peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/test_numpy.py
""" | |
This file contains a minimal set of tests for compliance with the extension | |
array interface test suite, and should contain no other tests. | |
The test suite for the full functionality of the array is located in | |
`pandas/tests/arrays/`. | |
The tests in this file are inherited from the BaseExtensionTests, and only | |
minimal tweaks should be applied to get the tests passing (by overwriting a | |
parent method). | |
Additional tests should either be added to one of the BaseExtensionTests | |
classes (if they are relevant for the extension interface for all dtypes), or | |
be added to the array-specific tests in `pandas/tests/arrays/`. | |
Note: we do not bother with base.BaseIndexTests because NumpyExtensionArray | |
will never be held in an Index. | |
""" | |
import numpy as np | |
import pytest | |
from pandas.core.dtypes.dtypes import NumpyEADtype | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.api.types import is_object_dtype | |
from pandas.core.arrays.numpy_ import NumpyExtensionArray | |
from pandas.tests.extension import base | |
orig_assert_attr_equal = tm.assert_attr_equal | |
def _assert_attr_equal(attr: str, left, right, obj: str = "Attributes"): | |
""" | |
patch tm.assert_attr_equal so NumpyEADtype("object") is closed enough to | |
np.dtype("object") | |
""" | |
if attr == "dtype": | |
lattr = getattr(left, "dtype", None) | |
rattr = getattr(right, "dtype", None) | |
if isinstance(lattr, NumpyEADtype) and not isinstance(rattr, NumpyEADtype): | |
left = left.astype(lattr.numpy_dtype) | |
elif isinstance(rattr, NumpyEADtype) and not isinstance(lattr, NumpyEADtype): | |
right = right.astype(rattr.numpy_dtype) | |
orig_assert_attr_equal(attr, left, right, obj) | |
def dtype(request): | |
return NumpyEADtype(np.dtype(request.param)) | |
def allow_in_pandas(monkeypatch): | |
""" | |
A monkeypatch to tells pandas to let us in. | |
By default, passing a NumpyExtensionArray to an index / series / frame | |
constructor will unbox that NumpyExtensionArray to an ndarray, and treat | |
it as a non-EA column. We don't want people using EAs without | |
reason. | |
The mechanism for this is a check against ABCNumpyExtensionArray | |
in each constructor. | |
But, for testing, we need to allow them in pandas. So we patch | |
the _typ of NumpyExtensionArray, so that we evade the ABCNumpyExtensionArray | |
check. | |
""" | |
with monkeypatch.context() as m: | |
m.setattr(NumpyExtensionArray, "_typ", "extension") | |
m.setattr(tm.asserters, "assert_attr_equal", _assert_attr_equal) | |
yield | |
def data(allow_in_pandas, dtype): | |
if dtype.numpy_dtype == "object": | |
return pd.Series([(i,) for i in range(100)]).array | |
return NumpyExtensionArray(np.arange(1, 101, dtype=dtype._dtype)) | |
def data_missing(allow_in_pandas, dtype): | |
if dtype.numpy_dtype == "object": | |
return NumpyExtensionArray(np.array([np.nan, (1,)], dtype=object)) | |
return NumpyExtensionArray(np.array([np.nan, 1.0])) | |
def na_cmp(): | |
def cmp(a, b): | |
return np.isnan(a) and np.isnan(b) | |
return cmp | |
def data_for_sorting(allow_in_pandas, dtype): | |
"""Length-3 array with a known sort order. | |
This should be three items [B, C, A] with | |
A < B < C | |
""" | |
if dtype.numpy_dtype == "object": | |
# Use an empty tuple for first element, then remove, | |
# to disable np.array's shape inference. | |
return NumpyExtensionArray(np.array([(), (2,), (3,), (1,)], dtype=object)[1:]) | |
return NumpyExtensionArray(np.array([1, 2, 0])) | |
def data_missing_for_sorting(allow_in_pandas, dtype): | |
"""Length-3 array with a known sort order. | |
This should be three items [B, NA, A] with | |
A < B and NA missing. | |
""" | |
if dtype.numpy_dtype == "object": | |
return NumpyExtensionArray(np.array([(1,), np.nan, (0,)], dtype=object)) | |
return NumpyExtensionArray(np.array([1, np.nan, 0])) | |
def data_for_grouping(allow_in_pandas, dtype): | |
"""Data for factorization, grouping, and unique tests. | |
Expected to be like [B, B, NA, NA, A, A, B, C] | |
Where A < B < C and NA is missing | |
""" | |
if dtype.numpy_dtype == "object": | |
a, b, c = (1,), (2,), (3,) | |
else: | |
a, b, c = np.arange(3) | |
return NumpyExtensionArray( | |
np.array([b, b, np.nan, np.nan, a, a, b, c], dtype=dtype.numpy_dtype) | |
) | |
