peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/getitem.py
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
class BaseGetitemTests: | |
"""Tests for ExtensionArray.__getitem__.""" | |
def test_iloc_series(self, data): | |
ser = pd.Series(data) | |
result = ser.iloc[:4] | |
expected = pd.Series(data[:4]) | |
tm.assert_series_equal(result, expected) | |
result = ser.iloc[[0, 1, 2, 3]] | |
tm.assert_series_equal(result, expected) | |
def test_iloc_frame(self, data): | |
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")}) | |
expected = pd.DataFrame({"A": data[:4]}) | |
# slice -> frame | |
result = df.iloc[:4, [0]] | |
tm.assert_frame_equal(result, expected) | |
# sequence -> frame | |
result = df.iloc[[0, 1, 2, 3], [0]] | |
tm.assert_frame_equal(result, expected) | |
expected = pd.Series(data[:4], name="A") | |
# slice -> series | |
result = df.iloc[:4, 0] | |
tm.assert_series_equal(result, expected) | |
# sequence -> series | |
result = df.iloc[:4, 0] | |
tm.assert_series_equal(result, expected) | |
# GH#32959 slice columns with step | |
result = df.iloc[:, ::2] | |
tm.assert_frame_equal(result, df[["A"]]) | |
result = df[["B", "A"]].iloc[:, ::2] | |
tm.assert_frame_equal(result, df[["B"]]) | |
def test_iloc_frame_single_block(self, data): | |
# GH#32959 null slice along index, slice along columns with single-block | |
df = pd.DataFrame({"A": data}) | |
result = df.iloc[:, :] | |
tm.assert_frame_equal(result, df) | |
result = df.iloc[:, :1] | |
tm.assert_frame_equal(result, df) | |
result = df.iloc[:, :2] | |
tm.assert_frame_equal(result, df) | |
result = df.iloc[:, ::2] | |
tm.assert_frame_equal(result, df) | |
result = df.iloc[:, 1:2] | |
tm.assert_frame_equal(result, df.iloc[:, :0]) | |
result = df.iloc[:, -1:] | |
tm.assert_frame_equal(result, df) | |
def test_loc_series(self, data): | |
ser = pd.Series(data) | |
result = ser.loc[:3] | |
expected = pd.Series(data[:4]) | |
tm.assert_series_equal(result, expected) | |
result = ser.loc[[0, 1, 2, 3]] | |
tm.assert_series_equal(result, expected) | |
def test_loc_frame(self, data): | |
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")}) | |
expected = pd.DataFrame({"A": data[:4]}) | |
# slice -> frame | |
result = df.loc[:3, ["A"]] | |
tm.assert_frame_equal(result, expected) | |
# sequence -> frame | |
result = df.loc[[0, 1, 2, 3], ["A"]] | |
tm.assert_frame_equal(result, expected) | |
expected = pd.Series(data[:4], name="A") | |
# slice -> series | |
result = df.loc[:3, "A"] | |
tm.assert_series_equal(result, expected) | |
# sequence -> series | |
result = df.loc[:3, "A"] | |
tm.assert_series_equal(result, expected) | |
def test_loc_iloc_frame_single_dtype(self, data): | |
# GH#27110 bug in ExtensionBlock.iget caused df.iloc[n] to incorrectly | |
# return a scalar | |
df = pd.DataFrame({"A": data}) | |
expected = pd.Series([data[2]], index=["A"], name=2, dtype=data.dtype) | |
result = df.loc[2] | |
tm.assert_series_equal(result, expected) | |
expected = pd.Series( | |
[data[-1]], index=["A"], name=len(data) - 1, dtype=data.dtype | |
) | |
result = df.iloc[-1] | |
tm.assert_series_equal(result, expected) | |
def test_getitem_scalar(self, data): | |
result = data[0] | |
assert isinstance(result, data.dtype.type) | |
result = pd.Series(data)[0] | |
assert isinstance(result, data.dtype.type) | |
def test_getitem_invalid(self, data): | |
# TODO: box over scalar, [scalar], (scalar,)? | |
msg = ( | |
r"only integers, slices \(`:`\), ellipsis \(`...`\), numpy.newaxis " | |
r"\(`None`\) and integer or boolean arrays are valid indices" | |
) | |
with pytest.raises(IndexError, match=msg): | |
data["foo"] | |
with pytest.raises(IndexError, match=msg): | |
data[2.5] | |
ub = len(data) | |
msg = "|".join( | |
[ | |
"list index out of range", # json | |
"index out of bounds", # pyarrow | |
"Out of bounds access", # Sparse | |
f"loc must be an integer between -{ub} and {ub}", # Sparse | |
f"index {ub+1} is out of bounds for axis 0 with size {ub}", | |
f"index -{ub+1} is out of bounds for axis 0 with size {ub}", | |
] | |
) | |
with pytest.raises(IndexError, match=msg): | |
data[ub + 1] | |
with pytest.raises(IndexError, match=msg): | |
data[-ub - 1] | |
def test_getitem_scalar_na(self, data_missing, na_cmp, na_value): | |
result = data_missing[0] | |
assert na_cmp(result, na_value) | |
def test_getitem_empty(self, data): | |
# Indexing with empty list | |
result = data[[]] | |
assert len(result) == 0 | |
