peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/test_arithmetic.py
from collections import deque | |
from datetime import ( | |
datetime, | |
timezone, | |
) | |
from enum import Enum | |
import functools | |
import operator | |
import re | |
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
) | |
import pandas._testing as tm | |
from pandas.core.computation import expressions as expr | |
from pandas.tests.frame.common import ( | |
_check_mixed_float, | |
_check_mixed_int, | |
) | |
def simple_frame(): | |
""" | |
Fixture for simple 3x3 DataFrame | |
Columns are ['one', 'two', 'three'], index is ['a', 'b', 'c']. | |
one two three | |
a 1.0 2.0 3.0 | |
b 4.0 5.0 6.0 | |
c 7.0 8.0 9.0 | |
""" | |
arr = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]) | |
return DataFrame(arr, columns=["one", "two", "three"], index=["a", "b", "c"]) | |
def switch_numexpr_min_elements(request, monkeypatch): | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", request.param) | |
yield request.param | |
class DummyElement: | |
def __init__(self, value, dtype) -> None: | |
self.value = value | |
self.dtype = np.dtype(dtype) | |
def __array__(self, dtype=None, copy=None): | |
return np.array(self.value, dtype=self.dtype) | |
def __str__(self) -> str: | |
return f"DummyElement({self.value}, {self.dtype})" | |
def __repr__(self) -> str: | |
return str(self) | |
def astype(self, dtype, copy=False): | |
self.dtype = dtype | |
return self | |
def view(self, dtype): | |
return type(self)(self.value.view(dtype), dtype) | |
def any(self, axis=None): | |
return bool(self.value) | |
# ------------------------------------------------------------------- | |
# Comparisons | |
class TestFrameComparisons: | |
# Specifically _not_ flex-comparisons | |
def test_comparison_with_categorical_dtype(self): | |
# GH#12564 | |
df = DataFrame({"A": ["foo", "bar", "baz"]}) | |
exp = DataFrame({"A": [True, False, False]}) | |
res = df == "foo" | |
tm.assert_frame_equal(res, exp) | |
# casting to categorical shouldn't affect the result | |
df["A"] = df["A"].astype("category") | |
res = df == "foo" | |
tm.assert_frame_equal(res, exp) | |
def test_frame_in_list(self): | |
# GH#12689 this should raise at the DataFrame level, not blocks | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((6, 4)), columns=list("ABCD") | |
) | |
msg = "The truth value of a DataFrame is ambiguous" | |
with pytest.raises(ValueError, match=msg): | |
df in [None] | |
def test_comparison_invalid(self, arg, arg2): | |
# GH4968 | |
# invalid date/int comparisons | |
x = DataFrame(arg) | |
y = DataFrame(arg2) | |
# we expect the result to match Series comparisons for | |
# == and !=, inequalities should raise | |
result = x == y | |
expected = DataFrame( | |
{col: x[col] == y[col] for col in x.columns}, | |
index=x.index, | |
columns=x.columns, | |
) | |
tm.assert_frame_equal(result, expected) | |
result = x != y | |
expected = DataFrame( | |
{col: x[col] != y[col] for col in x.columns}, | |
index=x.index, | |
columns=x.columns, | |
) | |
tm.assert_frame_equal(result, expected) | |
msgs = [ | |
r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", | |
"invalid type promotion", | |
( | |
# npdev 1.20.0 | |
r"The DTypes <class 'numpy.dtype\[.*\]'> and " | |
r"<class 'numpy.dtype\[.*\]'> do not have a common DType." | |
), | |
] | |
msg = "|".join(msgs) | |
with pytest.raises(TypeError, match=msg): | |
x >= y | |
with pytest.raises(TypeError, match=msg): | |
x > y | |
with pytest.raises(TypeError, match=msg): | |
x < y | |
with pytest.raises(TypeError, match=msg): | |
x <= y | |
def test_timestamp_compare(self, left, right): | |
# make sure we can compare Timestamps on the right AND left hand side | |
# GH#4982 | |
df = DataFrame( | |
{ | |
"dates1": pd.date_range("20010101", periods=10), | |
"dates2": pd.date_range("20010102", periods=10), | |
"intcol": np.random.default_rng(2).integers(1000000000, size=10), | |
"floatcol": np.random.default_rng(2).standard_normal(10), | |
"stringcol": [chr(100 + i) for i in range(10)], | |
} | |
) | |
df.loc[np.random.default_rng(2).random(len(df)) > 0.5, "dates2"] = pd.NaT | |
left_f = getattr(operator, left) | |
right_f = getattr(operator, right) | |
# no nats | |
if left in ["eq", "ne"]: | |
expected = left_f(df, pd.Timestamp("20010109")) | |
result = right_f(pd.Timestamp("20010109"), df) | |
tm.assert_frame_equal(result, expected) | |
else: | |
msg = ( | |
"'(<|>)=?' not supported between " | |
"instances of 'numpy.ndarray' and 'Timestamp'" | |
) | |
with pytest.raises(TypeError, match=msg): | |
left_f(df, pd.Timestamp("20010109")) | |
with pytest.raises(TypeError, match=msg): | |
right_f(pd.Timestamp("20010109"), df) | |
# nats | |
if left in ["eq", "ne"]: | |
expected = left_f(df, pd.Timestamp("nat")) | |
result = right_f(pd.Timestamp("nat"), df) | |
