peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/dim2.py
""" | |
Tests for 2D compatibility. | |
""" | |
import numpy as np | |
import pytest | |
from pandas._libs.missing import is_matching_na | |
from pandas.core.dtypes.common import ( | |
is_bool_dtype, | |
is_integer_dtype, | |
) | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.arrays.integer import NUMPY_INT_TO_DTYPE | |
class Dim2CompatTests: | |
# Note: these are ONLY for ExtensionArray subclasses that support 2D arrays. | |
# i.e. not for pyarrow-backed EAs. | |
def skip_if_doesnt_support_2d(self, dtype, request): | |
if not dtype._supports_2d: | |
node = request.node | |
# In cases where we are mixed in to ExtensionTests, we only want to | |
# skip tests that are defined in Dim2CompatTests | |
test_func = node._obj | |
if test_func.__qualname__.startswith("Dim2CompatTests"): | |
# TODO: is there a less hacky way of checking this? | |
pytest.skip(f"{dtype} does not support 2D.") | |
def test_transpose(self, data): | |
arr2d = data.repeat(2).reshape(-1, 2) | |
shape = arr2d.shape | |
assert shape[0] != shape[-1] # otherwise the rest of the test is useless | |
assert arr2d.T.shape == shape[::-1] | |
def test_frame_from_2d_array(self, data): | |
arr2d = data.repeat(2).reshape(-1, 2) | |
df = pd.DataFrame(arr2d) | |
expected = pd.DataFrame({0: arr2d[:, 0], 1: arr2d[:, 1]}) | |
tm.assert_frame_equal(df, expected) | |
def test_swapaxes(self, data): | |
arr2d = data.repeat(2).reshape(-1, 2) | |
result = arr2d.swapaxes(0, 1) | |
expected = arr2d.T | |
tm.assert_extension_array_equal(result, expected) | |
def test_delete_2d(self, data): | |
arr2d = data.repeat(3).reshape(-1, 3) | |
# axis = 0 | |
result = arr2d.delete(1, axis=0) | |
expected = data.delete(1).repeat(3).reshape(-1, 3) | |
tm.assert_extension_array_equal(result, expected) | |
# axis = 1 | |
result = arr2d.delete(1, axis=1) | |
expected = data.repeat(2).reshape(-1, 2) | |
tm.assert_extension_array_equal(result, expected) | |
def test_take_2d(self, data): | |
arr2d = data.reshape(-1, 1) | |
result = arr2d.take([0, 0, -1], axis=0) | |
expected = data.take([0, 0, -1]).reshape(-1, 1) | |
tm.assert_extension_array_equal(result, expected) | |
def test_repr_2d(self, data): | |
# this could fail in a corner case where an element contained the name | |
res = repr(data.reshape(1, -1)) | |
assert res.count(f"<{type(data).__name__}") == 1 | |
res = repr(data.reshape(-1, 1)) | |
assert res.count(f"<{type(data).__name__}") == 1 | |
def test_reshape(self, data): | |
arr2d = data.reshape(-1, 1) | |
assert arr2d.shape == (data.size, 1) | |
assert len(arr2d) == len(data) | |
arr2d = data.reshape((-1, 1)) | |
assert arr2d.shape == (data.size, 1) | |
assert len(arr2d) == len(data) | |
with pytest.raises(ValueError): | |
data.reshape((data.size, 2)) | |
with pytest.raises(ValueError): | |
data.reshape(data.size, 2) | |
def test_getitem_2d(self, data): | |
arr2d = data.reshape(1, -1) | |
result = arr2d[0] | |
tm.assert_extension_array_equal(result, data) | |
with pytest.raises(IndexError): | |
arr2d[1] | |
with pytest.raises(IndexError): | |
arr2d[-2] | |
result = arr2d[:] | |
tm.assert_extension_array_equal(result, arr2d) | |
result = arr2d[:, :] | |
tm.assert_extension_array_equal(result, arr2d) | |
result = arr2d[:, 0] | |
expected = data[[0]] | |
tm.assert_extension_array_equal(result, expected) | |
# dimension-expanding getitem on 1D | |
result = data[:, np.newaxis] | |