def data_for_twos(dtype): | |
if dtype.kind == "O": | |
pytest.skip(f"{dtype} is not a numeric dtype") | |
arr = np.ones(100) * 2 | |
return NumpyExtensionArray._from_sequence(arr, dtype=dtype) | |
def skip_numpy_object(dtype, request): | |
""" | |
Tests for NumpyExtensionArray with nested data. Users typically won't create | |
these objects via `pd.array`, but they can show up through `.array` | |
on a Series with nested data. Many of the base tests fail, as they aren't | |
appropriate for nested data. | |
This fixture allows these tests to be skipped when used as a usefixtures | |
marker to either an individual test or a test class. | |
""" | |
if dtype == "object": | |
mark = pytest.mark.xfail(reason="Fails for object dtype") | |
request.applymarker(mark) | |
skip_nested = pytest.mark.usefixtures("skip_numpy_object") | |
class TestNumpyExtensionArray(base.ExtensionTests): | |
# We don't want to register. This test should probably be split in two. | |
def test_from_dtype(self, data): | |
pass | |
def test_series_constructor_scalar_with_index(self, data, dtype): | |
# ValueError: Length of passed values is 1, index implies 3. | |
super().test_series_constructor_scalar_with_index(data, dtype) | |
def test_check_dtype(self, data, request, using_infer_string): | |
if data.dtype.numpy_dtype == "object": | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"NumpyExtensionArray expectedly clashes with a " | |
f"NumPy name: {data.dtype.numpy_dtype}" | |
) | |
) | |
super().test_check_dtype(data) | |
def test_is_not_object_type(self, dtype, request): | |
if dtype.numpy_dtype == "object": | |
# Different from BaseDtypeTests.test_is_not_object_type | |
# because NumpyEADtype(object) is an object type | |
assert is_object_dtype(dtype) | |
else: | |
super().test_is_not_object_type(dtype) | |
def test_getitem_scalar(self, data): | |
# AssertionError | |
super().test_getitem_scalar(data) | |
def test_shift_fill_value(self, data): | |
# np.array shape inference. Shift implementation fails. | |
super().test_shift_fill_value(data) | |
def test_fillna_copy_frame(self, data_missing): | |
# The "scalar" for this array isn't a scalar. | |
super().test_fillna_copy_frame(data_missing) | |
def test_fillna_copy_series(self, data_missing): | |
# The "scalar" for this array isn't a scalar. | |
super().test_fillna_copy_series(data_missing) | |
def test_searchsorted(self, data_for_sorting, as_series): | |
# TODO: NumpyExtensionArray.searchsorted calls ndarray.searchsorted which | |
# isn't quite what we want in nested data cases. Instead we need to | |
# adapt something like libindex._bin_search. | |
super().test_searchsorted(data_for_sorting, as_series) | |
def test_diff(self, data, periods): | |
return super().test_diff(data, periods) | |
def test_insert(self, data, request): | |
if data.dtype.numpy_dtype == object: | |
mark = pytest.mark.xfail(reason="Dimension mismatch in np.concatenate") | |
request.applymarker(mark) | |
super().test_insert(data) | |
def test_insert_invalid(self, data, invalid_scalar): | |
# NumpyExtensionArray[object] can hold anything, so skip | |
super().test_insert_invalid(data, invalid_scalar) | |
divmod_exc = None | |
series_scalar_exc = None | |
frame_scalar_exc = None | |
series_array_exc = None | |
def test_divmod(self, data): | |
divmod_exc = None | |
if data.dtype.kind == "O": | |
divmod_exc = TypeError | |
self.divmod_exc = divmod_exc | |
super().test_divmod(data) | |
def test_divmod_series_array(self, data): | |
ser = pd.Series(data) | |
exc = None | |
if data.dtype.kind == "O": | |
exc = TypeError | |
self.divmod_exc = exc | |
self._check_divmod_op(ser, divmod, data) | |
def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request): | |
opname = all_arithmetic_operators | |
series_scalar_exc = None | |
if data.dtype.numpy_dtype == object: | |
if opname in ["__mul__", "__rmul__"]: | |
mark = pytest.mark.xfail( | |
reason="the Series.combine step raises but not the Series method." | |
) | |
request.node.add_marker(mark) | |
series_scalar_exc = TypeError | |
self.series_scalar_exc = series_scalar_exc | |
super().test_arith_series_with_scalar(data, all_arithmetic_operators) | |
def test_arith_series_with_array(self, data, all_arithmetic_operators): | |
opname = all_arithmetic_operators | |
series_array_exc = None | |
if data.dtype.numpy_dtype == object and opname not in ["__add__", "__radd__"]: | |
