | |
if PY312 and not (engine == "numexpr" and parser == "pandas"): | |
warn = DeprecationWarning | |
with pytest.raises(TypeError, match=msg): | |
pd.eval("~1.0", engine=engine, parser=parser) | |
assert pd.eval("-1.0", parser=parser, engine=engine) == -1.0 | |
assert pd.eval("+1.0", parser=parser, engine=engine) == +1.0 | |
assert pd.eval("~1", parser=parser, engine=engine) == ~1 | |
assert pd.eval("-1", parser=parser, engine=engine) == -1 | |
assert pd.eval("+1", parser=parser, engine=engine) == +1 | |
with tm.assert_produces_warning( | |
warn, match="Bitwise inversion", check_stacklevel=False | |
): | |
assert pd.eval("~True", parser=parser, engine=engine) == ~True | |
with tm.assert_produces_warning( | |
warn, match="Bitwise inversion", check_stacklevel=False | |
): | |
assert pd.eval("~False", parser=parser, engine=engine) == ~False | |
assert pd.eval("-True", parser=parser, engine=engine) == -True | |
assert pd.eval("-False", parser=parser, engine=engine) == -False | |
assert pd.eval("+True", parser=parser, engine=engine) == +True | |
assert pd.eval("+False", parser=parser, engine=engine) == +False | |
def test_unary_in_array(self): | |
# GH 11235 | |
# TODO: 2022-01-29: result return list with numexpr 2.7.3 in CI | |
# but cannot reproduce locally | |
result = np.array( | |
pd.eval("[-True, True, +True, -False, False, +False, -37, 37, ~37, +37]"), | |
dtype=np.object_, | |
) | |
expected = np.array( | |
[ | |
-True, | |
True, | |
+True, | |
-False, | |
False, | |
+False, | |
-37, | |
37, | |
~37, | |
+37, | |
], | |
dtype=np.object_, | |
) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_float_comparison_bin_op(self, dtype, expr): | |
# GH 16363 | |
df = DataFrame({"x": np.array([0], dtype=dtype)}) | |
res = df.eval(expr) | |
assert res.values == np.array([False]) | |
def test_unary_in_function(self): | |
# GH 46471 | |
df = DataFrame({"x": [0, 1, np.nan]}) | |
result = df.eval("x.fillna(-1)") | |
expected = df.x.fillna(-1) | |
# column name becomes None if using numexpr | |
# only check names when the engine is not numexpr | |
tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR) | |
result = df.eval("x.shift(1, fill_value=-1)") | |
expected = df.x.shift(1, fill_value=-1) | |
tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR) | |
def test_disallow_scalar_bool_ops(self, ex, engine, parser): | |
x, a, b = np.random.default_rng(2).standard_normal(3), 1, 2 # noqa: F841 | |
df = DataFrame(np.random.default_rng(2).standard_normal((3, 2))) # noqa: F841 | |
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(ex, engine=engine, parser=parser) | |
def test_identical(self, engine, parser): | |
# see gh-10546 | |
x = 1 | |
result = pd.eval("x", engine=engine, parser=parser) | |
assert result == 1 | |
assert is_scalar(result) | |
x = 1.5 | |
result = pd.eval("x", engine=engine, parser=parser) | |
assert result == 1.5 | |
assert is_scalar(result) | |
x = False | |
result = pd.eval("x", engine=engine, parser=parser) | |
assert not result | |
assert is_bool(result) | |
assert is_scalar(result) | |
x = np.array([1]) | |
result = pd.eval("x", engine=engine, parser=parser) | |
tm.assert_numpy_array_equal(result, np.array([1])) | |
assert result.shape == (1,) | |
x = np.array([1.5]) | |
result = pd.eval("x", engine=engine, parser=parser) | |
tm.assert_numpy_array_equal(result, np.array([1.5])) | |
assert result.shape == (1,) | |
x = np.array([False]) # noqa: F841 | |
result = pd.eval("x", engine=engine, parser=parser) | |
tm.assert_numpy_array_equal(result, np.array([False])) | |
assert result.shape == (1,) | |
def test_line_continuation(self, engine, parser): | |
# GH 11149 | |
exp = """1 + 2 * \ | |
5 - 1 + 2 """ | |
result = pd.eval(exp, engine=engine, parser=parser) | |
assert result == 12 | |
def test_float_truncation(self, engine, parser): | |
# GH 14241 | |
exp = "1000000000.006" | |
result = pd.eval(exp, engine=engine, parser=parser) | |
expected = np.float64(exp) | |
assert result == expected | |
df = DataFrame({"A": [1000000000.0009, 1000000000.0011, 1000000000.0015]}) | |
cutoff = 1000000000.0006 | |
result = df.query(f"A < {cutoff:.4f}") | |
assert result.empty | |
cutoff = 1000000000.0010 | |
result = df.query(f"A > {cutoff:.4f}") | |
expected = df.loc[[1, 2], :] | |
tm.assert_frame_equal(expected, result) | |
exact = 1000000000.0011 | |
result = df.query(f"A == {exact:.4f}") | |
expected = df.loc[[1], :] | |
tm.assert_frame_equal(expected, result) | |
def test_disallow_python_keywords(self): | |
# GH 18221 | |
df = DataFrame([[0, 0, 0]], columns=["foo", "bar", "class"]) | |
msg = "Python keyword not valid identifier in numexpr query" | |
with pytest.raises(SyntaxError, match=msg): | |
df.query("class == 0") | |
df = DataFrame() | |
df.index.name = "lambda" | |
with pytest.raises(SyntaxError, match=msg): | |
df.query("lambda == 0") | |
def test_true_false_logic(self): | |
# GH 25823 | |
# This behavior is deprecated in Python 3.12 | |
with tm.maybe_produces_warning( | |
DeprecationWarning, PY312, check_stacklevel=False | |
): | |
assert pd.eval("not True") == -2 | |