tm.assert_frame_equal(result, expected) | |
else: | |
msg = ( | |
"'(<|>)=?' not supported between " | |
"instances of 'numpy.ndarray' and 'NaTType'" | |
) | |
with pytest.raises(TypeError, match=msg): | |
left_f(df, pd.Timestamp("nat")) | |
with pytest.raises(TypeError, match=msg): | |
right_f(pd.Timestamp("nat"), df) | |
def test_mixed_comparison(self): | |
# GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, | |
# not raise TypeError | |
# (this appears to be fixed before GH#22163, not sure when) | |
df = DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) | |
other = DataFrame([["a", "b"], ["c", "d"]]) | |
result = df == other | |
assert not result.any().any() | |
result = df != other | |
assert result.all().all() | |
def test_df_boolean_comparison_error(self): | |
# GH#4576, GH#22880 | |
# comparing DataFrame against list/tuple with len(obj) matching | |
# len(df.columns) is supported as of GH#22800 | |
df = DataFrame(np.arange(6).reshape((3, 2))) | |
expected = DataFrame([[False, False], [True, False], [False, False]]) | |
result = df == (2, 2) | |
tm.assert_frame_equal(result, expected) | |
result = df == [2, 2] | |
tm.assert_frame_equal(result, expected) | |
def test_df_float_none_comparison(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((8, 3)), | |
index=range(8), | |
columns=["A", "B", "C"], | |
) | |
result = df.__eq__(None) | |
assert not result.any().any() | |
def test_df_string_comparison(self): | |
df = DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) | |
mask_a = df.a > 1 | |
tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) | |
tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) | |
mask_b = df.b == "foo" | |
tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) | |
tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) | |
class TestFrameFlexComparisons: | |
# TODO: test_bool_flex_frame needs a better name | |
def test_bool_flex_frame(self, op): | |
data = np.random.default_rng(2).standard_normal((5, 3)) | |
other_data = np.random.default_rng(2).standard_normal((5, 3)) | |
df = DataFrame(data) | |
other = DataFrame(other_data) | |
ndim_5 = np.ones(df.shape + (1, 3)) | |
# DataFrame | |
assert df.eq(df).values.all() | |
assert not df.ne(df).values.any() | |
f = getattr(df, op) | |
o = getattr(operator, op) | |
# No NAs | |
tm.assert_frame_equal(f(other), o(df, other)) | |
# Unaligned | |
part_o = other.loc[3:, 1:].copy() | |
rs = f(part_o) | |
xp = o(df, part_o.reindex(index=df.index, columns=df.columns)) | |
tm.assert_frame_equal(rs, xp) | |
# ndarray | |
tm.assert_frame_equal(f(other.values), o(df, other.values)) | |
# scalar | |
tm.assert_frame_equal(f(0), o(df, 0)) | |
# NAs | |
msg = "Unable to coerce to Series/DataFrame" | |
tm.assert_frame_equal(f(np.nan), o(df, np.nan)) | |
with pytest.raises(ValueError, match=msg): | |
f(ndim_5) | |
def test_bool_flex_series(self, box): | |
# Series | |
# list/tuple | |
data = np.random.default_rng(2).standard_normal((5, 3)) | |
df = DataFrame(data) | |
idx_ser = box(np.random.default_rng(2).standard_normal(5)) | |
col_ser = box(np.random.default_rng(2).standard_normal(3)) | |
idx_eq = df.eq(idx_ser, axis=0) | |
col_eq = df.eq(col_ser) | |
idx_ne = df.ne(idx_ser, axis=0) | |
col_ne = df.ne(col_ser) | |
tm.assert_frame_equal(col_eq, df == Series(col_ser)) | |
tm.assert_frame_equal(col_eq, -col_ne) | |
tm.assert_frame_equal(idx_eq, -idx_ne) | |
tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) | |
tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) | |
tm.assert_frame_equal(idx_eq, df.eq(Series(idx_ser), axis=0)) | |
tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) | |
idx_gt = df.gt(idx_ser, axis=0) | |
col_gt = df.gt(col_ser) | |
idx_le = df.le(idx_ser, axis=0) | |
col_le = df.le(col_ser) | |
tm.assert_frame_equal(col_gt, df > Series(col_ser)) | |
tm.assert_frame_equal(col_gt, -col_le) | |
tm.assert_frame_equal(idx_gt, -idx_le) | |
tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) | |
idx_ge = df.ge(idx_ser, axis=0) | |
col_ge = df.ge(col_ser) | |
idx_lt = df.lt(idx_ser, axis=0) | |
col_lt = df.lt(col_ser) | |
tm.assert_frame_equal(col_ge, df >= Series(col_ser)) | |
tm.assert_frame_equal(col_ge, -col_lt) | |
tm.assert_frame_equal(idx_ge, -idx_lt) | |
tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) | |
idx_ser = Series(np.random.default_rng(2).standard_normal(5)) | |
col_ser = Series(np.random.default_rng(2).standard_normal(3)) | |
def test_bool_flex_frame_na(self): | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) | |
# NA | |
df.loc[0, 0] = np.nan | |
rs = df.eq(df) | |
assert not rs.loc[0, 0] | |
rs = df.ne(df) | |
assert rs.loc[0, 0] | |
rs = df.gt(df) | |
assert not rs.loc[0, 0] | |
rs = df.lt(df) | |
assert not rs.loc[0, 0] | |
rs = df.ge(df) | |
assert not rs.loc[0, 0] | |
rs = df.le(df) | |