tm.assert_extension_array_equal(result, arr2d.T) | |
def test_iter_2d(self, data): | |
arr2d = data.reshape(1, -1) | |
objs = list(iter(arr2d)) | |
assert len(objs) == arr2d.shape[0] | |
for obj in objs: | |
assert isinstance(obj, type(data)) | |
assert obj.dtype == data.dtype | |
assert obj.ndim == 1 | |
assert len(obj) == arr2d.shape[1] | |
def test_tolist_2d(self, data): | |
arr2d = data.reshape(1, -1) | |
result = arr2d.tolist() | |
expected = [data.tolist()] | |
assert isinstance(result, list) | |
assert all(isinstance(x, list) for x in result) | |
assert result == expected | |
def test_concat_2d(self, data): | |
left = type(data)._concat_same_type([data, data]).reshape(-1, 2) | |
right = left.copy() | |
# axis=0 | |
result = left._concat_same_type([left, right], axis=0) | |
expected = data._concat_same_type([data] * 4).reshape(-1, 2) | |
tm.assert_extension_array_equal(result, expected) | |
# axis=1 | |
result = left._concat_same_type([left, right], axis=1) | |
assert result.shape == (len(data), 4) | |
tm.assert_extension_array_equal(result[:, :2], left) | |
tm.assert_extension_array_equal(result[:, 2:], right) | |
# axis > 1 -> invalid | |
msg = "axis 2 is out of bounds for array of dimension 2" | |
with pytest.raises(ValueError, match=msg): | |
left._concat_same_type([left, right], axis=2) | |
def test_fillna_2d_method(self, data_missing, method): | |
# pad_or_backfill is always along axis=0 | |
arr = data_missing.repeat(2).reshape(2, 2) | |
assert arr[0].isna().all() | |
assert not arr[1].isna().any() | |
result = arr._pad_or_backfill(method=method, limit=None) | |
expected = data_missing._pad_or_backfill(method=method).repeat(2).reshape(2, 2) | |
tm.assert_extension_array_equal(result, expected) | |
# Reverse so that backfill is not a no-op. | |
arr2 = arr[::-1] | |
assert not arr2[0].isna().any() | |
assert arr2[1].isna().all() | |
result2 = arr2._pad_or_backfill(method=method, limit=None) | |
expected2 = ( | |
data_missing[::-1]._pad_or_backfill(method=method).repeat(2).reshape(2, 2) | |
) | |
tm.assert_extension_array_equal(result2, expected2) | |
def test_reductions_2d_axis_none(self, data, method): | |
arr2d = data.reshape(1, -1) | |
err_expected = None | |
err_result = None | |
try: | |
expected = getattr(data, method)() | |
except Exception as err: | |
# if the 1D reduction is invalid, the 2D reduction should be as well | |
err_expected = err | |
try: | |
result = getattr(arr2d, method)(axis=None) | |
except Exception as err2: | |
err_result = err2 | |
else: | |
result = getattr(arr2d, method)(axis=None) | |
if err_result is not None or err_expected is not None: | |
assert type(err_result) == type(err_expected) | |
return | |
assert is_matching_na(result, expected) or result == expected | |
def test_reductions_2d_axis0(self, data, method, min_count): | |
if min_count == 1 and method not in ["sum", "prod"]: | |
pytest.skip(f"min_count not relevant for {method}") | |
arr2d = data.reshape(1, -1) | |
kwargs = {} | |
if method in ["std", "var"]: | |
# pass ddof=0 so we get all-zero std instead of all-NA std | |
kwargs["ddof"] = 0 | |
elif method in ["prod", "sum"]: | |
kwargs["min_count"] = min_count | |
try: | |
result = getattr(arr2d, method)(axis=0, **kwargs) | |
except Exception as err: | |
try: | |
getattr(data, method)() | |
except Exception as err2: | |
assert type(err) == type(err2) | |
return | |
else: | |