assert pd.eval("not False") == -1 | |
assert pd.eval("True and not True") == 0 | |
def test_and_logic_string_match(self): | |
# GH 25823 | |
event = Series({"a": "hello"}) | |
assert pd.eval(f"{event.str.match('hello').a}") | |
assert pd.eval(f"{event.str.match('hello').a and event.str.match('hello').a}") | |
# ------------------------------------- | |
# gh-12388: Typecasting rules consistency with python | |
class TestTypeCasting: | |
# maybe someday... numexpr has too many upcasting rules now | |
# chain(*(np.core.sctypes[x] for x in ['uint', 'int', 'float'])) | |
def test_binop_typecasting(self, engine, parser, op, dt, left_right): | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)), dtype=dt) | |
left, right = left_right | |
s = f"{left} {op} {right}" | |
res = pd.eval(s, engine=engine, parser=parser) | |
assert df.values.dtype == dt | |
assert res.values.dtype == dt | |
tm.assert_frame_equal(res, eval(s)) | |
# ------------------------------------- | |
# Basic and complex alignment | |
def should_warn(*args): | |
not_mono = not any(map(operator.attrgetter("is_monotonic_increasing"), args)) | |
only_one_dt = reduce( | |
operator.xor, (issubclass(x.dtype.type, np.datetime64) for x in args) | |
) | |
return not_mono and only_one_dt | |
class TestAlignment: | |
index_types = ["i", "s", "dt"] | |
lhs_index_types = index_types + ["s"] # 'p' | |
def test_align_nested_unary_op(self, engine, parser): | |
s = "df * ~2" | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) | |
res = pd.eval(s, engine=engine, parser=parser) | |
tm.assert_frame_equal(res, df * ~2) | |
def test_basic_frame_alignment( | |
self, engine, parser, lr_idx_type, rr_idx_type, c_idx_type, idx_func_dict | |
): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 10)), | |
index=idx_func_dict[lr_idx_type](10), | |
columns=idx_func_dict[c_idx_type](10), | |
) | |
df2 = DataFrame( | |
np.random.default_rng(2).standard_normal((20, 10)), | |
index=idx_func_dict[rr_idx_type](20), | |
columns=idx_func_dict[c_idx_type](10), | |
) | |
# only warns if not monotonic and not sortable | |
if should_warn(df.index, df2.index): | |
with tm.assert_produces_warning(RuntimeWarning): | |
res = pd.eval("df + df2", engine=engine, parser=parser) | |
else: | |
res = pd.eval("df + df2", engine=engine, parser=parser) | |
tm.assert_frame_equal(res, df + df2) | |
def test_frame_comparison( | |
self, engine, parser, r_idx_type, c_idx_type, idx_func_dict | |
): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 10)), | |
index=idx_func_dict[r_idx_type](10), | |
columns=idx_func_dict[c_idx_type](10), | |
) | |
res = pd.eval("df < 2", engine=engine, parser=parser) | |
tm.assert_frame_equal(res, df < 2) | |
df3 = DataFrame( | |
np.random.default_rng(2).standard_normal(df.shape), | |
index=df.index, | |
columns=df.columns, | |
) | |
res = pd.eval("df < df3", engine=engine, parser=parser) | |
tm.assert_frame_equal(res, df < df3) | |
def test_medium_complex_frame_alignment( | |
self, engine, parser, r1, c1, r2, c2, idx_func_dict | |
): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((3, 2)), | |
index=idx_func_dict[r1](3), | |
columns=idx_func_dict[c1](2), | |
) | |
df2 = DataFrame( | |
np.random.default_rng(2).standard_normal((4, 2)), | |
index=idx_func_dict[r2](4), | |
columns=idx_func_dict[c2](2), | |
) | |
df3 = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), | |
index=idx_func_dict[r2](5), | |
columns=idx_func_dict[c2](2), | |
) | |
if should_warn(df.index, df2.index, df3.index): | |
with tm.assert_produces_warning(RuntimeWarning): | |
res = pd.eval("df + df2 + df3", engine=engine, parser=parser) | |
else: | |
res = pd.eval("df + df2 + df3", engine=engine, parser=parser) | |
tm.assert_frame_equal(res, df + df2 + df3) | |
def test_basic_frame_series_alignment( | |
self, engine, parser, index_name, r_idx_type, c_idx_type, idx_func_dict | |
): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 10)), | |
index=idx_func_dict[r_idx_type](10), | |
columns=idx_func_dict[c_idx_type](10), | |
) | |
index = getattr(df, index_name) | |
s = Series(np.random.default_rng(2).standard_normal(5), index[:5]) | |
if should_warn(df.index, s.index): | |
with tm.assert_produces_warning(RuntimeWarning): | |
res = pd.eval("df + s", engine=engine, parser=parser) | |
else: | |
res = pd.eval("df + s", engine=engine, parser=parser) | |
if r_idx_type == "dt" or c_idx_type == "dt": | |
expected = df.add(s) if engine == "numexpr" else df + s | |
else: | |
expected = df + s | |
tm.assert_frame_equal(res, expected) | |
def test_basic_series_frame_alignment( | |
self, request, engine, parser, index_name, r_idx_type, c_idx_type, idx_func_dict | |
): | |
if ( | |
engine == "numexpr" | |
and parser in ("pandas", "python") | |
and index_name == "index" | |
and r_idx_type == "i" | |
and c_idx_type == "s" | |
): | |
reason = ( | |
f"Flaky column ordering when engine={engine}, " | |
f"parser={parser}, index_name={index_name}, " | |
f"r_idx_type={r_idx_type}, c_idx_type={c_idx_type}" | |
) | |
request.applymarker(pytest.mark.xfail(reason=reason, strict=False)) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 7)), | |