assert not rs.loc[0, 0] | |
def test_bool_flex_frame_complex_dtype(self): | |
# complex | |
arr = np.array([np.nan, 1, 6, np.nan]) | |
arr2 = np.array([2j, np.nan, 7, None]) | |
df = DataFrame({"a": arr}) | |
df2 = DataFrame({"a": arr2}) | |
msg = "|".join( | |
[ | |
"'>' not supported between instances of '.*' and 'complex'", | |
r"unorderable types: .*complex\(\)", # PY35 | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
# inequalities are not well-defined for complex numbers | |
df.gt(df2) | |
with pytest.raises(TypeError, match=msg): | |
# regression test that we get the same behavior for Series | |
df["a"].gt(df2["a"]) | |
with pytest.raises(TypeError, match=msg): | |
# Check that we match numpy behavior here | |
df.values > df2.values | |
rs = df.ne(df2) | |
assert rs.values.all() | |
arr3 = np.array([2j, np.nan, None]) | |
df3 = DataFrame({"a": arr3}) | |
with pytest.raises(TypeError, match=msg): | |
# inequalities are not well-defined for complex numbers | |
df3.gt(2j) | |
with pytest.raises(TypeError, match=msg): | |
# regression test that we get the same behavior for Series | |
df3["a"].gt(2j) | |
with pytest.raises(TypeError, match=msg): | |
# Check that we match numpy behavior here | |
df3.values > 2j | |
def test_bool_flex_frame_object_dtype(self): | |
# corner, dtype=object | |
df1 = DataFrame({"col": ["foo", np.nan, "bar"]}, dtype=object) | |
df2 = DataFrame({"col": ["foo", datetime.now(), "bar"]}, dtype=object) | |
result = df1.ne(df2) | |
exp = DataFrame({"col": [False, True, False]}) | |
tm.assert_frame_equal(result, exp) | |
def test_flex_comparison_nat(self): | |
# GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, | |
# and _definitely_ not be NaN | |
df = DataFrame([pd.NaT]) | |
result = df == pd.NaT | |
# result.iloc[0, 0] is a np.bool_ object | |
assert result.iloc[0, 0].item() is False | |
result = df.eq(pd.NaT) | |
assert result.iloc[0, 0].item() is False | |
result = df != pd.NaT | |
assert result.iloc[0, 0].item() is True | |
result = df.ne(pd.NaT) | |
assert result.iloc[0, 0].item() is True | |
def test_df_flex_cmp_constant_return_types(self, opname): | |
# GH 15077, non-empty DataFrame | |
df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) | |
const = 2 | |
result = getattr(df, opname)(const).dtypes.value_counts() | |
tm.assert_series_equal( | |
result, Series([2], index=[np.dtype(bool)], name="count") | |
) | |
def test_df_flex_cmp_constant_return_types_empty(self, opname): | |
# GH 15077 empty DataFrame | |
df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) | |
const = 2 | |
empty = df.iloc[:0] | |
result = getattr(empty, opname)(const).dtypes.value_counts() | |
tm.assert_series_equal( | |
result, Series([2], index=[np.dtype(bool)], name="count") | |
) | |
def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): | |
ii = pd.IntervalIndex.from_breaks([1, 2, 3]) | |
df = DataFrame({"A": ii, "B": ii}) | |
ser = Series([0, 0]) | |
res = df.eq(ser, axis=0) | |
expected = DataFrame({"A": [False, False], "B": [False, False]}) | |
tm.assert_frame_equal(res, expected) | |
ser2 = Series([1, 2], index=["A", "B"]) | |
res2 = df.eq(ser2, axis=1) | |
tm.assert_frame_equal(res2, expected) | |
# ------------------------------------------------------------------- | |
# Arithmetic | |
class TestFrameFlexArithmetic: | |
def test_floordiv_axis0(self): | |
# make sure we df.floordiv(ser, axis=0) matches column-wise result | |
arr = np.arange(3) | |
ser = Series(arr) | |
df = DataFrame({"A": ser, "B": ser}) | |
result = df.floordiv(ser, axis=0) | |
expected = DataFrame({col: df[col] // ser for col in df.columns}) | |
tm.assert_frame_equal(result, expected) | |
result2 = df.floordiv(ser.values, axis=0) | |
tm.assert_frame_equal(result2, expected) | |
def test_df_add_td64_columnwise(self): | |
# GH 22534 Check that column-wise addition broadcasts correctly | |
dti = pd.date_range("2016-01-01", periods=10) | |
tdi = pd.timedelta_range("1", periods=10) | |
tser = Series(tdi) | |
df = DataFrame({0: dti, 1: tdi}) | |
result = df.add(tser, axis=0) | |
expected = DataFrame({0: dti + tdi, 1: tdi + tdi}) | |
tm.assert_frame_equal(result, expected) | |
def test_df_add_flex_filled_mixed_dtypes(self): | |
# GH 19611 | |
dti = pd.date_range("2016-01-01", periods=3) | |
ser = Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") | |
df = DataFrame({"A": dti, "B": ser}) | |
other = DataFrame({"A": ser, "B": ser}) | |
fill = pd.Timedelta(days=1).to_timedelta64() | |
result = df.add(other, fill_value=fill) | |
expected = DataFrame( | |
{ | |
"A": Series( | |
["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" | |
), | |
"B": ser * 2, | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_arith_flex_frame( | |
self, all_arithmetic_operators, float_frame, mixed_float_frame | |
): | |
# one instance of parametrized fixture | |
op = all_arithmetic_operators | |
