peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/setitem.py
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
class BaseSetitemTests: | |
def full_indexer(self, request): | |
""" | |
Fixture for an indexer to pass to obj.loc to get/set the full length of the | |
object. | |
In some cases, assumes that obj.index is the default RangeIndex. | |
""" | |
return request.param | |
def skip_if_immutable(self, dtype, request): | |
if dtype._is_immutable: | |
node = request.node | |
if node.name.split("[")[0] == "test_is_immutable": | |
# This fixture is auto-used, but we want to not-skip | |
# test_is_immutable. | |
return | |
# When BaseSetitemTests is mixed into ExtensionTests, we only | |
# want this fixture to operate on the tests defined in this | |
# class/file. | |
defined_in = node.function.__qualname__.split(".")[0] | |
if defined_in == "BaseSetitemTests": | |
pytest.skip("__setitem__ test not applicable with immutable dtype") | |
def test_is_immutable(self, data): | |
if data.dtype._is_immutable: | |
with pytest.raises(TypeError): | |
data[0] = data[0] | |
else: | |
data[0] = data[1] | |
assert data[0] == data[1] | |
def test_setitem_scalar_series(self, data, box_in_series): | |
if box_in_series: | |
data = pd.Series(data) | |
data[0] = data[1] | |
assert data[0] == data[1] | |
def test_setitem_sequence(self, data, box_in_series): | |
if box_in_series: | |
data = pd.Series(data) | |
original = data.copy() | |
data[[0, 1]] = [data[1], data[0]] | |
assert data[0] == original[1] | |
assert data[1] == original[0] | |
def test_setitem_sequence_mismatched_length_raises(self, data, as_array): | |
ser = pd.Series(data) | |
original = ser.copy() | |
value = [data[0]] | |
if as_array: | |
value = data._from_sequence(value, dtype=data.dtype) | |
xpr = "cannot set using a {} indexer with a different length" | |
with pytest.raises(ValueError, match=xpr.format("list-like")): | |
ser[[0, 1]] = value | |
# Ensure no modifications made before the exception | |
tm.assert_series_equal(ser, original) | |
with pytest.raises(ValueError, match=xpr.format("slice")): | |
ser[slice(3)] = value | |
tm.assert_series_equal(ser, original) | |
def test_setitem_empty_indexer(self, data, box_in_series): | |
if box_in_series: | |
data = pd.Series(data) | |
original = data.copy() | |
data[np.array([], dtype=int)] = [] | |
tm.assert_equal(data, original) | |
def test_setitem_sequence_broadcasts(self, data, box_in_series): | |
if box_in_series: | |
data = pd.Series(data) | |
data[[0, 1]] = data[2] | |
assert data[0] == data[2] | |
assert data[1] == data[2] | |
def test_setitem_scalar(self, data, setter): | |
arr = pd.Series(data) | |
setter = getattr(arr, setter) | |
setter[0] = data[1] | |
assert arr[0] == data[1] | |
def test_setitem_loc_scalar_mixed(self, data): | |
df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) | |
df.loc[0, "B"] = data[1] | |
assert df.loc[0, "B"] == data[1] | |
def test_setitem_loc_scalar_single(self, data): | |
df = pd.DataFrame({"B": data}) | |
df.loc[10, "B"] = data[1] | |
assert df.loc[10, "B"] == data[1] | |
def test_setitem_loc_scalar_multiple_homogoneous(self, data): | |
df = pd.DataFrame({"A": data, "B": data}) | |
df.loc[10, "B"] = data[1] | |
assert df.loc[10, "B"] == data[1] | |
def test_setitem_iloc_scalar_mixed(self, data): | |
df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) | |
df.iloc[0, 1] = data[1] | |
assert df.loc[0, "B"] == data[1] | |
def test_setitem_iloc_scalar_single(self, data): | |
df = pd.DataFrame({"B": data}) | |
df.iloc[10, 0] = data[1] | |
assert df.loc[10, "B"] == data[1] | |
def test_setitem_iloc_scalar_multiple_homogoneous(self, data): | |
df = pd.DataFrame({"A": data, "B": data}) | |
df.iloc[10, 1] = data[1] | |
assert df.loc[10, "B"] == data[1] | |
def test_setitem_mask(self, data, mask, box_in_series): | |
arr = data[:5].copy() | |
expected = arr.take([0, 0, 0, 3, 4]) | |
if box_in_series: | |
arr = pd.Series(arr) | |
expected = pd.Series(expected) | |