index=idx_func_dict[r_idx_type](10), | |
columns=idx_func_dict[c_idx_type](7), | |
) | |
index = getattr(df, index_name) | |
s = Series(np.random.default_rng(2).standard_normal(5), index[:5]) | |
if should_warn(s.index, df.index): | |
with tm.assert_produces_warning(RuntimeWarning): | |
res = pd.eval("s + df", engine=engine, parser=parser) | |
else: | |
res = pd.eval("s + df", engine=engine, parser=parser) | |
if r_idx_type == "dt" or c_idx_type == "dt": | |
expected = df.add(s) if engine == "numexpr" else s + df | |
else: | |
expected = s + df | |
tm.assert_frame_equal(res, expected) | |
def test_series_frame_commutativity( | |
self, engine, parser, index_name, op, r_idx_type, c_idx_type, idx_func_dict | |
): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 10)), | |
index=idx_func_dict[r_idx_type](10), | |
columns=idx_func_dict[c_idx_type](10), | |
) | |
index = getattr(df, index_name) | |
s = Series(np.random.default_rng(2).standard_normal(5), index[:5]) | |
lhs = f"s {op} df" | |
rhs = f"df {op} s" | |
if should_warn(df.index, s.index): | |
with tm.assert_produces_warning(RuntimeWarning): | |
a = pd.eval(lhs, engine=engine, parser=parser) | |
with tm.assert_produces_warning(RuntimeWarning): | |
b = pd.eval(rhs, engine=engine, parser=parser) | |
else: | |
a = pd.eval(lhs, engine=engine, parser=parser) | |
b = pd.eval(rhs, engine=engine, parser=parser) | |
if r_idx_type != "dt" and c_idx_type != "dt": | |
if engine == "numexpr": | |
tm.assert_frame_equal(a, b) | |
def test_complex_series_frame_alignment( | |
self, engine, parser, r1, c1, r2, c2, idx_func_dict | |
): | |
n = 3 | |
m1 = 5 | |
m2 = 2 * m1 | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((m1, n)), | |
index=idx_func_dict[r1](m1), | |
columns=idx_func_dict[c1](n), | |
) | |
df2 = DataFrame( | |
np.random.default_rng(2).standard_normal((m2, n)), | |
index=idx_func_dict[r2](m2), | |
columns=idx_func_dict[c2](n), | |
) | |
index = df2.columns | |
ser = Series(np.random.default_rng(2).standard_normal(n), index[:n]) | |
if r2 == "dt" or c2 == "dt": | |
if engine == "numexpr": | |
expected2 = df2.add(ser) | |
else: | |
expected2 = df2 + ser | |
else: | |
expected2 = df2 + ser | |
if r1 == "dt" or c1 == "dt": | |
if engine == "numexpr": | |
expected = expected2.add(df) | |
else: | |
expected = expected2 + df | |
else: | |
expected = expected2 + df | |
if should_warn(df2.index, ser.index, df.index): | |
with tm.assert_produces_warning(RuntimeWarning): | |
res = pd.eval("df2 + ser + df", engine=engine, parser=parser) | |
else: | |
res = pd.eval("df2 + ser + df", engine=engine, parser=parser) | |
assert res.shape == expected.shape | |
tm.assert_frame_equal(res, expected) | |
def test_performance_warning_for_poor_alignment(self, engine, parser): | |
df = DataFrame(np.random.default_rng(2).standard_normal((1000, 10))) | |
s = Series(np.random.default_rng(2).standard_normal(10000)) | |
if engine == "numexpr": | |
seen = PerformanceWarning | |
else: | |
seen = False | |
with tm.assert_produces_warning(seen): | |
pd.eval("df + s", engine=engine, parser=parser) | |
s = Series(np.random.default_rng(2).standard_normal(1000)) | |
with tm.assert_produces_warning(False): | |
pd.eval("df + s", engine=engine, parser=parser) | |
df = DataFrame(np.random.default_rng(2).standard_normal((10, 10000))) | |
s = Series(np.random.default_rng(2).standard_normal(10000)) | |
with tm.assert_produces_warning(False): | |
pd.eval("df + s", engine=engine, parser=parser) | |
df = DataFrame(np.random.default_rng(2).standard_normal((10, 10))) | |
s = Series(np.random.default_rng(2).standard_normal(10000)) | |
is_python_engine = engine == "python" | |
if not is_python_engine: | |
wrn = PerformanceWarning | |
else: | |
wrn = False | |
with tm.assert_produces_warning(wrn) as w: | |
pd.eval("df + s", engine=engine, parser=parser) | |
if not is_python_engine: | |
assert len(w) == 1 | |
msg = str(w[0].message) | |
logged = np.log10(s.size - df.shape[1]) | |
expected = ( | |
f"Alignment difference on axis 1 is larger " | |
f"than an order of magnitude on term 'df', " | |
f"by more than {logged:.4g}; performance may suffer." | |
) | |
assert msg == expected | |
# ------------------------------------ | |
# Slightly more complex ops | |
class TestOperations: | |
def eval(self, *args, **kwargs): | |
kwargs["level"] = kwargs.pop("level", 0) + 1 | |
return pd.eval(*args, **kwargs) | |
def test_simple_arith_ops(self, engine, parser): | |
exclude_arith = [] | |
if parser == "python": | |
exclude_arith = ["in", "not in"] | |
arith_ops = [ | |
op | |
for op in expr.ARITH_OPS_SYMS + expr.CMP_OPS_SYMS | |
if op not in exclude_arith | |
] | |
ops = (op for op in arith_ops if op != "//") | |
for op in ops: | |
ex = f"1 {op} 1" | |
ex2 = f"x {op} 1" | |
ex3 = f"1 {op} (x + 1)" | |
if op in ("in", "not in"): | |
msg = "argument of type 'int' is not iterable" | |
with pytest.raises(TypeError, match=msg): | |
pd.eval(ex, engine=engine, parser=parser) | |
else: | |
expec = _eval_single_bin(1, op, 1, engine) | |