def f(x, y): | |
# r-versions not in operator-stdlib; get op without "r" and invert | |
if op.startswith("__r"): | |
return getattr(operator, op.replace("__r", "__"))(y, x) | |
return getattr(operator, op)(x, y) | |
result = getattr(float_frame, op)(2 * float_frame) | |
expected = f(float_frame, 2 * float_frame) | |
tm.assert_frame_equal(result, expected) | |
# vs mix float | |
result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) | |
expected = f(mixed_float_frame, 2 * mixed_float_frame) | |
tm.assert_frame_equal(result, expected) | |
_check_mixed_float(result, dtype={"C": None}) | |
def test_arith_flex_frame_mixed( | |
self, | |
op, | |
int_frame, | |
mixed_int_frame, | |
mixed_float_frame, | |
switch_numexpr_min_elements, | |
): | |
f = getattr(operator, op) | |
# vs mix int | |
result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) | |
expected = f(mixed_int_frame, 2 + mixed_int_frame) | |
# no overflow in the uint | |
dtype = None | |
if op in ["__sub__"]: | |
dtype = {"B": "uint64", "C": None} | |
elif op in ["__add__", "__mul__"]: | |
dtype = {"C": None} | |
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0: | |
# when using numexpr, the casting rules are slightly different: | |
# in the `2 + mixed_int_frame` operation, int32 column becomes | |
# and int64 column (not preserving dtype in operation with Python | |
# scalar), and then the int32/int64 combo results in int64 result | |
dtype["A"] = (2 + mixed_int_frame)["A"].dtype | |
tm.assert_frame_equal(result, expected) | |
_check_mixed_int(result, dtype=dtype) | |
# vs mix float | |
result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) | |
expected = f(mixed_float_frame, 2 * mixed_float_frame) | |
tm.assert_frame_equal(result, expected) | |
_check_mixed_float(result, dtype={"C": None}) | |
# vs plain int | |
result = getattr(int_frame, op)(2 * int_frame) | |
expected = f(int_frame, 2 * int_frame) | |
tm.assert_frame_equal(result, expected) | |
def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame, dim): | |
# one instance of parametrized fixture | |
op = all_arithmetic_operators | |
# Check that arrays with dim >= 3 raise | |
arr = np.ones((1,) * dim) | |
msg = "Unable to coerce to Series/DataFrame" | |
with pytest.raises(ValueError, match=msg): | |
getattr(float_frame, op)(arr) | |
def test_arith_flex_frame_corner(self, float_frame): | |
const_add = float_frame.add(1) | |
tm.assert_frame_equal(const_add, float_frame + 1) | |
# corner cases | |
result = float_frame.add(float_frame[:0]) | |
expected = float_frame.sort_index() * np.nan | |
tm.assert_frame_equal(result, expected) | |
result = float_frame[:0].add(float_frame) | |
expected = float_frame.sort_index() * np.nan | |
tm.assert_frame_equal(result, expected) | |
with pytest.raises(NotImplementedError, match="fill_value"): | |
float_frame.add(float_frame.iloc[0], fill_value=3) | |
with pytest.raises(NotImplementedError, match="fill_value"): | |
float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) | |
def test_arith_flex_series_ops(self, simple_frame, op): | |
# after arithmetic refactor, add truediv here | |
df = simple_frame | |
row = df.xs("a") | |
col = df["two"] | |
f = getattr(df, op) | |
op = getattr(operator, op) | |
tm.assert_frame_equal(f(row), op(df, row)) | |
tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) | |
def test_arith_flex_series(self, simple_frame): | |
df = simple_frame | |
row = df.xs("a") | |
col = df["two"] | |
# special case for some reason | |
tm.assert_frame_equal(df.add(row, axis=None), df + row) | |
# cases which will be refactored after big arithmetic refactor | |
tm.assert_frame_equal(df.div(row), df / row) | |
tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) | |
def test_arith_flex_series_broadcasting(self, dtype): | |
# broadcasting issue in GH 7325 | |
df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype=dtype) | |
expected = DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) | |
result = df.div(df[0], axis="index") | |
tm.assert_frame_equal(result, expected) | |
def test_arith_flex_zero_len_raises(self): | |
# GH 19522 passing fill_value to frame flex arith methods should | |
# raise even in the zero-length special cases | |
ser_len0 = Series([], dtype=object) | |
df_len0 = DataFrame(columns=["A", "B"]) | |
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) | |
with pytest.raises(NotImplementedError, match="fill_value"): | |
df.add(ser_len0, fill_value="E") | |
with pytest.raises(NotImplementedError, match="fill_value"): | |
df_len0.sub(df["A"], axis=None, fill_value=3) | |
def test_flex_add_scalar_fill_value(self): | |
# GH#12723 | |
dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") | |
df = DataFrame({"foo": dat}, index=range(6)) | |
exp = df.fillna(0).add(2) | |
res = df.add(2, fill_value=0) | |
