peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/test_masked.py
""" | |
This file contains a minimal set of tests for compliance with the extension | |
array interface test suite, and should contain no other tests. | |
The test suite for the full functionality of the array is located in | |
`pandas/tests/arrays/`. | |
The tests in this file are inherited from the BaseExtensionTests, and only | |
minimal tweaks should be applied to get the tests passing (by overwriting a | |
parent method). | |
Additional tests should either be added to one of the BaseExtensionTests | |
classes (if they are relevant for the extension interface for all dtypes), or | |
be added to the array-specific tests in `pandas/tests/arrays/`. | |
""" | |
import warnings | |
import numpy as np | |
import pytest | |
from pandas.compat import ( | |
IS64, | |
is_platform_windows, | |
) | |
from pandas.compat.numpy import np_version_gt2 | |
from pandas.core.dtypes.common import ( | |
is_float_dtype, | |
is_signed_integer_dtype, | |
is_unsigned_integer_dtype, | |
) | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.arrays.boolean import BooleanDtype | |
from pandas.core.arrays.floating import ( | |
Float32Dtype, | |
Float64Dtype, | |
) | |
from pandas.core.arrays.integer import ( | |
Int8Dtype, | |
Int16Dtype, | |
Int32Dtype, | |
Int64Dtype, | |
UInt8Dtype, | |
UInt16Dtype, | |
UInt32Dtype, | |
UInt64Dtype, | |
) | |
from pandas.tests.extension import base | |
is_windows_or_32bit = (is_platform_windows() and not np_version_gt2) or not IS64 | |
pytestmark = [ | |
pytest.mark.filterwarnings( | |
"ignore:invalid value encountered in divide:RuntimeWarning" | |
), | |
pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning"), | |
# overflow only relevant for Floating dtype cases cases | |
pytest.mark.filterwarnings("ignore:overflow encountered in reduce:RuntimeWarning"), | |
] | |
def make_data(): | |
return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100] | |
def make_float_data(): | |
return ( | |
list(np.arange(0.1, 0.9, 0.1)) | |
+ [pd.NA] | |
+ list(np.arange(1, 9.8, 0.1)) | |
+ [pd.NA] | |
+ [9.9, 10.0] | |
) | |
def make_bool_data(): | |
return [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False] | |
def dtype(request): | |
return request.param() | |
def data(dtype): | |
if dtype.kind == "f": | |
data = make_float_data() | |
elif dtype.kind == "b": | |
data = make_bool_data() | |
else: | |
data = make_data() | |
return pd.array(data, dtype=dtype) | |
def data_for_twos(dtype): | |
if dtype.kind == "b": | |
return pd.array(np.ones(100), dtype=dtype) | |
return pd.array(np.ones(100) * 2, dtype=dtype) | |
def data_missing(dtype): | |
if dtype.kind == "f": | |
return pd.array([pd.NA, 0.1], dtype=dtype) | |
elif dtype.kind == "b": | |
return pd.array([np.nan, True], dtype=dtype) | |
return pd.array([pd.NA, 1], dtype=dtype) | |
def data_for_sorting(dtype): | |
if dtype.kind == "f": | |
return pd.array([0.1, 0.2, 0.0], dtype=dtype) | |
elif dtype.kind == "b": | |
return pd.array([True, True, False], dtype=dtype) | |
return pd.array([1, 2, 0], dtype=dtype) | |
def data_missing_for_sorting(dtype): | |
if dtype.kind == "f": | |
return pd.array([0.1, pd.NA, 0.0], dtype=dtype) | |
elif dtype.kind == "b": | |
return pd.array([True, np.nan, False], dtype=dtype) | |
return pd.array([1, pd.NA, 0], dtype=dtype) | |
def na_cmp(): | |
# we are pd.NA | |
return lambda x, y: x is pd.NA and y is pd.NA | |
def data_for_grouping(dtype): | |
if dtype.kind == "f": | |
b = 0.1 | |
a = 0.0 | |
c = 0.2 | |
elif dtype.kind == "b": | |
b = True | |
a = False | |
c = b | |
else: | |
b = 1 | |
a = 0 | |
c = 2 | |
na = pd.NA | |
return pd.array([b, b, na, na, a, a, b, c], dtype=dtype) | |
class TestMaskedArrays(base.ExtensionTests): | |
def test_map(self, data_missing, na_action): | |
result = data_missing.map(lambda x: x, na_action=na_action) | |
if data_missing.dtype == Float32Dtype(): | |
# map roundtrips through objects, which converts to float64 | |
expected = data_missing.to_numpy(dtype="float64", na_value=np.nan) | |