x = self.eval(ex, engine=engine, parser=parser) | |
assert x == expec | |
expec = _eval_single_bin(x, op, 1, engine) | |
y = self.eval(ex2, local_dict={"x": x}, engine=engine, parser=parser) | |
assert y == expec | |
expec = _eval_single_bin(1, op, x + 1, engine) | |
y = self.eval(ex3, local_dict={"x": x}, engine=engine, parser=parser) | |
assert y == expec | |
def test_simple_bool_ops(self, rhs, lhs, op): | |
ex = f"{lhs} {op} {rhs}" | |
if parser == "python" and op in ["and", "or"]: | |
msg = "'BoolOp' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
self.eval(ex) | |
return | |
res = self.eval(ex) | |
exp = eval(ex) | |
assert res == exp | |
def test_bool_ops_with_constants(self, rhs, lhs, op): | |
ex = f"{lhs} {op} {rhs}" | |
if parser == "python" and op in ["and", "or"]: | |
msg = "'BoolOp' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
self.eval(ex) | |
return | |
res = self.eval(ex) | |
exp = eval(ex) | |
assert res == exp | |
def test_4d_ndarray_fails(self): | |
x = np.random.default_rng(2).standard_normal((3, 4, 5, 6)) | |
y = Series(np.random.default_rng(2).standard_normal(10)) | |
msg = "N-dimensional objects, where N > 2, are not supported with eval" | |
with pytest.raises(NotImplementedError, match=msg): | |
self.eval("x + y", local_dict={"x": x, "y": y}) | |
def test_constant(self): | |
x = self.eval("1") | |
assert x == 1 | |
def test_single_variable(self): | |
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) | |
df2 = self.eval("df", local_dict={"df": df}) | |
tm.assert_frame_equal(df, df2) | |
def test_failing_subscript_with_name_error(self): | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) # noqa: F841 | |
with pytest.raises(NameError, match="name 'x' is not defined"): | |
self.eval("df[x > 2] > 2") | |
def test_lhs_expression_subscript(self): | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) | |
result = self.eval("(df + 1)[df > 2]", local_dict={"df": df}) | |
expected = (df + 1)[df > 2] | |
tm.assert_frame_equal(result, expected) | |
def test_attr_expression(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), columns=list("abc") | |
) | |
expr1 = "df.a < df.b" | |
expec1 = df.a < df.b | |
expr2 = "df.a + df.b + df.c" | |
expec2 = df.a + df.b + df.c | |
expr3 = "df.a + df.b + df.c[df.b < 0]" | |
expec3 = df.a + df.b + df.c[df.b < 0] | |
exprs = expr1, expr2, expr3 | |
expecs = expec1, expec2, expec3 | |
for e, expec in zip(exprs, expecs): | |
tm.assert_series_equal(expec, self.eval(e, local_dict={"df": df})) | |
def test_assignment_fails(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), columns=list("abc") | |
) | |
df2 = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) | |
expr1 = "df = df2" | |
msg = "cannot assign without a target object" | |
with pytest.raises(ValueError, match=msg): | |
self.eval(expr1, local_dict={"df": df, "df2": df2}) | |
def test_assignment_column_multiple_raise(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
# multiple assignees | |
with pytest.raises(SyntaxError, match="invalid syntax"): | |
df.eval("d c = a + b") | |
def test_assignment_column_invalid_assign(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
# invalid assignees | |
msg = "left hand side of an assignment must be a single name" | |
with pytest.raises(SyntaxError, match=msg): | |
df.eval("d,c = a + b") | |
def test_assignment_column_invalid_assign_function_call(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
msg = "cannot assign to function call" | |
with pytest.raises(SyntaxError, match=msg): | |
df.eval('Timestamp("20131001") = a + b') | |
def test_assignment_single_assign_existing(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
# single assignment - existing variable | |
expected = df.copy() | |
expected["a"] = expected["a"] + expected["b"] | |
df.eval("a = a + b", inplace=True) | |
tm.assert_frame_equal(df, expected) | |
def test_assignment_single_assign_new(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
# single assignment - new variable | |
expected = df.copy() | |
expected["c"] = expected["a"] + expected["b"] | |
df.eval("c = a + b", inplace=True) | |
tm.assert_frame_equal(df, expected) | |
def test_assignment_single_assign_local_overlap(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
df = df.copy() | |
a = 1 # noqa: F841 | |
df.eval("a = 1 + b", inplace=True) | |
expected = df.copy() | |
expected["a"] = 1 + expected["b"] | |
tm.assert_frame_equal(df, expected) | |
def test_assignment_single_assign_name(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
a = 1 # noqa: F841 | |
old_a = df.a.copy() | |
df.eval("a = a + b", inplace=True) | |
result = old_a + df.b | |
tm.assert_series_equal(result, df.a, check_names=False) | |
assert result.name is None | |
def test_assignment_multiple_raises(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
# multiple assignment | |
df.eval("c = a + b", inplace=True) | |
msg = "can only assign a single expression" | |
with pytest.raises(SyntaxError, match=msg): | |
df.eval("c = a = b") | |
def test_assignment_explicit(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