tm.assert_frame_equal(res, exp) | |
def test_sub_alignment_with_duplicate_index(self): | |
# GH#5185 dup aligning operations should work | |
df1 = DataFrame([1, 2, 3, 4, 5], index=[1, 2, 1, 2, 3]) | |
df2 = DataFrame([1, 2, 3], index=[1, 2, 3]) | |
expected = DataFrame([0, 2, 0, 2, 2], index=[1, 1, 2, 2, 3]) | |
result = df1.sub(df2) | |
tm.assert_frame_equal(result, expected) | |
def test_arithmetic_with_duplicate_columns(self, op): | |
# operations | |
df = DataFrame({"A": np.arange(10), "B": np.random.default_rng(2).random(10)}) | |
expected = getattr(df, op)(df) | |
expected.columns = ["A", "A"] | |
df.columns = ["A", "A"] | |
result = getattr(df, op)(df) | |
tm.assert_frame_equal(result, expected) | |
def test_broadcast_multiindex(self, level): | |
# GH34388 | |
df1 = DataFrame({"A": [0, 1, 2], "B": [1, 2, 3]}) | |
df1.columns = df1.columns.set_names("L1") | |
df2 = DataFrame({("A", "C"): [0, 0, 0], ("A", "D"): [0, 0, 0]}) | |
df2.columns = df2.columns.set_names(["L1", "L2"]) | |
result = df1.add(df2, level=level) | |
expected = DataFrame({("A", "C"): [0, 1, 2], ("A", "D"): [0, 1, 2]}) | |
expected.columns = expected.columns.set_names(["L1", "L2"]) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_multiindex_operations(self): | |
# GH 43321 | |
df = DataFrame( | |
{2010: [1, 2, 3], 2020: [3, 4, 5]}, | |
index=MultiIndex.from_product( | |
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"] | |
), | |
) | |
series = Series( | |
[0.4], | |
index=MultiIndex.from_product([["b"], ["a"]], names=["mod", "scen"]), | |
) | |
expected = DataFrame( | |
{2010: [1.4, 2.4, 3.4], 2020: [3.4, 4.4, 5.4]}, | |
index=MultiIndex.from_product( | |
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"] | |
), | |
) | |
result = df.add(series, axis=0) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_multiindex_operations_series_index_to_frame_index(self): | |
# GH 43321 | |
df = DataFrame( | |
{2010: [1], 2020: [3]}, | |
index=MultiIndex.from_product([["a"], ["b"]], names=["scen", "mod"]), | |
) | |
series = Series( | |
[10.0, 20.0, 30.0], | |
index=MultiIndex.from_product( | |
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"] | |
), | |
) | |
expected = DataFrame( | |
{2010: [11.0, 21, 31.0], 2020: [13.0, 23.0, 33.0]}, | |
index=MultiIndex.from_product( | |
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"] | |
), | |
) | |
result = df.add(series, axis=0) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_multiindex_operations_no_align(self): | |
df = DataFrame( | |
{2010: [1, 2, 3], 2020: [3, 4, 5]}, | |
index=MultiIndex.from_product( | |
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"] | |
), | |
) | |
series = Series( | |
[0.4], | |
index=MultiIndex.from_product([["c"], ["a"]], names=["mod", "scen"]), | |
) | |
expected = DataFrame( | |
{2010: np.nan, 2020: np.nan}, | |
index=MultiIndex.from_tuples( | |
[ | |
("a", "b", 0), | |
("a", "b", 1), | |
("a", "b", 2), | |
("a", "c", np.nan), | |
], | |
names=["scen", "mod", "id"], | |
), | |
) | |
result = df.add(series, axis=0) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_multiindex_operations_part_align(self): | |
df = DataFrame( | |
{2010: [1, 2, 3], 2020: [3, 4, 5]}, | |
index=MultiIndex.from_tuples( | |
[ | |
("a", "b", 0), | |
("a", "b", 1), | |
("a", "c", 2), | |
], | |
names=["scen", "mod", "id"], | |
), | |
) | |
series = Series( | |
[0.4], | |
index=MultiIndex.from_product([["b"], ["a"]], names=["mod", "scen"]), | |
) | |
expected = DataFrame( | |
{2010: [1.4, 2.4, np.nan], 2020: [3.4, 4.4, np.nan]}, | |
index=MultiIndex.from_tuples( | |
[ | |
("a", "b", 0), | |
("a", "b", 1), | |
("a", "c", 2), | |
], | |
names=["scen", "mod", "id"], | |
), | |
) | |
result = df.add(series, axis=0) | |
tm.assert_frame_equal(result, expected) | |
class TestFrameArithmetic: | |
def test_td64_op_nat_casting(self): | |
# Make sure we don't accidentally treat timedelta64(NaT) as datetime64 | |
# when calling dispatch_to_series in DataFrame arithmetic | |
ser = Series(["NaT", "NaT"], dtype="timedelta64[ns]") | |
df = DataFrame([[1, 2], [3, 4]]) | |
result = df * ser | |
expected = DataFrame({0: ser, 1: ser}) | |
tm.assert_frame_equal(result, expected) | |
def test_df_add_2d_array_rowlike_broadcasts(self): | |
# GH#23000 | |
arr = np.arange(6).reshape(3, 2) | |
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) | |
rowlike = arr[[1], :] # shape --> (1, ncols) | |
assert rowlike.shape == (1, df.shape[1]) | |
expected = DataFrame( | |
[[2, 4], [4, 6], [6, 8]], | |
columns=df.columns, | |
index=df.index, | |
# specify dtype explicitly to avoid failing | |
# on 32bit builds | |
dtype=arr.dtype, | |
) | |
result = df + rowlike | |
tm.assert_frame_equal(result, expected) | |
result = rowlike + df | |
tm.assert_frame_equal(result, expected) | |
def test_df_add_2d_array_collike_broadcasts(self): | |
