peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/missing.py
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
class BaseMissingTests: | |
def test_isna(self, data_missing): | |
expected = np.array([True, False]) | |
result = pd.isna(data_missing) | |
tm.assert_numpy_array_equal(result, expected) | |
result = pd.Series(data_missing).isna() | |
expected = pd.Series(expected) | |
tm.assert_series_equal(result, expected) | |
# GH 21189 | |
result = pd.Series(data_missing).drop([0, 1]).isna() | |
expected = pd.Series([], dtype=bool) | |
tm.assert_series_equal(result, expected) | |
def test_isna_returns_copy(self, data_missing, na_func): | |
result = pd.Series(data_missing) | |
expected = result.copy() | |
mask = getattr(result, na_func)() | |
if isinstance(mask.dtype, pd.SparseDtype): | |
mask = np.array(mask) | |
mask[:] = True | |
tm.assert_series_equal(result, expected) | |
def test_dropna_array(self, data_missing): | |
result = data_missing.dropna() | |
expected = data_missing[[1]] | |
tm.assert_extension_array_equal(result, expected) | |
def test_dropna_series(self, data_missing): | |
ser = pd.Series(data_missing) | |
result = ser.dropna() | |
expected = ser.iloc[[1]] | |
tm.assert_series_equal(result, expected) | |
def test_dropna_frame(self, data_missing): | |
df = pd.DataFrame({"A": data_missing}, columns=pd.Index(["A"], dtype=object)) | |
# defaults | |
result = df.dropna() | |
expected = df.iloc[[1]] | |
tm.assert_frame_equal(result, expected) | |
# axis = 1 | |
result = df.dropna(axis="columns") | |
expected = pd.DataFrame(index=pd.RangeIndex(2), columns=pd.Index([])) | |
tm.assert_frame_equal(result, expected) | |
# multiple | |
df = pd.DataFrame({"A": data_missing, "B": [1, np.nan]}) | |
result = df.dropna() | |
expected = df.iloc[:0] | |
tm.assert_frame_equal(result, expected) | |
def test_fillna_scalar(self, data_missing): | |
valid = data_missing[1] | |
result = data_missing.fillna(valid) | |
expected = data_missing.fillna(valid) | |
tm.assert_extension_array_equal(result, expected) | |
def test_fillna_limit_pad(self, data_missing): | |
arr = data_missing.take([1, 0, 0, 0, 1]) | |
result = pd.Series(arr).ffill(limit=2) | |
expected = pd.Series(data_missing.take([1, 1, 1, 0, 1])) | |
tm.assert_series_equal(result, expected) | |
def test_ffill_limit_area( | |
self, data_missing, limit_area, input_ilocs, expected_ilocs | |
): | |
# GH#56616 | |
arr = data_missing.take(input_ilocs) | |
result = pd.Series(arr).ffill(limit_area=limit_area) | |
expected = pd.Series(data_missing.take(expected_ilocs)) | |
tm.assert_series_equal(result, expected) | |
def test_fillna_limit_backfill(self, data_missing): | |
arr = data_missing.take([1, 0, 0, 0, 1]) | |
result = pd.Series(arr).fillna(method="backfill", limit=2) | |
expected = pd.Series(data_missing.take([1, 0, 1, 1, 1])) | |
tm.assert_series_equal(result, expected) | |
def test_fillna_no_op_returns_copy(self, data): | |
data = data[~data.isna()] | |
valid = data[0] | |
result = data.fillna(valid) | |
assert result is not data | |
tm.assert_extension_array_equal(result, data) | |
result = data._pad_or_backfill(method="backfill") | |
assert result is not data | |
tm.assert_extension_array_equal(result, data) | |
def test_fillna_series(self, data_missing): | |
fill_value = data_missing[1] | |
ser = pd.Series(data_missing) | |
result = ser.fillna(fill_value) | |
expected = pd.Series( | |
data_missing._from_sequence( | |
[fill_value, fill_value], dtype=data_missing.dtype | |
) | |
) | |
tm.assert_series_equal(result, expected) | |
# Fill with a series | |
result = ser.fillna(expected) | |
tm.assert_series_equal(result, expected) | |
# Fill with a series not affecting the missing values | |
result = ser.fillna(ser) | |
tm.assert_series_equal(result, ser) | |
def test_fillna_series_method(self, data_missing, fillna_method): | |
fill_value = data_missing[1] | |
if fillna_method == "ffill": | |
data_missing = data_missing[::-1] | |
result = getattr(pd.Series(data_missing), fillna_method)() | |
expected = pd.Series( | |
data_missing._from_sequence( | |
[fill_value, fill_value], dtype=data_missing.dtype | |
) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_fillna_frame(self, data_missing): | |
fill_value = data_missing[1] | |
result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value) | |
expected = pd.DataFrame( | |
{ | |
"A": data_missing._from_sequence( | |
[fill_value, fill_value], dtype=data_missing.dtype | |
), | |
"B": [1, 2], | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_fillna_fill_other(self, data): | |
result = pd.DataFrame({"A": data, "B": [np.nan] * len(data)}).fillna({"B": 0.0}) | |
expected = pd.DataFrame({"A": data, "B": [0.0] * len(result)}) | |
tm.assert_frame_equal(result, expected) | |
def test_use_inf_as_na_no_effect(self, data_missing): | |
ser = pd.Series(data_missing) | |
expected = ser.isna() | |
msg = "use_inf_as_na option is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
with pd.option_context("mode.use_inf_as_na", True): | |
result = ser.isna() | |
tm.assert_series_equal(result, expected) | |