# explicit targets | |
self.eval("c = df.a + df.b", local_dict={"df": df}, target=df, inplace=True) | |
expected = df.copy() | |
expected["c"] = expected["a"] + expected["b"] | |
tm.assert_frame_equal(df, expected) | |
def test_column_in(self): | |
# GH 11235 | |
df = DataFrame({"a": [11], "b": [-32]}) | |
result = df.eval("a in [11, -32]") | |
expected = Series([True]) | |
# TODO: 2022-01-29: Name check failed with numexpr 2.7.3 in CI | |
# but cannot reproduce locally | |
tm.assert_series_equal(result, expected, check_names=False) | |
def test_assignment_not_inplace(self): | |
# see gh-9297 | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab") | |
) | |
actual = df.eval("c = a + b", inplace=False) | |
assert actual is not None | |
expected = df.copy() | |
expected["c"] = expected["a"] + expected["b"] | |
tm.assert_frame_equal(df, expected) | |
def test_multi_line_expression(self, warn_copy_on_write): | |
# GH 11149 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
expected = df.copy() | |
expected["c"] = expected["a"] + expected["b"] | |
expected["d"] = expected["c"] + expected["b"] | |
answer = df.eval( | |
""" | |
c = a + b | |
d = c + b""", | |
inplace=True, | |
) | |
tm.assert_frame_equal(expected, df) | |
assert answer is None | |
expected["a"] = expected["a"] - 1 | |
expected["e"] = expected["a"] + 2 | |
answer = df.eval( | |
""" | |
a = a - 1 | |
e = a + 2""", | |
inplace=True, | |
) | |
tm.assert_frame_equal(expected, df) | |
assert answer is None | |
# multi-line not valid if not all assignments | |
msg = "Multi-line expressions are only valid if all expressions contain" | |
with pytest.raises(ValueError, match=msg): | |
df.eval( | |
""" | |
a = b + 2 | |
b - 2""", | |
inplace=False, | |
) | |
def test_multi_line_expression_not_inplace(self): | |
# GH 11149 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
expected = df.copy() | |
expected["c"] = expected["a"] + expected["b"] | |
expected["d"] = expected["c"] + expected["b"] | |
df = df.eval( | |
""" | |
c = a + b | |
d = c + b""", | |
inplace=False, | |
) | |
tm.assert_frame_equal(expected, df) | |
expected["a"] = expected["a"] - 1 | |
expected["e"] = expected["a"] + 2 | |
df = df.eval( | |
""" | |
a = a - 1 | |
e = a + 2""", | |
inplace=False, | |
) | |
tm.assert_frame_equal(expected, df) | |
def test_multi_line_expression_local_variable(self): | |
# GH 15342 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
expected = df.copy() | |
local_var = 7 | |
expected["c"] = expected["a"] * local_var | |
expected["d"] = expected["c"] + local_var | |
answer = df.eval( | |
""" | |
c = a * @local_var | |
d = c + @local_var | |
""", | |
inplace=True, | |
) | |
tm.assert_frame_equal(expected, df) | |
assert answer is None | |
def test_multi_line_expression_callable_local_variable(self): | |
# 26426 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
def local_func(a, b): | |
return b | |
expected = df.copy() | |
expected["c"] = expected["a"] * local_func(1, 7) | |
expected["d"] = expected["c"] + local_func(1, 7) | |
answer = df.eval( | |
""" | |
c = a * @local_func(1, 7) | |
d = c + @local_func(1, 7) | |
""", | |
inplace=True, | |
) | |
tm.assert_frame_equal(expected, df) | |
assert answer is None | |
def test_multi_line_expression_callable_local_variable_with_kwargs(self): | |
# 26426 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
def local_func(a, b): | |
return b | |
expected = df.copy() | |
expected["c"] = expected["a"] * local_func(b=7, a=1) | |
expected["d"] = expected["c"] + local_func(b=7, a=1) | |
answer = df.eval( | |
""" | |
c = a * @local_func(b=7, a=1) | |
d = c + @local_func(b=7, a=1) | |
""", | |
inplace=True, | |
) | |
tm.assert_frame_equal(expected, df) | |
assert answer is None | |
def test_assignment_in_query(self): | |
# GH 8664 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df_orig = df.copy() | |
msg = "cannot assign without a target object" | |
with pytest.raises(ValueError, match=msg): | |
df.query("a = 1") | |
tm.assert_frame_equal(df, df_orig) | |
def test_query_inplace(self): | |
# see gh-11149 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
expected = df.copy() | |
expected = expected[expected["a"] == 2] | |
df.query("a == 2", inplace=True) | |
tm.assert_frame_equal(expected, df) | |
df = {} | |
expected = {"a": 3} | |
self.eval("a = 1 + 2", target=df, inplace=True) | |
tm.assert_dict_equal(df, expected) | |
def test_cannot_item_assign(self, invalid_target): | |
msg = "Cannot assign expression output to target" | |
expression = "a = 1 + 2" | |
with pytest.raises(ValueError, match=msg): | |
self.eval(expression, target=invalid_target, inplace=True) | |
if hasattr(invalid_target, "copy"): | |
with pytest.raises(ValueError, match=msg): | |
self.eval(expression, target=invalid_target, inplace=False) | |
def test_cannot_copy_item(self, invalid_target): | |
msg = "Cannot return a copy of the target" | |
expression = "a = 1 + 2" | |
with pytest.raises(ValueError, match=msg): | |
self.eval(expression, target=invalid_target, inplace=False) | |