# GH#23000 | |
arr = np.arange(6).reshape(3, 2) | |
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) | |
collike = arr[:, [1]] # shape --> (nrows, 1) | |
assert collike.shape == (df.shape[0], 1) | |
expected = DataFrame( | |
[[1, 2], [5, 6], [9, 10]], | |
columns=df.columns, | |
index=df.index, | |
# specify dtype explicitly to avoid failing | |
# on 32bit builds | |
dtype=arr.dtype, | |
) | |
result = df + collike | |
tm.assert_frame_equal(result, expected) | |
result = collike + df | |
tm.assert_frame_equal(result, expected) | |
def test_df_arith_2d_array_rowlike_broadcasts( | |
self, request, all_arithmetic_operators, using_array_manager | |
): | |
# GH#23000 | |
opname = all_arithmetic_operators | |
if using_array_manager and opname in ("__rmod__", "__rfloordiv__"): | |
# TODO(ArrayManager) decide on dtypes | |
td.mark_array_manager_not_yet_implemented(request) | |
arr = np.arange(6).reshape(3, 2) | |
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) | |
rowlike = arr[[1], :] # shape --> (1, ncols) | |
assert rowlike.shape == (1, df.shape[1]) | |
exvals = [ | |
getattr(df.loc["A"], opname)(rowlike.squeeze()), | |
getattr(df.loc["B"], opname)(rowlike.squeeze()), | |
getattr(df.loc["C"], opname)(rowlike.squeeze()), | |
] | |
expected = DataFrame(exvals, columns=df.columns, index=df.index) | |
result = getattr(df, opname)(rowlike) | |
tm.assert_frame_equal(result, expected) | |
def test_df_arith_2d_array_collike_broadcasts( | |
self, request, all_arithmetic_operators, using_array_manager | |
): | |
# GH#23000 | |
opname = all_arithmetic_operators | |
if using_array_manager and opname in ("__rmod__", "__rfloordiv__"): | |
# TODO(ArrayManager) decide on dtypes | |
td.mark_array_manager_not_yet_implemented(request) | |
arr = np.arange(6).reshape(3, 2) | |
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) | |
collike = arr[:, [1]] # shape --> (nrows, 1) | |
assert collike.shape == (df.shape[0], 1) | |
exvals = { | |
True: getattr(df[True], opname)(collike.squeeze()), | |
False: getattr(df[False], opname)(collike.squeeze()), | |
} | |
dtype = None | |
if opname in ["__rmod__", "__rfloordiv__"]: | |
# Series ops may return mixed int/float dtypes in cases where | |
# DataFrame op will return all-float. So we upcast `expected` | |
dtype = np.common_type(*(x.values for x in exvals.values())) | |
expected = DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) | |
result = getattr(df, opname)(collike) | |
tm.assert_frame_equal(result, expected) | |
def test_df_bool_mul_int(self): | |
# GH 22047, GH 22163 multiplication by 1 should result in int dtype, | |
# not object dtype | |
df = DataFrame([[False, True], [False, False]]) | |
result = df * 1 | |
# On appveyor this comes back as np.int32 instead of np.int64, | |
# so we check dtype.kind instead of just dtype | |
kinds = result.dtypes.apply(lambda x: x.kind) | |
assert (kinds == "i").all() | |
result = 1 * df | |
kinds = result.dtypes.apply(lambda x: x.kind) | |
assert (kinds == "i").all() | |
def test_arith_mixed(self): | |
left = DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) | |
result = left + left | |
expected = DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) | |
tm.assert_frame_equal(result, expected) | |
def test_arith_getitem_commute(self, all_arithmetic_functions, col): | |
df = DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) | |
result = all_arithmetic_functions(df, 1)[col] | |
expected = all_arithmetic_functions(df[col], 1) | |
tm.assert_series_equal(result, expected) | |
def test_arith_alignment_non_pandas_object(self, values): | |
# GH#17901 | |
df = DataFrame({"A": [1, 1], "B": [1, 1]}) | |
expected = DataFrame({"A": [2, 2], "B": [3, 3]}) | |
result = df + values | |
tm.assert_frame_equal(result, expected) | |
def test_arith_non_pandas_object(self): | |
df = DataFrame( | |
np.arange(1, 10, dtype="f8").reshape(3, 3), | |
columns=["one", "two", "three"], | |
index=["a", "b", "c"], | |
) | |
val1 = df.xs("a").values | |
added = DataFrame(df.values + val1, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(df + val1, added) | |
added = DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(df.add(val1, axis=0), added) | |
val2 = list(df["two"]) | |
added = DataFrame(df.values + val2, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(df + val2, added) | |
added = DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(df.add(val2, axis="index"), added) | |
val3 = np.random.default_rng(2).random(df.shape) | |
added = DataFrame(df.values + val3, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(df.add(val3), added) | |
def test_operations_with_interval_categories_index(self, all_arithmetic_operators): | |
# GH#27415 | |
op = all_arithmetic_operators | |
ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) | |