assert isinstance(result, type(data)) | |
expected = data[np.array([], dtype="int64")] | |
tm.assert_extension_array_equal(result, expected) | |
def test_getitem_mask(self, data): | |
# Empty mask, raw array | |
mask = np.zeros(len(data), dtype=bool) | |
result = data[mask] | |
assert len(result) == 0 | |
assert isinstance(result, type(data)) | |
# Empty mask, in series | |
mask = np.zeros(len(data), dtype=bool) | |
result = pd.Series(data)[mask] | |
assert len(result) == 0 | |
assert result.dtype == data.dtype | |
# non-empty mask, raw array | |
mask[0] = True | |
result = data[mask] | |
assert len(result) == 1 | |
assert isinstance(result, type(data)) | |
# non-empty mask, in series | |
result = pd.Series(data)[mask] | |
assert len(result) == 1 | |
assert result.dtype == data.dtype | |
def test_getitem_mask_raises(self, data): | |
mask = np.array([True, False]) | |
msg = f"Boolean index has wrong length: 2 instead of {len(data)}" | |
with pytest.raises(IndexError, match=msg): | |
data[mask] | |
mask = pd.array(mask, dtype="boolean") | |
with pytest.raises(IndexError, match=msg): | |
data[mask] | |
def test_getitem_boolean_array_mask(self, data): | |
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean") | |
result = data[mask] | |
assert len(result) == 0 | |
assert isinstance(result, type(data)) | |
result = pd.Series(data)[mask] | |
assert len(result) == 0 | |
assert result.dtype == data.dtype | |
mask[:5] = True | |
expected = data.take([0, 1, 2, 3, 4]) | |
result = data[mask] | |
tm.assert_extension_array_equal(result, expected) | |
expected = pd.Series(expected) | |
result = pd.Series(data)[mask] | |
tm.assert_series_equal(result, expected) | |
def test_getitem_boolean_na_treated_as_false(self, data): | |
# https://github.com/pandas-dev/pandas/issues/31503 | |
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean") | |
mask[:2] = pd.NA | |
mask[2:4] = True | |
result = data[mask] | |
expected = data[mask.fillna(False)] | |
tm.assert_extension_array_equal(result, expected) | |
s = pd.Series(data) | |
result = s[mask] | |
expected = s[mask.fillna(False)] | |
tm.assert_series_equal(result, expected) | |
def test_getitem_integer_array(self, data, idx): | |
result = data[idx] | |
assert len(result) == 3 | |
assert isinstance(result, type(data)) | |
expected = data.take([0, 1, 2]) | |
tm.assert_extension_array_equal(result, expected) | |
expected = pd.Series(expected) | |
result = pd.Series(data)[idx] | |
tm.assert_series_equal(result, expected) | |
def test_getitem_integer_with_missing_raises(self, data, idx): | |
msg = "Cannot index with an integer indexer containing NA values" | |
with pytest.raises(ValueError, match=msg): | |
data[idx] | |
def test_getitem_series_integer_with_missing_raises(self, data, idx): | |
msg = "Cannot index with an integer indexer containing NA values" | |
# TODO: this raises KeyError about labels not found (it tries label-based) | |
ser = pd.Series(data, index=[chr(100 + i) for i in range(len(data))]) | |
with pytest.raises(ValueError, match=msg): | |
ser[idx] | |
def test_getitem_slice(self, data): | |
# getitem[slice] should return an array | |
result = data[slice(0)] # empty | |
assert isinstance(result, type(data)) | |
result = data[slice(1)] # scalar | |
assert isinstance(result, type(data)) | |
def test_getitem_ellipsis_and_slice(self, data): | |
# GH#40353 this is called from slice_block_rows | |
result = data[..., :] | |
tm.assert_extension_array_equal(result, data) | |
result = data[:, ...] | |
tm.assert_extension_array_equal(result, data) | |
result = data[..., :3] | |
tm.assert_extension_array_equal(result, data[:3]) | |
result = data[:3, ...] | |
tm.assert_extension_array_equal(result, data[:3]) | |
result = data[..., ::2] | |
tm.assert_extension_array_equal(result, data[::2]) | |
result = data[::2, ...] | |
tm.assert_extension_array_equal(result, data[::2]) | |
def test_get(self, data): | |
# GH 20882 | |
s = pd.Series(data, index=[2 * i for i in range(len(data))]) | |
assert s.get(4) == s.iloc[2] | |
result = s.get([4, 6]) | |
expected = s.iloc[[2, 3]] | |
tm.assert_series_equal(result, expected) | |
result = s.get(slice(2)) | |
expected = s.iloc[[0, 1]] | |
tm.assert_series_equal(result, expected) | |
assert s.get(-1) is None | |
assert s.get(s.index.max() + 1) is None | |
s = pd.Series(data[:6], index=list("abcdef")) | |
assert s.get("c") == s.iloc[2] | |
result = s.get(slice("b", "d")) | |
expected = s.iloc[[1, 2, 3]] | |
tm.assert_series_equal(result, expected) | |