def test_inplace_no_assignment(self, target): | |
expression = "1 + 2" | |
assert self.eval(expression, target=target, inplace=False) == 3 | |
msg = "Cannot operate inplace if there is no assignment" | |
with pytest.raises(ValueError, match=msg): | |
self.eval(expression, target=target, inplace=True) | |
def test_basic_period_index_boolean_expression(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((2, 2)), | |
columns=period_range("2020-01-01", freq="D", periods=2), | |
) | |
e = df < 2 | |
r = self.eval("df < 2", local_dict={"df": df}) | |
x = df < 2 | |
tm.assert_frame_equal(r, e) | |
tm.assert_frame_equal(x, e) | |
def test_basic_period_index_subscript_expression(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((2, 2)), | |
columns=period_range("2020-01-01", freq="D", periods=2), | |
) | |
r = self.eval("df[df < 2 + 3]", local_dict={"df": df}) | |
e = df[df < 2 + 3] | |
tm.assert_frame_equal(r, e) | |
def test_nested_period_index_subscript_expression(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((2, 2)), | |
columns=period_range("2020-01-01", freq="D", periods=2), | |
) | |
r = self.eval("df[df[df < 2] < 2] + df * 2", local_dict={"df": df}) | |
e = df[df[df < 2] < 2] + df * 2 | |
tm.assert_frame_equal(r, e) | |
def test_date_boolean(self, engine, parser): | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) | |
df["dates1"] = date_range("1/1/2012", periods=5) | |
res = self.eval( | |
"df.dates1 < 20130101", | |
local_dict={"df": df}, | |
engine=engine, | |
parser=parser, | |
) | |
expec = df.dates1 < "20130101" | |
tm.assert_series_equal(res, expec, check_names=False) | |
def test_simple_in_ops(self, engine, parser): | |
if parser != "python": | |
res = pd.eval("1 in [1, 2]", engine=engine, parser=parser) | |
assert res | |
res = pd.eval("2 in (1, 2)", engine=engine, parser=parser) | |
assert res | |
res = pd.eval("3 in (1, 2)", engine=engine, parser=parser) | |
assert not res | |
res = pd.eval("3 not in (1, 2)", engine=engine, parser=parser) | |
assert res | |
res = pd.eval("[3] not in (1, 2)", engine=engine, parser=parser) | |
assert res | |
res = pd.eval("[3] in ([3], 2)", engine=engine, parser=parser) | |
assert res | |
res = pd.eval("[[3]] in [[[3]], 2]", engine=engine, parser=parser) | |
assert res | |
res = pd.eval("(3,) in [(3,), 2]", engine=engine, parser=parser) | |
assert res | |
res = pd.eval("(3,) not in [(3,), 2]", engine=engine, parser=parser) | |
assert not res | |
res = pd.eval("[(3,)] in [[(3,)], 2]", engine=engine, parser=parser) | |
assert res | |
else: | |
msg = "'In' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval("1 in [1, 2]", engine=engine, parser=parser) | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval("2 in (1, 2)", engine=engine, parser=parser) | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval("3 in (1, 2)", engine=engine, parser=parser) | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval("[(3,)] in (1, 2, [(3,)])", engine=engine, parser=parser) | |
msg = "'NotIn' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval("3 not in (1, 2)", engine=engine, parser=parser) | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval("[3] not in (1, 2, [[3]])", engine=engine, parser=parser) | |
def test_check_many_exprs(self, engine, parser): | |
a = 1 # noqa: F841 | |
expr = " * ".join("a" * 33) | |
expected = 1 | |
res = pd.eval(expr, engine=engine, parser=parser) | |
assert res == expected | |
def test_fails_and_or_not(self, expr, engine, parser): | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) | |
if parser == "python": | |
msg = "'BoolOp' nodes are not implemented" | |
if "not" in expr: | |
msg = "'Not' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval( | |
expr, | |
local_dict={"df": df}, | |
parser=parser, | |
engine=engine, | |
) | |
else: | |
# smoke-test, should not raise | |
pd.eval( | |
expr, | |
local_dict={"df": df}, | |
parser=parser, | |
engine=engine, | |
) | |
def test_fails_ampersand_pipe(self, char, engine, parser): | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) # noqa: F841 | |
ex = f"(df + 2)[df > 1] > 0 {char} (df > 0)" | |
if parser == "python": | |
msg = "cannot evaluate scalar only bool ops" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(ex, parser=parser, engine=engine) | |
else: | |
# smoke-test, should not raise | |
pd.eval(ex, parser=parser, engine=engine) | |
class TestMath: | |
def eval(self, *args, **kwargs): | |
kwargs["level"] = kwargs.pop("level", 0) + 1 | |
return pd.eval(*args, **kwargs) | |
def test_unary_functions(self, fn): | |
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)}) | |
a = df.a | |
expr = f"{fn}(a)" | |
got = self.eval(expr) | |
with np.errstate(all="ignore"): | |
expect = getattr(np, fn)(a) | |
tm.assert_series_equal(got, expect, check_names=False) | |
def test_binary_functions(self, fn): | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).standard_normal(10), | |
"b": np.random.default_rng(2).standard_normal(10), | |
} | |
) | |
a = df.a | |
b = df.b | |
expr = f"{fn}(a, b)" | |
got = self.eval(expr) | |