else: | |
expected = data_missing.to_numpy() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_map_na_action_ignore(self, data_missing_for_sorting): | |
zero = data_missing_for_sorting[2] | |
result = data_missing_for_sorting.map(lambda x: zero, na_action="ignore") | |
if data_missing_for_sorting.dtype.kind == "b": | |
expected = np.array([False, pd.NA, False], dtype=object) | |
else: | |
expected = np.array([zero, np.nan, zero]) | |
tm.assert_numpy_array_equal(result, expected) | |
def _get_expected_exception(self, op_name, obj, other): | |
try: | |
dtype = tm.get_dtype(obj) | |
except AttributeError: | |
# passed arguments reversed | |
dtype = tm.get_dtype(other) | |
if dtype.kind == "b": | |
if op_name.strip("_").lstrip("r") in ["pow", "truediv", "floordiv"]: | |
# match behavior with non-masked bool dtype | |
return NotImplementedError | |
elif op_name in ["__sub__", "__rsub__"]: | |
# exception message would include "numpy boolean subtract"" | |
return TypeError | |
return None | |
return None | |
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result): | |
sdtype = tm.get_dtype(obj) | |
expected = pointwise_result | |
if op_name in ("eq", "ne", "le", "ge", "lt", "gt"): | |
return expected.astype("boolean") | |
if sdtype.kind in "iu": | |
if op_name in ("__rtruediv__", "__truediv__", "__div__"): | |
with warnings.catch_warnings(): | |
warnings.filterwarnings( | |
"ignore", | |
"Downcasting object dtype arrays", | |
category=FutureWarning, | |
) | |
filled = expected.fillna(np.nan) | |
expected = filled.astype("Float64") | |
else: | |
# combine method result in 'biggest' (int64) dtype | |
expected = expected.astype(sdtype) | |
elif sdtype.kind == "b": | |
if op_name in ( | |
"__floordiv__", | |
"__rfloordiv__", | |
"__pow__", | |
"__rpow__", | |
"__mod__", | |
"__rmod__", | |
): | |
# combine keeps boolean type | |
expected = expected.astype("Int8") | |
elif op_name in ("__truediv__", "__rtruediv__"): | |
# combine with bools does not generate the correct result | |
# (numpy behaviour for div is to regard the bools as numeric) | |
op = self.get_op_from_name(op_name) | |
expected = self._combine(obj.astype(float), other, op) | |
expected = expected.astype("Float64") | |
if op_name == "__rpow__": | |
# for rpow, combine does not propagate NaN | |
result = getattr(obj, op_name)(other) | |
expected[result.isna()] = np.nan | |
else: | |
# combine method result in 'biggest' (float64) dtype | |
expected = expected.astype(sdtype) | |
return expected | |
def test_divmod_series_array(self, data, data_for_twos, request): | |
if data.dtype.kind == "b": | |
mark = pytest.mark.xfail( | |
reason="Inconsistency between floordiv and divmod; we raise for " | |
"floordiv but not for divmod. This matches what we do for " | |
"non-masked bool dtype." | |
) | |
request.applymarker(mark) | |
super().test_divmod_series_array(data, data_for_twos) | |
def test_combine_le(self, data_repeated): | |
# TODO: patching self is a bad pattern here | |
orig_data1, orig_data2 = data_repeated(2) | |
if orig_data1.dtype.kind == "b": | |
self._combine_le_expected_dtype = "boolean" | |
else: | |
# TODO: can we make this boolean? | |
self._combine_le_expected_dtype = object | |
super().test_combine_le(data_repeated) | |
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: | |
if op_name in ["any", "all"] and ser.dtype.kind != "b": | |
pytest.skip(reason="Tested in tests/reductions/test_reductions.py") | |
return True | |
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool): | |
# overwrite to ensure pd.NA is tested instead of np.nan | |
# https://github.com/pandas-dev/pandas/issues/30958 | |
cmp_dtype = "int64" | |
if ser.dtype.kind == "f": | |
# Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has | |
# no attribute "numpy_dtype" | |
cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr] | |
elif ser.dtype.kind == "b": | |
if op_name in ["min", "max"]: | |
cmp_dtype = "bool" | |