series_array_exc = TypeError | |
self.series_array_exc = series_array_exc | |
super().test_arith_series_with_array(data, all_arithmetic_operators) | |
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request): | |
opname = all_arithmetic_operators | |
frame_scalar_exc = None | |
if data.dtype.numpy_dtype == object: | |
if opname in ["__mul__", "__rmul__"]: | |
mark = pytest.mark.xfail( | |
reason="the Series.combine step raises but not the Series method." | |
) | |
request.node.add_marker(mark) | |
frame_scalar_exc = TypeError | |
self.frame_scalar_exc = frame_scalar_exc | |
super().test_arith_frame_with_scalar(data, all_arithmetic_operators) | |
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: | |
if ser.dtype.kind == "O": | |
return op_name in ["sum", "min", "max", "any", "all"] | |
return True | |
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool): | |
res_op = getattr(ser, op_name) | |
# avoid coercing int -> float. Just cast to the actual numpy type. | |
# error: Item "ExtensionDtype" of "dtype[Any] | ExtensionDtype" has | |
# no attribute "numpy_dtype" | |
cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr] | |
alt = ser.astype(cmp_dtype) | |
exp_op = getattr(alt, op_name) | |
if op_name == "count": | |
result = res_op() | |
expected = exp_op() | |
else: | |
result = res_op(skipna=skipna) | |
expected = exp_op(skipna=skipna) | |
tm.assert_almost_equal(result, expected) | |
def test_reduce_frame(self, data, all_numeric_reductions, skipna): | |
pass | |
def test_fillna_series(self, data_missing): | |
# Non-scalar "scalar" values. | |
super().test_fillna_series(data_missing) | |
def test_fillna_frame(self, data_missing): | |
# Non-scalar "scalar" values. | |
super().test_fillna_frame(data_missing) | |
def test_setitem_invalid(self, data, invalid_scalar): | |
# object dtype can hold anything, so doesn't raise | |
super().test_setitem_invalid(data, invalid_scalar) | |
def test_setitem_sequence_broadcasts(self, data, box_in_series): | |
# ValueError: cannot set using a list-like indexer with a different | |
# length than the value | |
super().test_setitem_sequence_broadcasts(data, box_in_series) | |
def test_setitem_mask_broadcast(self, data, setter): | |
# ValueError: cannot set using a list-like indexer with a different | |
# length than the value | |
super().test_setitem_mask_broadcast(data, setter) | |
def test_setitem_scalar_key_sequence_raise(self, data): | |
# Failed: DID NOT RAISE <class 'ValueError'> | |
super().test_setitem_scalar_key_sequence_raise(data) | |
# TODO: there is some issue with NumpyExtensionArray, therefore, | |
# skip the setitem test for now, and fix it later (GH 31446) | |
def test_setitem_mask(self, data, mask, box_in_series): | |
super().test_setitem_mask(data, mask, box_in_series) | |
def test_setitem_integer_array(self, data, idx, box_in_series): | |
super().test_setitem_integer_array(data, idx, box_in_series) | |
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series): | |
super().test_setitem_integer_with_missing_raises(data, idx, box_in_series) | |
def test_setitem_slice(self, data, box_in_series): | |
super().test_setitem_slice(data, box_in_series) | |
def test_setitem_loc_iloc_slice(self, data): | |
super().test_setitem_loc_iloc_slice(data) | |
def test_setitem_with_expansion_dataframe_column(self, data, full_indexer): | |
# https://github.com/pandas-dev/pandas/issues/32395 | |
df = expected = pd.DataFrame({"data": pd.Series(data)}) | |
result = pd.DataFrame(index=df.index) | |
# because result has object dtype, the attempt to do setting inplace | |
# is successful, and object dtype is retained | |
key = full_indexer(df) | |
result.loc[key, "data"] = df["data"] | |
# base class method has expected = df; NumpyExtensionArray behaves oddly because | |
# we patch _typ for these tests. | |
if data.dtype.numpy_dtype != object: | |
if not isinstance(key, slice) or key != slice(None): | |
expected = pd.DataFrame({"data": data.to_numpy()}) | |
tm.assert_frame_equal(result, expected, check_column_type=False) | |
def test_index_from_listlike_with_dtype(self, data): | |
super().test_index_from_listlike_with_dtype(data) | |
def test_EA_types(self, engine, data, request): | |
super().test_EA_types(engine, data, request) | |
class Test2DCompat(base.NDArrayBacked2DTests): | |
pass | |