arr[mask] = data[0] | |
tm.assert_equal(expected, arr) | |
def test_setitem_mask_raises(self, data, box_in_series): | |
# wrong length | |
mask = np.array([True, False]) | |
if box_in_series: | |
data = pd.Series(data) | |
with pytest.raises(IndexError, match="wrong length"): | |
data[mask] = data[0] | |
mask = pd.array(mask, dtype="boolean") | |
with pytest.raises(IndexError, match="wrong length"): | |
data[mask] = data[0] | |
def test_setitem_mask_boolean_array_with_na(self, data, box_in_series): | |
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean") | |
mask[:3] = True | |
mask[3:5] = pd.NA | |
if box_in_series: | |
data = pd.Series(data) | |
data[mask] = data[0] | |
assert (data[:3] == data[0]).all() | |
def test_setitem_integer_array(self, data, idx, box_in_series): | |
arr = data[:5].copy() | |
expected = data.take([0, 0, 0, 3, 4]) | |
if box_in_series: | |
arr = pd.Series(arr) | |
expected = pd.Series(expected) | |
arr[idx] = arr[0] | |
tm.assert_equal(arr, expected) | |
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series): | |
arr = data.copy() | |
# TODO(xfail) this raises KeyError about labels not found (it tries label-based) | |
# for list of labels with Series | |
if box_in_series: | |
arr = pd.Series(data, index=[chr(100 + i) for i in range(len(data))]) | |
msg = "Cannot index with an integer indexer containing NA values" | |
with pytest.raises(ValueError, match=msg): | |
arr[idx] = arr[0] | |
def test_setitem_mask_aligned(self, data, as_callable, setter): | |
ser = pd.Series(data) | |
mask = np.zeros(len(data), dtype=bool) | |
mask[:2] = True | |
if as_callable: | |
mask2 = lambda x: mask | |
else: | |
mask2 = mask | |
if setter: | |
# loc | |
target = getattr(ser, setter) | |
else: | |
# Series.__setitem__ | |
target = ser | |
target[mask2] = data[5:7] | |
ser[mask2] = data[5:7] | |
assert ser[0] == data[5] | |
assert ser[1] == data[6] | |
def test_setitem_mask_broadcast(self, data, setter): | |
ser = pd.Series(data) | |
mask = np.zeros(len(data), dtype=bool) | |
mask[:2] = True | |
if setter: # loc | |
target = getattr(ser, setter) | |
else: # __setitem__ | |
target = ser | |
target[mask] = data[10] | |
assert ser[0] == data[10] | |
assert ser[1] == data[10] | |
def test_setitem_expand_columns(self, data): | |
df = pd.DataFrame({"A": data}) | |
result = df.copy() | |
result["B"] = 1 | |
expected = pd.DataFrame({"A": data, "B": [1] * len(data)}) | |
tm.assert_frame_equal(result, expected) | |
result = df.copy() | |
result.loc[:, "B"] = 1 | |
tm.assert_frame_equal(result, expected) | |
# overwrite with new type | |
result["B"] = data | |
expected = pd.DataFrame({"A": data, "B": data}) | |
tm.assert_frame_equal(result, expected) | |
def test_setitem_expand_with_extension(self, data): | |
df = pd.DataFrame({"A": [1] * len(data)}) | |
result = df.copy() | |
result["B"] = data | |
expected = pd.DataFrame({"A": [1] * len(data), "B": data}) | |
tm.assert_frame_equal(result, expected) | |
result = df.copy() | |
result.loc[:, "B"] = data | |
tm.assert_frame_equal(result, expected) | |
def test_setitem_frame_invalid_length(self, data): | |
df = pd.DataFrame({"A": [1] * len(data)}) | |
xpr = ( | |
rf"Length of values \({len(data[:5])}\) " | |
rf"does not match length of index \({len(df)}\)" | |
) | |
with pytest.raises(ValueError, match=xpr): | |
df["B"] = data[:5] | |
def test_setitem_tuple_index(self, data): | |
ser = pd.Series(data[:2], index=[(0, 0), (0, 1)]) | |
expected = pd.Series(data.take([1, 1]), index=ser.index) | |
ser[(0, 0)] = data[1] | |
tm.assert_series_equal(ser, expected) | |
def test_setitem_slice(self, data, box_in_series): | |
arr = data[:5].copy() | |
expected = data.take([0, 0, 0, 3, 4]) | |
if box_in_series: | |
arr = pd.Series(arr) | |
expected = pd.Series(expected) | |
arr[:3] = data[0] | |
tm.assert_equal(arr, expected) | |
def test_setitem_loc_iloc_slice(self, data): | |
arr = data[:5].copy() | |
s = pd.Series(arr, index=["a", "b", "c", "d", "e"]) | |
expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index) | |
result = s.copy() | |
result.iloc[:3] = data[0] | |
tm.assert_equal(result, expected) | |
result = s.copy() | |
result.loc[:"c"] = data[0] | |
tm.assert_equal(result, expected) | |
def test_setitem_slice_mismatch_length_raises(self, data): | |
arr = data[:5] | |
with pytest.raises(ValueError): | |
arr[:1] = arr[:2] | |
def test_setitem_slice_array(self, data): | |
arr = data[:5].copy() | |
arr[:5] = data[-5:] | |
tm.assert_extension_array_equal(arr, data[-5:]) | |
def test_setitem_scalar_key_sequence_raise(self, data): | |
arr = data[:5].copy() | |
with pytest.raises(ValueError): | |
arr[0] = arr[[0, 1]] | |
def test_setitem_preserves_views(self, data): | |
# GH#28150 setitem shouldn't swap the underlying data | |
view1 = data.view() | |
view2 = data[:] | |
data[0] = data[1] | |
assert view1[0] == data[1] | |
assert view2[0] == data[1] | |
def test_setitem_with_expansion_dataframe_column(self, data, full_indexer): | |
# https://github.com/pandas-dev/pandas/issues/32395 | |
df = expected = pd.DataFrame({0: pd.Series(data)}) | |
result = pd.DataFrame(index=df.index) | |
key = full_indexer(df) | |
result.loc[key, 0] = df[0] | |
tm.assert_frame_equal(result, expected) | |
def test_setitem_with_expansion_row(self, data, na_value): | |
df = pd.DataFrame({"data": data[:1]}) | |
df.loc[1, "data"] = data[1] | |
expected = pd.DataFrame({"data": data[:2]}) | |
tm.assert_frame_equal(df, expected) | |
# https://github.com/pandas-dev/pandas/issues/47284 | |
df.loc[2, "data"] = na_value | |
expected = pd.DataFrame( | |
{"data": pd.Series([data[0], data[1], na_value], dtype=data.dtype)} | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_setitem_series(self, data, full_indexer): | |
# https://github.com/pandas-dev/pandas/issues/32395 | |
ser = pd.Series(data, name="data") | |
result = pd.Series(index=ser.index, dtype=object, name="data") | |
# because result has object dtype, the attempt to do setting inplace | |
# is successful, and object dtype is retained | |
key = full_indexer(ser) | |
result.loc[key] = ser | |
expected = pd.Series( | |
data.astype(object), index=ser.index, name="data", dtype=object | |
) | |
tm.assert_series_equal(result, expected) | |
def test_setitem_frame_2d_values(self, data): | |
# GH#44514 | |
df = pd.DataFrame({"A": data}) | |
# Avoiding using_array_manager fixture | |
# https://github.com/pandas-dev/pandas/pull/44514#discussion_r754002410 | |
using_array_manager = isinstance(df._mgr, pd.core.internals.ArrayManager) | |
using_copy_on_write = pd.options.mode.copy_on_write | |
blk_data = df._mgr.arrays[0] | |
orig = df.copy() | |
df.iloc[:] = df.copy() | |
tm.assert_frame_equal(df, orig) | |
df.iloc[:-1] = df.iloc[:-1].copy() | |
tm.assert_frame_equal(df, orig) | |
df.iloc[:] = df.values | |
tm.assert_frame_equal(df, orig) | |
if not using_array_manager and not using_copy_on_write: | |
# GH#33457 Check that this setting occurred in-place | |
# FIXME(ArrayManager): this should work there too | |
assert df._mgr.arrays[0] is blk_data | |
df.iloc[:-1] = df.values[:-1] | |
tm.assert_frame_equal(df, orig) | |
def test_delitem_series(self, data): | |
# GH#40763 | |
ser = pd.Series(data, name="data") | |
taker = np.arange(len(ser)) | |
taker = np.delete(taker, 1) | |
expected = ser[taker] | |
del ser[1] | |
tm.assert_series_equal(ser, expected) | |
def test_setitem_invalid(self, data, invalid_scalar): | |
msg = "" # messages vary by subclass, so we do not test it | |
with pytest.raises((ValueError, TypeError), match=msg): | |
data[0] = invalid_scalar | |
with pytest.raises((ValueError, TypeError), match=msg): | |
data[:] = invalid_scalar | |
def test_setitem_2d_values(self, data): | |
# GH50085 | |
original = data.copy() | |
df = pd.DataFrame({"a": data, "b": data}) | |
df.loc[[0, 1], :] = df.loc[[1, 0], :].values | |
assert (df.loc[0, :] == original[1]).all() | |
assert (df.loc[1, :] == original[0]).all() | |