raise AssertionError("Both reductions should raise or neither") | |
def get_reduction_result_dtype(dtype): | |
# windows and 32bit builds will in some cases have int32/uint32 | |
# where other builds will have int64/uint64. | |
if dtype.itemsize == 8: | |
return dtype | |
elif dtype.kind in "ib": | |
return NUMPY_INT_TO_DTYPE[np.dtype(int)] | |
else: | |
# i.e. dtype.kind == "u" | |
return NUMPY_INT_TO_DTYPE[np.dtype("uint")] | |
if method in ["sum", "prod"]: | |
# std and var are not dtype-preserving | |
expected = data | |
if data.dtype.kind in "iub": | |
dtype = get_reduction_result_dtype(data.dtype) | |
expected = data.astype(dtype) | |
assert dtype == expected.dtype | |
if min_count == 0: | |
fill_value = 1 if method == "prod" else 0 | |
expected = expected.fillna(fill_value) | |
tm.assert_extension_array_equal(result, expected) | |
elif method == "median": | |
# std and var are not dtype-preserving | |
expected = data | |
tm.assert_extension_array_equal(result, expected) | |
elif method in ["mean", "std", "var"]: | |
if is_integer_dtype(data) or is_bool_dtype(data): | |
data = data.astype("Float64") | |
if method == "mean": | |
tm.assert_extension_array_equal(result, data) | |
else: | |
tm.assert_extension_array_equal(result, data - data) | |
def test_reductions_2d_axis1(self, data, method): | |
arr2d = data.reshape(1, -1) | |
try: | |
result = getattr(arr2d, method)(axis=1) | |
except Exception as err: | |
try: | |
getattr(data, method)() | |
except Exception as err2: | |
assert type(err) == type(err2) | |
return | |
else: | |
raise AssertionError("Both reductions should raise or neither") | |
# not necessarily type/dtype-preserving, so weaker assertions | |
assert result.shape == (1,) | |
expected_scalar = getattr(data, method)() | |
res = result[0] | |
assert is_matching_na(res, expected_scalar) or res == expected_scalar | |
class NDArrayBacked2DTests(Dim2CompatTests): | |
# More specific tests for NDArrayBackedExtensionArray subclasses | |
def test_copy_order(self, data): | |
# We should be matching numpy semantics for the "order" keyword in 'copy' | |
arr2d = data.repeat(2).reshape(-1, 2) | |
assert arr2d._ndarray.flags["C_CONTIGUOUS"] | |
res = arr2d.copy() | |
assert res._ndarray.flags["C_CONTIGUOUS"] | |
res = arr2d[::2, ::2].copy() | |
assert res._ndarray.flags["C_CONTIGUOUS"] | |
res = arr2d.copy("F") | |
assert not res._ndarray.flags["C_CONTIGUOUS"] | |
assert res._ndarray.flags["F_CONTIGUOUS"] | |
res = arr2d.copy("K") | |
assert res._ndarray.flags["C_CONTIGUOUS"] | |
res = arr2d.T.copy("K") | |
assert not res._ndarray.flags["C_CONTIGUOUS"] | |
assert res._ndarray.flags["F_CONTIGUOUS"] | |
# order not accepted by numpy | |
msg = r"order must be one of 'C', 'F', 'A', or 'K' \(got 'Q'\)" | |
with pytest.raises(ValueError, match=msg): | |
arr2d.copy("Q") | |
# neither contiguity | |
arr_nc = arr2d[::2] | |
assert not arr_nc._ndarray.flags["C_CONTIGUOUS"] | |
assert not arr_nc._ndarray.flags["F_CONTIGUOUS"] | |
assert arr_nc.copy()._ndarray.flags["C_CONTIGUOUS"] | |
assert not arr_nc.copy()._ndarray.flags["F_CONTIGUOUS"] | |
assert arr_nc.copy("C")._ndarray.flags["C_CONTIGUOUS"] | |
assert not arr_nc.copy("C")._ndarray.flags["F_CONTIGUOUS"] | |
assert not arr_nc.copy("F")._ndarray.flags["C_CONTIGUOUS"] | |
assert arr_nc.copy("F")._ndarray.flags["F_CONTIGUOUS"] | |
assert arr_nc.copy("K")._ndarray.flags["C_CONTIGUOUS"] | |
assert not arr_nc.copy("K")._ndarray.flags["F_CONTIGUOUS"] | |