peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/test_sparse.py
""" | |
This file contains a minimal set of tests for compliance with the extension | |
array interface test suite, and should contain no other tests. | |
The test suite for the full functionality of the array is located in | |
`pandas/tests/arrays/`. | |
The tests in this file are inherited from the BaseExtensionTests, and only | |
minimal tweaks should be applied to get the tests passing (by overwriting a | |
parent method). | |
Additional tests should either be added to one of the BaseExtensionTests | |
classes (if they are relevant for the extension interface for all dtypes), or | |
be added to the array-specific tests in `pandas/tests/arrays/`. | |
""" | |
import numpy as np | |
import pytest | |
from pandas.errors import PerformanceWarning | |
import pandas as pd | |
from pandas import SparseDtype | |
import pandas._testing as tm | |
from pandas.arrays import SparseArray | |
from pandas.tests.extension import base | |
def make_data(fill_value): | |
rng = np.random.default_rng(2) | |
if np.isnan(fill_value): | |
data = rng.uniform(size=100) | |
else: | |
data = rng.integers(1, 100, size=100, dtype=int) | |
if data[0] == data[1]: | |
data[0] += 1 | |
data[2::3] = fill_value | |
return data | |
def dtype(): | |
return SparseDtype() | |
def data(request): | |
"""Length-100 PeriodArray for semantics test.""" | |
res = SparseArray(make_data(request.param), fill_value=request.param) | |
return res | |
def data_for_twos(): | |
return SparseArray(np.ones(100) * 2) | |
def data_missing(request): | |
"""Length 2 array with [NA, Valid]""" | |
return SparseArray([np.nan, 1], fill_value=request.param) | |
def data_repeated(request): | |
"""Return different versions of data for count times""" | |
def gen(count): | |
for _ in range(count): | |
yield SparseArray(make_data(request.param), fill_value=request.param) | |
yield gen | |
def data_for_sorting(request): | |
return SparseArray([2, 3, 1], fill_value=request.param) | |
def data_missing_for_sorting(request): | |
return SparseArray([2, np.nan, 1], fill_value=request.param) | |
def na_cmp(): | |
return lambda left, right: pd.isna(left) and pd.isna(right) | |
def data_for_grouping(request): | |
return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param) | |
def data_for_compare(request): | |
return SparseArray([0, 0, np.nan, -2, -1, 4, 2, 3, 0, 0], fill_value=request.param) | |
class TestSparseArray(base.ExtensionTests): | |
def _supports_reduction(self, obj, op_name: str) -> bool: | |
return True | |
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request): | |
if all_numeric_reductions in [ | |
"prod", | |
"median", | |
"var", | |
"std", | |
"sem", | |
"skew", | |
"kurt", | |
]: | |
mark = pytest.mark.xfail( | |
reason="This should be viable but is not implemented" | |
) | |
request.node.add_marker(mark) | |
elif ( | |
all_numeric_reductions in ["sum", "max", "min", "mean"] | |
and data.dtype.kind == "f" | |
and not skipna | |
): | |
mark = pytest.mark.xfail(reason="getting a non-nan float") | |
request.node.add_marker(mark) | |
super().test_reduce_series_numeric(data, all_numeric_reductions, skipna) | |
def test_reduce_frame(self, data, all_numeric_reductions, skipna, request): | |
if all_numeric_reductions in [ | |
"prod", | |
"median", | |
"var", | |
"std", | |
"sem", | |
"skew", | |
"kurt", | |
]: | |
mark = pytest.mark.xfail( | |
reason="This should be viable but is not implemented" | |
) | |
request.node.add_marker(mark) | |
elif ( | |
all_numeric_reductions in ["sum", "max", "min", "mean"] | |
and data.dtype.kind == "f" | |
and not skipna | |
): | |
mark = pytest.mark.xfail(reason="ExtensionArray NA mask are different") | |
request.node.add_marker(mark) | |
super().test_reduce_frame(data, all_numeric_reductions, skipna) | |
def _check_unsupported(self, data): | |
if data.dtype == SparseDtype(int, 0): | |
pytest.skip("Can't store nan in int array.") | |
def test_concat_mixed_dtypes(self, data): | |
# https://github.com/pandas-dev/pandas/issues/20762 | |
# This should be the same, aside from concat([sparse, float]) | |
df1 = pd.DataFrame({"A": data[:3]}) | |
df2 = pd.DataFrame({"A": [1, 2, 3]}) | |
df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category") | |
dfs = [df1, df2, df3] | |
# dataframes | |
result = pd.concat(dfs) | |
expected = pd.concat( | |
[x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs] | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_stack(self, data, columns, future_stack): | |
super().test_stack(data, columns, future_stack) | |
def test_concat_columns(self, data, na_value): | |
self._check_unsupported(data) | |
super().test_concat_columns(data, na_value) | |
def test_concat_extension_arrays_copy_false(self, data, na_value): | |
self._check_unsupported(data) | |
super().test_concat_extension_arrays_copy_false(data, na_value) | |
