peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/test_datetime.py
""" | |
This file contains a minimal set of tests for compliance with the extension | |
array interface test suite, and should contain no other tests. | |
The test suite for the full functionality of the array is located in | |
`pandas/tests/arrays/`. | |
The tests in this file are inherited from the BaseExtensionTests, and only | |
minimal tweaks should be applied to get the tests passing (by overwriting a | |
parent method). | |
Additional tests should either be added to one of the BaseExtensionTests | |
classes (if they are relevant for the extension interface for all dtypes), or | |
be added to the array-specific tests in `pandas/tests/arrays/`. | |
""" | |
import numpy as np | |
import pytest | |
from pandas.core.dtypes.dtypes import DatetimeTZDtype | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.arrays import DatetimeArray | |
from pandas.tests.extension import base | |
def dtype(request): | |
return DatetimeTZDtype(unit="ns", tz=request.param) | |
def data(dtype): | |
data = DatetimeArray._from_sequence( | |
pd.date_range("2000", periods=100, tz=dtype.tz), dtype=dtype | |
) | |
return data | |
def data_missing(dtype): | |
return DatetimeArray._from_sequence( | |
np.array(["NaT", "2000-01-01"], dtype="datetime64[ns]"), dtype=dtype | |
) | |
def data_for_sorting(dtype): | |
a = pd.Timestamp("2000-01-01") | |
b = pd.Timestamp("2000-01-02") | |
c = pd.Timestamp("2000-01-03") | |
return DatetimeArray._from_sequence( | |
np.array([b, c, a], dtype="datetime64[ns]"), dtype=dtype | |
) | |
def data_missing_for_sorting(dtype): | |
a = pd.Timestamp("2000-01-01") | |
b = pd.Timestamp("2000-01-02") | |
return DatetimeArray._from_sequence( | |
np.array([b, "NaT", a], dtype="datetime64[ns]"), dtype=dtype | |
) | |
def data_for_grouping(dtype): | |
""" | |
Expected to be like [B, B, NA, NA, A, A, B, C] | |
Where A < B < C and NA is missing | |
""" | |
a = pd.Timestamp("2000-01-01") | |
b = pd.Timestamp("2000-01-02") | |
c = pd.Timestamp("2000-01-03") | |
na = "NaT" | |
return DatetimeArray._from_sequence( | |
np.array([b, b, na, na, a, a, b, c], dtype="datetime64[ns]"), dtype=dtype | |
) | |
def na_cmp(): | |
def cmp(a, b): | |
return a is pd.NaT and a is b | |
return cmp | |
# ---------------------------------------------------------------------------- | |
class TestDatetimeArray(base.ExtensionTests): | |
def _get_expected_exception(self, op_name, obj, other): | |
if op_name in ["__sub__", "__rsub__"]: | |
return None | |
return super()._get_expected_exception(op_name, obj, other) | |
def _supports_accumulation(self, ser, op_name: str) -> bool: | |
return op_name in ["cummin", "cummax"] | |
def _supports_reduction(self, obj, op_name: str) -> bool: | |
return op_name in ["min", "max", "median", "mean", "std", "any", "all"] | |
def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna): | |
meth = all_boolean_reductions | |
msg = f"'{meth}' with datetime64 dtypes is deprecated and will raise in" | |
with tm.assert_produces_warning( | |
FutureWarning, match=msg, check_stacklevel=False | |
): | |
super().test_reduce_series_boolean(data, all_boolean_reductions, skipna) | |
def test_series_constructor(self, data): | |
# Series construction drops any .freq attr | |
data = data._with_freq(None) | |
super().test_series_constructor(data) | |
def test_map(self, data, na_action): | |
result = data.map(lambda x: x, na_action=na_action) | |
tm.assert_extension_array_equal(result, data) | |
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool): | |
if op_name in ["median", "mean", "std"]: | |
alt = ser.astype("int64") | |
res_op = getattr(ser, op_name) | |
exp_op = getattr(alt, op_name) | |
result = res_op(skipna=skipna) | |
expected = exp_op(skipna=skipna) | |
if op_name in ["mean", "median"]: | |
# error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" | |
# has no attribute "tz" | |
tz = ser.dtype.tz # type: ignore[union-attr] | |
expected = pd.Timestamp(expected, tz=tz) | |
else: | |
expected = pd.Timedelta(expected) | |
tm.assert_almost_equal(result, expected) | |
else: | |
return super().check_reduce(ser, op_name, skipna) | |
class Test2DCompat(base.NDArrayBacked2DTests): | |
pass | |