result = s.get("Z") | |
assert result is None | |
msg = "Series.__getitem__ treating keys as positions is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
assert s.get(4) == s.iloc[4] | |
assert s.get(-1) == s.iloc[-1] | |
assert s.get(len(s)) is None | |
# GH 21257 | |
s = pd.Series(data) | |
with tm.assert_produces_warning(None): | |
# GH#45324 make sure we aren't giving a spurious FutureWarning | |
s2 = s[::2] | |
assert s2.get(1) is None | |
def test_take_sequence(self, data): | |
result = pd.Series(data)[[0, 1, 3]] | |
assert result.iloc[0] == data[0] | |
assert result.iloc[1] == data[1] | |
assert result.iloc[2] == data[3] | |
def test_take(self, data, na_value, na_cmp): | |
result = data.take([0, -1]) | |
assert result.dtype == data.dtype | |
assert result[0] == data[0] | |
assert result[1] == data[-1] | |
result = data.take([0, -1], allow_fill=True, fill_value=na_value) | |
assert result[0] == data[0] | |
assert na_cmp(result[1], na_value) | |
with pytest.raises(IndexError, match="out of bounds"): | |
data.take([len(data) + 1]) | |
def test_take_empty(self, data, na_value, na_cmp): | |
empty = data[:0] | |
result = empty.take([-1], allow_fill=True) | |
assert na_cmp(result[0], na_value) | |
msg = "cannot do a non-empty take from an empty axes|out of bounds" | |
with pytest.raises(IndexError, match=msg): | |
empty.take([-1]) | |
with pytest.raises(IndexError, match="cannot do a non-empty take"): | |
empty.take([0, 1]) | |
def test_take_negative(self, data): | |
# https://github.com/pandas-dev/pandas/issues/20640 | |
n = len(data) | |
result = data.take([0, -n, n - 1, -1]) | |
expected = data.take([0, 0, n - 1, n - 1]) | |
tm.assert_extension_array_equal(result, expected) | |
def test_take_non_na_fill_value(self, data_missing): | |
fill_value = data_missing[1] # valid | |
na = data_missing[0] | |
arr = data_missing._from_sequence( | |
[na, fill_value, na], dtype=data_missing.dtype | |
) | |
result = arr.take([-1, 1], fill_value=fill_value, allow_fill=True) | |
expected = arr.take([1, 1]) | |
tm.assert_extension_array_equal(result, expected) | |
def test_take_pandas_style_negative_raises(self, data, na_value): | |
with pytest.raises(ValueError, match=""): | |
data.take([0, -2], fill_value=na_value, allow_fill=True) | |
def test_take_out_of_bounds_raises(self, data, allow_fill): | |
arr = data[:3] | |
with pytest.raises(IndexError, match="out of bounds|out-of-bounds"): | |
arr.take(np.asarray([0, 3]), allow_fill=allow_fill) | |
def test_take_series(self, data): | |
s = pd.Series(data) | |
result = s.take([0, -1]) | |
expected = pd.Series( | |
data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype), | |
index=[0, len(data) - 1], | |
) | |
tm.assert_series_equal(result, expected) | |
def test_reindex(self, data, na_value): | |
s = pd.Series(data) | |
result = s.reindex([0, 1, 3]) | |
expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3]) | |
tm.assert_series_equal(result, expected) | |
n = len(data) | |
result = s.reindex([-1, 0, n]) | |
expected = pd.Series( | |
data._from_sequence([na_value, data[0], na_value], dtype=s.dtype), | |
index=[-1, 0, n], | |
) | |
tm.assert_series_equal(result, expected) | |
result = s.reindex([n, n + 1]) | |
expected = pd.Series( | |
data._from_sequence([na_value, na_value], dtype=s.dtype), index=[n, n + 1] | |
) | |
tm.assert_series_equal(result, expected) | |
def test_reindex_non_na_fill_value(self, data_missing): | |
valid = data_missing[1] | |
na = data_missing[0] | |
arr = data_missing._from_sequence([na, valid], dtype=data_missing.dtype) | |
ser = pd.Series(arr) | |
result = ser.reindex([0, 1, 2], fill_value=valid) | |
expected = pd.Series( | |
data_missing._from_sequence([na, valid, valid], dtype=data_missing.dtype) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_loc_len1(self, data): | |
# see GH-27785 take_nd with indexer of len 1 resulting in wrong ndim | |
df = pd.DataFrame({"A": data}) | |
res = df.loc[[0], "A"] | |
assert res.ndim == 1 | |
assert res._mgr.arrays[0].ndim == 1 | |
if hasattr(res._mgr, "blocks"): | |
assert res._mgr._block.ndim == 1 | |
def test_item(self, data): | |
# https://github.com/pandas-dev/pandas/pull/30175 | |
s = pd.Series(data) | |
result = s[:1].item() | |
assert result == data[0] | |
msg = "can only convert an array of size 1 to a Python scalar" | |
with pytest.raises(ValueError, match=msg): | |
s[:0].item() | |
with pytest.raises(ValueError, match=msg): | |
s.item() | |