with np.errstate(all="ignore"): | |
expect = getattr(np, fn)(a, b) | |
tm.assert_almost_equal(got, expect, check_names=False) | |
def test_df_use_case(self, engine, parser): | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).standard_normal(10), | |
"b": np.random.default_rng(2).standard_normal(10), | |
} | |
) | |
df.eval( | |
"e = arctan2(sin(a), b)", | |
engine=engine, | |
parser=parser, | |
inplace=True, | |
) | |
got = df.e | |
expect = np.arctan2(np.sin(df.a), df.b) | |
tm.assert_series_equal(got, expect, check_names=False) | |
def test_df_arithmetic_subexpression(self, engine, parser): | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).standard_normal(10), | |
"b": np.random.default_rng(2).standard_normal(10), | |
} | |
) | |
df.eval("e = sin(a + b)", engine=engine, parser=parser, inplace=True) | |
got = df.e | |
expect = np.sin(df.a + df.b) | |
tm.assert_series_equal(got, expect, check_names=False) | |
def test_result_types(self, dtype, expect_dtype, engine, parser): | |
# xref https://github.com/pandas-dev/pandas/issues/12293 | |
# this fails on Windows, apparently a floating point precision issue | |
# Did not test complex64 because DataFrame is converting it to | |
# complex128. Due to https://github.com/pandas-dev/pandas/issues/10952 | |
df = DataFrame( | |
{"a": np.random.default_rng(2).standard_normal(10).astype(dtype)} | |
) | |
assert df.a.dtype == dtype | |
df.eval("b = sin(a)", engine=engine, parser=parser, inplace=True) | |
got = df.b | |
expect = np.sin(df.a) | |
assert expect.dtype == got.dtype | |
assert expect_dtype == got.dtype | |
tm.assert_series_equal(got, expect, check_names=False) | |
def test_undefined_func(self, engine, parser): | |
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)}) | |
msg = '"mysin" is not a supported function' | |
with pytest.raises(ValueError, match=msg): | |
df.eval("mysin(a)", engine=engine, parser=parser) | |
def test_keyword_arg(self, engine, parser): | |
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)}) | |
msg = 'Function "sin" does not support keyword arguments' | |
with pytest.raises(TypeError, match=msg): | |
df.eval("sin(x=a)", engine=engine, parser=parser) | |
_var_s = np.random.default_rng(2).standard_normal(10) | |
class TestScope: | |
def test_global_scope(self, engine, parser): | |
e = "_var_s * 2" | |
tm.assert_numpy_array_equal( | |
_var_s * 2, pd.eval(e, engine=engine, parser=parser) | |
) | |
def test_no_new_locals(self, engine, parser): | |
x = 1 | |
lcls = locals().copy() | |
pd.eval("x + 1", local_dict=lcls, engine=engine, parser=parser) | |
lcls2 = locals().copy() | |
lcls2.pop("lcls") | |
assert lcls == lcls2 | |
def test_no_new_globals(self, engine, parser): | |
x = 1 # noqa: F841 | |
gbls = globals().copy() | |
pd.eval("x + 1", engine=engine, parser=parser) | |
gbls2 = globals().copy() | |
assert gbls == gbls2 | |
def test_empty_locals(self, engine, parser): | |
# GH 47084 | |
x = 1 # noqa: F841 | |
msg = "name 'x' is not defined" | |
with pytest.raises(UndefinedVariableError, match=msg): | |
pd.eval("x + 1", engine=engine, parser=parser, local_dict={}) | |
def test_empty_globals(self, engine, parser): | |
# GH 47084 | |
msg = "name '_var_s' is not defined" | |
e = "_var_s * 2" | |
with pytest.raises(UndefinedVariableError, match=msg): | |
pd.eval(e, engine=engine, parser=parser, global_dict={}) | |
def test_invalid_engine(): | |
msg = "Invalid engine 'asdf' passed" | |
with pytest.raises(KeyError, match=msg): | |
pd.eval("x + y", local_dict={"x": 1, "y": 2}, engine="asdf") | |
def test_numexpr_option_respected(use_numexpr, expected): | |
# GH 32556 | |
from pandas.core.computation.eval import _check_engine | |
with pd.option_context("compute.use_numexpr", use_numexpr): | |
result = _check_engine(None) | |
assert result == expected | |
def test_numexpr_option_incompatible_op(): | |
# GH 32556 | |
with pd.option_context("compute.use_numexpr", False): | |
df = DataFrame( | |
{"A": [True, False, True, False, None, None], "B": [1, 2, 3, 4, 5, 6]} | |
) | |
result = df.query("A.isnull()") | |
expected = DataFrame({"A": [None, None], "B": [5, 6]}, index=[4, 5]) | |
tm.assert_frame_equal(result, expected) | |
def test_invalid_parser(): | |
msg = "Invalid parser 'asdf' passed" | |
with pytest.raises(KeyError, match=msg): | |
pd.eval("x + y", local_dict={"x": 1, "y": 2}, parser="asdf") | |
_parsers: dict[str, type[BaseExprVisitor]] = { | |
"python": PythonExprVisitor, | |
"pytables": pytables.PyTablesExprVisitor, | |
"pandas": PandasExprVisitor, | |
} | |
def test_disallowed_nodes(engine, parser): | |
VisitorClass = _parsers[parser] | |
inst = VisitorClass("x + 1", engine, parser) | |
for ops in VisitorClass.unsupported_nodes: | |
msg = "nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
getattr(inst, ops)() | |
def test_syntax_error_exprs(engine, parser): | |
e = "s +" | |
with pytest.raises(SyntaxError, match="invalid syntax"): | |
pd.eval(e, engine=engine, parser=parser) | |
def test_name_error_exprs(engine, parser): | |
e = "s + t" | |
msg = "name 's' is not defined" | |