data = [1, 2] | |
df = DataFrame([data], columns=ind) | |
num = 10 | |
result = getattr(df, op)(num) | |
expected = DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_with_frame_reindex(self): | |
# GH#31623 | |
df = DataFrame( | |
{ | |
"foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], | |
"bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], | |
}, | |
columns=["foo", "bar"], | |
dtype="M8[ns]", | |
) | |
df2 = df[["foo"]] | |
result = df - df2 | |
expected = DataFrame( | |
{"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, | |
columns=["bar", "foo"], | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_binop_other(self, op, value, dtype, switch_numexpr_min_elements): | |
skip = { | |
(operator.truediv, "bool"), | |
(operator.pow, "bool"), | |
(operator.add, "bool"), | |
(operator.mul, "bool"), | |
} | |
elem = DummyElement(value, dtype) | |
df = DataFrame({"A": [elem.value, elem.value]}, dtype=elem.dtype) | |
invalid = { | |
(operator.pow, "<M8[ns]"), | |
(operator.mod, "<M8[ns]"), | |
(operator.truediv, "<M8[ns]"), | |
(operator.mul, "<M8[ns]"), | |
(operator.add, "<M8[ns]"), | |
(operator.pow, "<m8[ns]"), | |
(operator.mul, "<m8[ns]"), | |
(operator.sub, "bool"), | |
(operator.mod, "complex128"), | |
} | |
if (op, dtype) in invalid: | |
warn = None | |
if (dtype == "<M8[ns]" and op == operator.add) or ( | |
dtype == "<m8[ns]" and op == operator.mul | |
): | |
msg = None | |
elif dtype == "complex128": | |
msg = "ufunc 'remainder' not supported for the input types" | |
elif op is operator.sub: | |
msg = "numpy boolean subtract, the `-` operator, is " | |
if ( | |
dtype == "bool" | |
and expr.USE_NUMEXPR | |
and switch_numexpr_min_elements == 0 | |
): | |
warn = UserWarning # "evaluating in Python space because ..." | |
else: | |
msg = ( | |
f"cannot perform __{op.__name__}__ with this " | |
"index type: (DatetimeArray|TimedeltaArray)" | |
) | |
with pytest.raises(TypeError, match=msg): | |
with tm.assert_produces_warning(warn): | |
op(df, elem.value) | |
elif (op, dtype) in skip: | |
if op in [operator.add, operator.mul]: | |
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0: | |
# "evaluating in Python space because ..." | |
warn = UserWarning | |
else: | |
warn = None | |
with tm.assert_produces_warning(warn): | |
op(df, elem.value) | |
else: | |
msg = "operator '.*' not implemented for .* dtypes" | |
with pytest.raises(NotImplementedError, match=msg): | |
op(df, elem.value) | |
else: | |
with tm.assert_produces_warning(None): | |
result = op(df, elem.value).dtypes | |
expected = op(df, value).dtypes | |
tm.assert_series_equal(result, expected) | |
def test_arithmetic_midx_cols_different_dtypes(self): | |
# GH#49769 | |
midx = MultiIndex.from_arrays([Series([1, 2]), Series([3, 4])]) | |
midx2 = MultiIndex.from_arrays([Series([1, 2], dtype="Int8"), Series([3, 4])]) | |
left = DataFrame([[1, 2], [3, 4]], columns=midx) | |
right = DataFrame([[1, 2], [3, 4]], columns=midx2) | |
result = left - right | |
expected = DataFrame([[0, 0], [0, 0]], columns=midx) | |
tm.assert_frame_equal(result, expected) | |
def test_arithmetic_midx_cols_different_dtypes_different_order(self): | |
# GH#49769 | |
midx = MultiIndex.from_arrays([Series([1, 2]), Series([3, 4])]) | |
midx2 = MultiIndex.from_arrays([Series([2, 1], dtype="Int8"), Series([4, 3])]) | |
left = DataFrame([[1, 2], [3, 4]], columns=midx) | |
right = DataFrame([[1, 2], [3, 4]], columns=midx2) | |
result = left - right | |
expected = DataFrame([[-1, 1], [-1, 1]], columns=midx) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_with_zero_len_series_corner_cases(): | |
# GH#28600 | |
# easy all-float case | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal(6).reshape(3, 2), columns=["A", "B"] | |
) | |
ser = Series(dtype=np.float64) | |
result = df + ser | |
expected = DataFrame(df.values * np.nan, columns=df.columns) | |
tm.assert_frame_equal(result, expected) | |
with pytest.raises(ValueError, match="not aligned"): | |
# Automatic alignment for comparisons deprecated GH#36795, enforced 2.0 | |
df == ser | |
# non-float case should not raise TypeError on comparison | |
df2 = DataFrame(df.values.view("M8[ns]"), columns=df.columns) | |
with pytest.raises(ValueError, match="not aligned"): | |
# Automatic alignment for comparisons deprecated | |
df2 == ser | |
def test_zero_len_frame_with_series_corner_cases(): | |
# GH#28600 | |
df = DataFrame(columns=["A", "B"], dtype=np.float64) | |
ser = Series([1, 2], index=["A", "B"]) | |
result = df + ser | |
expected = df | |
tm.assert_frame_equal(result, expected) | |
def test_frame_single_columns_object_sum_axis_1(): | |
# GH 13758 | |
data = { | |
"One": Series(["A", 1.2, np.nan]), | |
} | |
df = DataFrame(data) | |
result = df.sum(axis=1) | |
expected = Series(["A", 1.2, 0]) | |
tm.assert_series_equal(result, expected) | |
