peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/test_string.py
""" | |
This file contains a minimal set of tests for compliance with the extension | |
array interface test suite, and should contain no other tests. | |
The test suite for the full functionality of the array is located in | |
`pandas/tests/arrays/`. | |
The tests in this file are inherited from the BaseExtensionTests, and only | |
minimal tweaks should be applied to get the tests passing (by overwriting a | |
parent method). | |
Additional tests should either be added to one of the BaseExtensionTests | |
classes (if they are relevant for the extension interface for all dtypes), or | |
be added to the array-specific tests in `pandas/tests/arrays/`. | |
""" | |
from __future__ import annotations | |
import string | |
from typing import cast | |
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.api.types import is_string_dtype | |
from pandas.core.arrays import ArrowStringArray | |
from pandas.core.arrays.string_ import StringDtype | |
from pandas.tests.extension import base | |
def maybe_split_array(arr, chunked): | |
if not chunked: | |
return arr | |
elif arr.dtype.storage != "pyarrow": | |
return arr | |
pa = pytest.importorskip("pyarrow") | |
arrow_array = arr._pa_array | |
split = len(arrow_array) // 2 | |
arrow_array = pa.chunked_array( | |
[*arrow_array[:split].chunks, *arrow_array[split:].chunks] | |
) | |
assert arrow_array.num_chunks == 2 | |
return type(arr)(arrow_array) | |
def chunked(request): | |
return request.param | |
def dtype(string_storage): | |
return StringDtype(storage=string_storage) | |
def data(dtype, chunked): | |
strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100) | |
while strings[0] == strings[1]: | |
strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100) | |
arr = dtype.construct_array_type()._from_sequence(strings, dtype=dtype) | |
return maybe_split_array(arr, chunked) | |
def data_missing(dtype, chunked): | |
"""Length 2 array with [NA, Valid]""" | |
arr = dtype.construct_array_type()._from_sequence([pd.NA, "A"], dtype=dtype) | |
return maybe_split_array(arr, chunked) | |
def data_for_sorting(dtype, chunked): | |
arr = dtype.construct_array_type()._from_sequence(["B", "C", "A"], dtype=dtype) | |
return maybe_split_array(arr, chunked) | |
def data_missing_for_sorting(dtype, chunked): | |
arr = dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"], dtype=dtype) | |
return maybe_split_array(arr, chunked) | |
def data_for_grouping(dtype, chunked): | |
arr = dtype.construct_array_type()._from_sequence( | |
["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"], dtype=dtype | |
) | |
return maybe_split_array(arr, chunked) | |
class TestStringArray(base.ExtensionTests): | |
def test_eq_with_str(self, dtype): | |
assert dtype == f"string[{dtype.storage}]" | |
super().test_eq_with_str(dtype) | |
def test_is_not_string_type(self, dtype): | |
# Different from BaseDtypeTests.test_is_not_string_type | |
# because StringDtype is a string type | |
assert is_string_dtype(dtype) | |
def test_view(self, data, request, arrow_string_storage): | |
if data.dtype.storage in arrow_string_storage: | |
pytest.skip(reason="2D support not implemented for ArrowStringArray") | |
super().test_view(data) | |
def test_from_dtype(self, data): | |
# base test uses string representation of dtype | |
pass | |
def test_transpose(self, data, request, arrow_string_storage): | |
if data.dtype.storage in arrow_string_storage: | |
pytest.skip(reason="2D support not implemented for ArrowStringArray") | |
super().test_transpose(data) | |
def test_setitem_preserves_views(self, data, request, arrow_string_storage): | |
if data.dtype.storage in arrow_string_storage: | |
pytest.skip(reason="2D support not implemented for ArrowStringArray") | |
super().test_setitem_preserves_views(data) | |
def test_dropna_array(self, data_missing): | |
result = data_missing.dropna() | |
expected = data_missing[[1]] | |
tm.assert_extension_array_equal(result, expected) | |
def test_fillna_no_op_returns_copy(self, data): | |
data = data[~data.isna()] | |
valid = data[0] | |
result = data.fillna(valid) | |
assert result is not data | |
tm.assert_extension_array_equal(result, data) | |
result = data.fillna(method="backfill") | |
assert result is not data | |
tm.assert_extension_array_equal(result, data) | |
def _get_expected_exception( | |
self, op_name: str, obj, other | |
) -> type[Exception] | None: | |
if op_name in ["__divmod__", "__rdivmod__"]: | |
if isinstance(obj, pd.Series) and cast( | |
StringDtype, tm.get_dtype(obj) | |
).storage in [ | |
"pyarrow", | |
"pyarrow_numpy", | |
]: | |
# TODO: re-raise as TypeError? | |
return NotImplementedError | |
elif isinstance(other, pd.Series) and cast( | |
StringDtype, tm.get_dtype(other) | |
).storage in [ | |
"pyarrow", | |
"pyarrow_numpy", | |
]: | |
# TODO: re-raise as TypeError? | |
return NotImplementedError | |
return TypeError | |
elif op_name in ["__mod__", "__rmod__", "__pow__", "__rpow__"]: | |
if cast(StringDtype, tm.get_dtype(obj)).storage in [ | |
"pyarrow", | |
"pyarrow_numpy", | |
]: | |
return NotImplementedError | |
return TypeError | |
elif op_name in ["__mul__", "__rmul__"]: | |
# Can only multiply strings by integers | |
return TypeError | |
elif op_name in [ | |
"__truediv__", | |
"__rtruediv__", | |
"__floordiv__", | |
"__rfloordiv__", | |
"__sub__", | |
"__rsub__", | |
]: | |
if cast(StringDtype, tm.get_dtype(obj)).storage in [ | |
"pyarrow", | |
"pyarrow_numpy", | |
]: | |
import pyarrow as pa | |
# TODO: better to re-raise as TypeError? | |
return pa.ArrowNotImplementedError | |
return TypeError | |
return None | |
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: | |
return ( | |
op_name in ["min", "max"] | |
or ser.dtype.storage == "pyarrow_numpy" # type: ignore[union-attr] | |
and op_name in ("any", "all") | |
) | |
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result): | |
dtype = cast(StringDtype, tm.get_dtype(obj)) | |
if op_name in ["__add__", "__radd__"]: | |
cast_to = dtype | |
elif dtype.storage == "pyarrow": | |
cast_to = "boolean[pyarrow]" # type: ignore[assignment] | |
elif dtype.storage == "pyarrow_numpy": | |
cast_to = np.bool_ # type: ignore[assignment] | |
else: | |
cast_to = "boolean" # type: ignore[assignment] | |
return pointwise_result.astype(cast_to) | |
def test_compare_scalar(self, data, comparison_op): | |
ser = pd.Series(data) | |
self._compare_other(ser, data, comparison_op, "abc") | |
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op): | |
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op) | |
class Test2DCompat(base.Dim2CompatTests): | |
def arrow_not_supported(self, data): | |
if isinstance(data, ArrowStringArray): | |
pytest.skip(reason="2D support not implemented for ArrowStringArray") | |
def test_searchsorted_with_na_raises(data_for_sorting, as_series): | |
# GH50447 | |
b, c, a = data_for_sorting | |
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c] | |
arr[-1] = pd.NA | |
if as_series: | |
arr = pd.Series(arr) | |
msg = ( | |
"searchsorted requires array to be sorted, " | |
"which is impossible with NAs present." | |
) | |
with pytest.raises(ValueError, match=msg): | |
arr.searchsorted(b) | |