# TODO: prod with integer dtypes does *not* match the result we would | |
# get if we used object for cmp_dtype. In that cae the object result | |
# is a large integer while the non-object case overflows and returns 0 | |
alt = ser.dropna().astype(cmp_dtype) | |
if op_name == "count": | |
result = getattr(ser, op_name)() | |
expected = getattr(alt, op_name)() | |
else: | |
result = getattr(ser, op_name)(skipna=skipna) | |
expected = getattr(alt, op_name)(skipna=skipna) | |
if not skipna and ser.isna().any() and op_name not in ["any", "all"]: | |
expected = pd.NA | |
tm.assert_almost_equal(result, expected) | |
def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool): | |
if is_float_dtype(arr.dtype): | |
cmp_dtype = arr.dtype.name | |
elif op_name in ["mean", "median", "var", "std", "skew"]: | |
cmp_dtype = "Float64" | |
elif op_name in ["max", "min"]: | |
cmp_dtype = arr.dtype.name | |
elif arr.dtype in ["Int64", "UInt64"]: | |
cmp_dtype = arr.dtype.name | |
elif is_signed_integer_dtype(arr.dtype): | |
# TODO: Why does Window Numpy 2.0 dtype depend on skipna? | |
cmp_dtype = ( | |
"Int32" | |
if (is_platform_windows() and (not np_version_gt2 or not skipna)) | |
or not IS64 | |
else "Int64" | |
) | |
elif is_unsigned_integer_dtype(arr.dtype): | |
cmp_dtype = ( | |
"UInt32" | |
if (is_platform_windows() and (not np_version_gt2 or not skipna)) | |
or not IS64 | |
else "UInt64" | |
) | |
elif arr.dtype.kind == "b": | |
if op_name in ["mean", "median", "var", "std", "skew"]: | |
cmp_dtype = "Float64" | |
elif op_name in ["min", "max"]: | |
cmp_dtype = "boolean" | |
elif op_name in ["sum", "prod"]: | |
cmp_dtype = ( | |
"Int32" | |
if (is_platform_windows() and (not np_version_gt2 or not skipna)) | |
or not IS64 | |
else "Int64" | |
) | |
else: | |
raise TypeError("not supposed to reach this") | |
else: | |
raise TypeError("not supposed to reach this") | |
return cmp_dtype | |
def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool: | |
return True | |
def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool): | |
# overwrite to ensure pd.NA is tested instead of np.nan | |
# https://github.com/pandas-dev/pandas/issues/30958 | |
length = 64 | |
if is_windows_or_32bit: | |
# Item "ExtensionDtype" of "Union[dtype[Any], ExtensionDtype]" has | |
# no attribute "itemsize" | |
if not ser.dtype.itemsize == 8: # type: ignore[union-attr] | |
length = 32 | |
if ser.dtype.name.startswith("U"): | |
expected_dtype = f"UInt{length}" | |
elif ser.dtype.name.startswith("I"): | |
expected_dtype = f"Int{length}" | |
elif ser.dtype.name.startswith("F"): | |
# Incompatible types in assignment (expression has type | |
# "Union[dtype[Any], ExtensionDtype]", variable has type "str") | |
expected_dtype = ser.dtype # type: ignore[assignment] | |
elif ser.dtype.kind == "b": | |
if op_name in ("cummin", "cummax"): | |
expected_dtype = "boolean" | |
else: | |
expected_dtype = f"Int{length}" | |
if expected_dtype == "Float32" and op_name == "cumprod" and skipna: | |
# TODO: xfail? | |
pytest.skip( | |
f"Float32 precision lead to large differences with op {op_name} " | |
f"and skipna={skipna}" | |
) | |
if op_name == "cumsum": | |
result = getattr(ser, op_name)(skipna=skipna) | |
expected = pd.Series( | |
pd.array( | |
getattr(ser.astype("float64"), op_name)(skipna=skipna), | |
dtype=expected_dtype, | |
) | |
) | |
tm.assert_series_equal(result, expected) | |
elif op_name in ["cummax", "cummin"]: | |
result = getattr(ser, op_name)(skipna=skipna) | |
expected = pd.Series( | |
pd.array( | |
getattr(ser.astype("float64"), op_name)(skipna=skipna), | |
dtype=ser.dtype, | |
) | |
) | |
tm.assert_series_equal(result, expected) | |
elif op_name == "cumprod": | |
result = getattr(ser[:12], op_name)(skipna=skipna) | |
expected = pd.Series( | |
pd.array( | |
getattr(ser[:12].astype("float64"), op_name)(skipna=skipna), | |
dtype=expected_dtype, | |
) | |
) | |
tm.assert_series_equal(result, expected) | |
else: | |
raise NotImplementedError(f"{op_name} not supported") | |
class Test2DCompat(base.Dim2CompatTests): | |
pass | |