with pytest.raises(NameError, match=msg): | |
pd.eval(e, engine=engine, parser=parser) | |
def test_invalid_local_variable_reference(engine, parser, express): | |
a, b = 1, 2 # noqa: F841 | |
if parser != "pandas": | |
with pytest.raises(SyntaxError, match="The '@' prefix is only"): | |
pd.eval(express, engine=engine, parser=parser) | |
else: | |
with pytest.raises(SyntaxError, match="The '@' prefix is not"): | |
pd.eval(express, engine=engine, parser=parser) | |
def test_numexpr_builtin_raises(engine, parser): | |
sin, dotted_line = 1, 2 | |
if engine == "numexpr": | |
msg = "Variables in expression .+" | |
with pytest.raises(NumExprClobberingError, match=msg): | |
pd.eval("sin + dotted_line", engine=engine, parser=parser) | |
else: | |
res = pd.eval("sin + dotted_line", engine=engine, parser=parser) | |
assert res == sin + dotted_line | |
def test_bad_resolver_raises(engine, parser): | |
cannot_resolve = 42, 3.0 | |
with pytest.raises(TypeError, match="Resolver of type .+"): | |
pd.eval("1 + 2", resolvers=cannot_resolve, engine=engine, parser=parser) | |
def test_empty_string_raises(engine, parser): | |
# GH 13139 | |
with pytest.raises(ValueError, match="expr cannot be an empty string"): | |
pd.eval("", engine=engine, parser=parser) | |
def test_more_than_one_expression_raises(engine, parser): | |
with pytest.raises(SyntaxError, match="only a single expression is allowed"): | |
pd.eval("1 + 1; 2 + 2", engine=engine, parser=parser) | |
def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser): | |
gen = { | |
int: lambda: np.random.default_rng(2).integers(10), | |
float: np.random.default_rng(2).standard_normal, | |
} | |
mid = gen[lhs]() # noqa: F841 | |
lhs = gen[lhs]() | |
rhs = gen[rhs]() | |
ex1 = f"lhs {cmp} mid {cmp} rhs" | |
ex2 = f"lhs {cmp} mid and mid {cmp} rhs" | |
ex3 = f"(lhs {cmp} mid) & (mid {cmp} rhs)" | |
for ex in (ex1, ex2, ex3): | |
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not" | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.eval(ex, engine=engine, parser=parser) | |
def test_equals_various(other): | |
df = DataFrame({"A": ["a", "b", "c"]}, dtype=object) | |
result = df.eval(f"A == {other}") | |
expected = Series([False, False, False], name="A") | |
if USE_NUMEXPR: | |
# https://github.com/pandas-dev/pandas/issues/10239 | |
# lose name with numexpr engine. Remove when that's fixed. | |
expected.name = None | |
tm.assert_series_equal(result, expected) | |
def test_inf(engine, parser): | |
s = "inf + 1" | |
expected = np.inf | |
result = pd.eval(s, engine=engine, parser=parser) | |
assert result == expected | |
def test_query_token(engine, column): | |
# See: https://github.com/pandas-dev/pandas/pull/42826 | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=[column, "b"] | |
) | |
expected = df[df[column] > 5] | |
query_string = f"`{column}` > 5" | |
result = df.query(query_string, engine=engine) | |
tm.assert_frame_equal(result, expected) | |
def test_negate_lt_eq_le(engine, parser): | |
df = DataFrame([[0, 10], [1, 20]], columns=["cat", "count"]) | |
expected = df[~(df.cat > 0)] | |
result = df.query("~(cat > 0)", engine=engine, parser=parser) | |
tm.assert_frame_equal(result, expected) | |
if parser == "python": | |
msg = "'Not' nodes are not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
df.query("not (cat > 0)", engine=engine, parser=parser) | |
else: | |
result = df.query("not (cat > 0)", engine=engine, parser=parser) | |
tm.assert_frame_equal(result, expected) | |
def test_eval_no_support_column_name(request, column): | |
# GH 44603 | |
if column in ["True", "False", "inf", "Inf"]: | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=KeyError, | |
reason=f"GH 47859 DataFrame eval not supported with {column}", | |
) | |
) | |
df = DataFrame( | |
np.random.default_rng(2).integers(0, 100, size=(10, 2)), | |
columns=[column, "col1"], | |
) | |
expected = df[df[column] > 6] | |
result = df.query(f"{column}>6") | |
tm.assert_frame_equal(result, expected) | |
def test_set_inplace(using_copy_on_write, warn_copy_on_write): | |
# https://github.com/pandas-dev/pandas/issues/47449 | |
# Ensure we don't only update the DataFrame inplace, but also the actual | |
# column values, such that references to this column also get updated | |
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result_view = df[:] | |
ser = df["A"] | |
with tm.assert_cow_warning(warn_copy_on_write): | |
df.eval("A = B + C", inplace=True) | |
expected = DataFrame({"A": [11, 13, 15], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
tm.assert_frame_equal(df, expected) | |
if not using_copy_on_write: | |
tm.assert_series_equal(ser, expected["A"]) | |
tm.assert_series_equal(result_view["A"], expected["A"]) | |
else: | |
expected = Series([1, 2, 3], name="A") | |
tm.assert_series_equal(ser, expected) | |
tm.assert_series_equal(result_view["A"], expected) | |
class TestValidate: | |
def test_validate_bool_args(self, value): | |
msg = 'For argument "inplace" expected type bool, received type' | |
with pytest.raises(ValueError, match=msg): | |
pd.eval("2+2", inplace=value) | |