def test_align(self, data, na_value): | |
self._check_unsupported(data) | |
super().test_align(data, na_value) | |
def test_align_frame(self, data, na_value): | |
self._check_unsupported(data) | |
super().test_align_frame(data, na_value) | |
def test_align_series_frame(self, data, na_value): | |
self._check_unsupported(data) | |
super().test_align_series_frame(data, na_value) | |
def test_merge(self, data, na_value): | |
self._check_unsupported(data) | |
super().test_merge(data, na_value) | |
def test_get(self, data): | |
ser = pd.Series(data, index=[2 * i for i in range(len(data))]) | |
if np.isnan(ser.values.fill_value): | |
assert np.isnan(ser.get(4)) and np.isnan(ser.iloc[2]) | |
else: | |
assert ser.get(4) == ser.iloc[2] | |
assert ser.get(2) == ser.iloc[1] | |
def test_reindex(self, data, na_value): | |
self._check_unsupported(data) | |
super().test_reindex(data, na_value) | |
def test_isna(self, data_missing): | |
sarr = SparseArray(data_missing) | |
expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value)) | |
expected = SparseArray([True, False], dtype=expected_dtype) | |
result = sarr.isna() | |
tm.assert_sp_array_equal(result, expected) | |
# test isna for arr without na | |
sarr = sarr.fillna(0) | |
expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value)) | |
expected = SparseArray([False, False], fill_value=False, dtype=expected_dtype) | |
tm.assert_equal(sarr.isna(), expected) | |
def test_fillna_limit_backfill(self, data_missing): | |
warns = (PerformanceWarning, FutureWarning) | |
with tm.assert_produces_warning(warns, check_stacklevel=False): | |
super().test_fillna_limit_backfill(data_missing) | |
def test_fillna_no_op_returns_copy(self, data, request): | |
if np.isnan(data.fill_value): | |
request.applymarker( | |
pytest.mark.xfail(reason="returns array with different fill value") | |
) | |
super().test_fillna_no_op_returns_copy(data) | |
def test_fillna_series(self, data_missing): | |
# this one looks doable. | |
# TODO: this fails bc we do not pass through data_missing. If we did, | |
# the 0-fill case would xpass | |
super().test_fillna_series() | |
def test_fillna_frame(self, data_missing): | |
# Have to override to specify that fill_value will change. | |
fill_value = data_missing[1] | |
result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value) | |
if pd.isna(data_missing.fill_value): | |
dtype = SparseDtype(data_missing.dtype, fill_value) | |
else: | |
dtype = data_missing.dtype | |
expected = pd.DataFrame( | |
{ | |
"A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype), | |
"B": [1, 2], | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
_combine_le_expected_dtype = "Sparse[bool]" | |
def test_fillna_copy_frame(self, data_missing, using_copy_on_write): | |
arr = data_missing.take([1, 1]) | |
df = pd.DataFrame({"A": arr}, copy=False) | |
filled_val = df.iloc[0, 0] | |
result = df.fillna(filled_val) | |
if hasattr(df._mgr, "blocks"): | |
if using_copy_on_write: | |
assert df.values.base is result.values.base | |
else: | |
assert df.values.base is not result.values.base | |
assert df.A._values.to_dense() is arr.to_dense() | |
def test_fillna_copy_series(self, data_missing, using_copy_on_write): | |
arr = data_missing.take([1, 1]) | |
ser = pd.Series(arr, copy=False) | |
filled_val = ser[0] | |
result = ser.fillna(filled_val) | |
if using_copy_on_write: | |
assert ser._values is result._values | |
else: | |
assert ser._values is not result._values | |
assert ser._values.to_dense() is arr.to_dense() | |
def test_fillna_length_mismatch(self, data_missing): | |
super().test_fillna_length_mismatch(data_missing) | |
def test_where_series(self, data, na_value): | |
assert data[0] != data[1] | |
cls = type(data) | |
a, b = data[:2] | |
ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype)) | |
cond = np.array([True, True, False, False]) | |
result = ser.where(cond) | |
new_dtype = SparseDtype("float", 0.0) | |
expected = pd.Series( | |
cls._from_sequence([a, a, na_value, na_value], dtype=new_dtype) | |
) | |
tm.assert_series_equal(result, expected) | |
other = cls._from_sequence([a, b, a, b], dtype=data.dtype) | |
cond = np.array([True, False, True, True]) | |
result = ser.where(cond, other) | |
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype)) | |
tm.assert_series_equal(result, expected) | |
def test_searchsorted(self, data_for_sorting, as_series): | |
with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False): | |
super().test_searchsorted(data_for_sorting, as_series) | |
def test_shift_0_periods(self, data): | |
# GH#33856 shifting with periods=0 should return a copy, not same obj | |
result = data.shift(0) | |
data._sparse_values[0] = data._sparse_values[1] | |
assert result._sparse_values[0] != result._sparse_values[1] | |
def test_argmin_argmax_all_na(self, method, data, na_value): | |
# overriding because Sparse[int64, 0] cannot handle na_value | |
self._check_unsupported(data) | |
super().test_argmin_argmax_all_na(method, data, na_value) | |
def test_equals(self, data, na_value, as_series, box): | |
self._check_unsupported(data) | |
super().test_equals(data, na_value, as_series, box) | |
def test_map(self, func, na_action, expected): | |
# GH52096 | |
data = SparseArray([1, np.nan]) | |
result = data.map(func, na_action=na_action) | |
tm.assert_extension_array_equal(result, expected) | |
def test_map_raises(self, data, na_action): | |
# GH52096 | |
msg = "fill value in the sparse values not supported" | |
with pytest.raises(ValueError, match=msg): | |
data.map(lambda x: np.nan, na_action=na_action) | |
def test_astype_string(self, data, nullable_string_dtype): | |
# TODO: this fails bc we do not pass through nullable_string_dtype; | |
# If we did, the 0-cases would xpass | |
super().test_astype_string(data) | |
series_scalar_exc = None | |
frame_scalar_exc = None | |
divmod_exc = None | |
series_array_exc = None | |
def _skip_if_different_combine(self, data): | |
if data.fill_value == 0: | |
# arith ops call on dtype.fill_value so that the sparsity | |
# is maintained. Combine can't be called on a dtype in | |
# general, so we can't make the expected. This is tested elsewhere | |
pytest.skip("Incorrected expected from Series.combine and tested elsewhere") | |
def test_arith_series_with_scalar(self, data, all_arithmetic_operators): | |
self._skip_if_different_combine(data) | |
super().test_arith_series_with_scalar(data, all_arithmetic_operators) | |
def test_arith_series_with_array(self, data, all_arithmetic_operators): | |
self._skip_if_different_combine(data) | |
super().test_arith_series_with_array(data, all_arithmetic_operators) | |
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request): | |
if data.dtype.fill_value != 0: | |
pass | |
elif all_arithmetic_operators.strip("_") not in [ | |
"mul", | |
"rmul", | |
"floordiv", | |
"rfloordiv", | |
"pow", | |
"mod", | |
"rmod", | |
]: | |
mark = pytest.mark.xfail(reason="result dtype.fill_value mismatch") | |
request.applymarker(mark) | |
super().test_arith_frame_with_scalar(data, all_arithmetic_operators) | |
def _compare_other( | |
self, ser: pd.Series, data_for_compare: SparseArray, comparison_op, other | |
): | |
op = comparison_op | |
result = op(data_for_compare, other) | |
if isinstance(other, pd.Series): | |
assert isinstance(result, pd.Series) | |
assert isinstance(result.dtype, SparseDtype) | |
else: | |
assert isinstance(result, SparseArray) | |
assert result.dtype.subtype == np.bool_ | |
if isinstance(other, pd.Series): | |
fill_value = op(data_for_compare.fill_value, other._values.fill_value) | |
expected = SparseArray( | |
op(data_for_compare.to_dense(), np.asarray(other)), | |
fill_value=fill_value, | |
dtype=np.bool_, | |
) | |
else: | |
fill_value = np.all( | |
op(np.asarray(data_for_compare.fill_value), np.asarray(other)) | |
) | |
expected = SparseArray( | |
op(data_for_compare.to_dense(), np.asarray(other)), | |
fill_value=fill_value, | |
dtype=np.bool_, | |
) | |
if isinstance(other, pd.Series): | |
# error: Incompatible types in assignment | |
expected = pd.Series(expected) # type: ignore[assignment] | |
tm.assert_equal(result, expected) | |
def test_scalar(self, data_for_compare: SparseArray, comparison_op): | |
ser = pd.Series(data_for_compare) | |
self._compare_other(ser, data_for_compare, comparison_op, 0) | |
self._compare_other(ser, data_for_compare, comparison_op, 1) | |
self._compare_other(ser, data_for_compare, comparison_op, -1) | |
self._compare_other(ser, data_for_compare, comparison_op, np.nan) | |
def test_array(self, data_for_compare: SparseArray, comparison_op, request): | |
if data_for_compare.dtype.fill_value == 0 and comparison_op.__name__ in [ | |
"eq", | |
"ge", | |
"le", | |
]: | |
mark = pytest.mark.xfail(reason="Wrong fill_value") | |
request.applymarker(mark) | |
arr = np.linspace(-4, 5, 10) | |
ser = pd.Series(data_for_compare) | |
self._compare_other(ser, data_for_compare, comparison_op, arr) | |
def test_sparse_array(self, data_for_compare: SparseArray, comparison_op, request): | |
if data_for_compare.dtype.fill_value == 0 and comparison_op.__name__ != "gt": | |
mark = pytest.mark.xfail(reason="Wrong fill_value") | |
request.applymarker(mark) | |
ser = pd.Series(data_for_compare) | |
arr = data_for_compare + 1 | |
self._compare_other(ser, data_for_compare, comparison_op, arr) | |
arr = data_for_compare * 2 | |
self._compare_other(ser, data_for_compare, comparison_op, arr) | |
def test_array_repr(self, data, size): | |
super().test_array_repr(data, size) | |
def test_groupby_extension_agg(self, as_index, data_for_grouping): | |
super().test_groupby_extension_agg(as_index, data_for_grouping) | |
def test_array_type_with_arg(dtype): | |
assert dtype.construct_array_type() is SparseArray | |