# ------------------------------------------------------------------- | |
# Unsorted | |
# These arithmetic tests were previously in other files, eventually | |
# should be parametrized and put into tests.arithmetic | |
class TestFrameArithmeticUnsorted: | |
def test_frame_add_tz_mismatch_converts_to_utc(self): | |
rng = pd.date_range("1/1/2011", periods=10, freq="h", tz="US/Eastern") | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal(len(rng)), index=rng, columns=["a"] | |
) | |
df_moscow = df.tz_convert("Europe/Moscow") | |
result = df + df_moscow | |
assert result.index.tz is timezone.utc | |
result = df_moscow + df | |
assert result.index.tz is timezone.utc | |
def test_align_frame(self): | |
rng = pd.period_range("1/1/2000", "1/1/2010", freq="Y") | |
ts = DataFrame( | |
np.random.default_rng(2).standard_normal((len(rng), 3)), index=rng | |
) | |
result = ts + ts[::2] | |
expected = ts + ts | |
expected.iloc[1::2] = np.nan | |
tm.assert_frame_equal(result, expected) | |
half = ts[::2] | |
result = ts + half.take(np.random.default_rng(2).permutation(len(half))) | |
tm.assert_frame_equal(result, expected) | |
def test_operators_none_as_na(self, op): | |
df = DataFrame( | |
{"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object | |
) | |
# since filling converts dtypes from object, changed expected to be | |
# object | |
msg = "Downcasting object dtype arrays" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
filled = df.fillna(np.nan) | |
result = op(df, 3) | |
expected = op(filled, 3).astype(object) | |
expected[pd.isna(expected)] = np.nan | |
tm.assert_frame_equal(result, expected) | |
result = op(df, df) | |
expected = op(filled, filled).astype(object) | |
expected[pd.isna(expected)] = np.nan | |
tm.assert_frame_equal(result, expected) | |
msg = "Downcasting object dtype arrays" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = op(df, df.fillna(7)) | |
tm.assert_frame_equal(result, expected) | |
msg = "Downcasting object dtype arrays" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = op(df.fillna(7), df) | |
tm.assert_frame_equal(result, expected) | |
# TODO: not sure what's correct here. | |
def test_logical_typeerror_with_non_valid(self, op, res, float_frame): | |
# we are comparing floats vs a string | |
result = getattr(float_frame, op)("foo") | |
assert bool(result.all().all()) is res | |
def test_binary_ops_align(self, op): | |
# test aligning binary ops | |
# GH 6681 | |
index = MultiIndex.from_product( | |
[list("abc"), ["one", "two", "three"], [1, 2, 3]], | |
names=["first", "second", "third"], | |
) | |
df = DataFrame( | |
np.arange(27 * 3).reshape(27, 3), | |
index=index, | |
columns=["value1", "value2", "value3"], | |
).sort_index() | |
idx = pd.IndexSlice | |
opa = getattr(operator, op, None) | |
if opa is None: | |
return | |
x = Series([1.0, 10.0, 100.0], [1, 2, 3]) | |
result = getattr(df, op)(x, level="third", axis=0) | |
expected = pd.concat( | |
[opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()] | |
).sort_index() | |
tm.assert_frame_equal(result, expected) | |
x = Series([1.0, 10.0], ["two", "three"]) | |
result = getattr(df, op)(x, level="second", axis=0) | |
expected = ( | |
pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()]) | |
.reindex_like(df) | |
.sort_index() | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_binary_ops_align_series_dataframe(self): | |
# GH9463 (alignment level of dataframe with series) | |
midx = MultiIndex.from_product([["A", "B"], ["a", "b"]]) | |
df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx) | |
s = Series({"a": 1, "b": 2}) | |
df2 = df.copy() | |
df2.columns.names = ["lvl0", "lvl1"] | |
s2 = s.copy() | |
s2.index.name = "lvl1" | |
# different cases of integer/string level names: | |
res1 = df.mul(s, axis=1, level=1) | |
res2 = df.mul(s2, axis=1, level=1) | |
res3 = df2.mul(s, axis=1, level=1) | |
res4 = df2.mul(s2, axis=1, level=1) | |
res5 = df2.mul(s, axis=1, level="lvl1") | |
res6 = df2.mul(s2, axis=1, level="lvl1") | |
exp = DataFrame( | |
np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx | |
) | |
for res in [res1, res2]: | |
tm.assert_frame_equal(res, exp) | |
exp.columns.names = ["lvl0", "lvl1"] | |
for res in [res3, res4, res5, res6]: | |
tm.assert_frame_equal(res, exp) | |
def test_add_with_dti_mismatched_tzs(self): | |
base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC") | |
idx1 = base.tz_convert("Asia/Tokyo")[:2] | |
idx2 = base.tz_convert("US/Eastern")[1:] | |
df1 = DataFrame({"A": [1, 2]}, index=idx1) | |
df2 = DataFrame({"A": [1, 1]}, index=idx2) | |
exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base) | |
tm.assert_frame_equal(df1 + df2, exp) | |
def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame): | |
frame_copy = float_frame.reindex(float_frame.index[::2]) | |
del frame_copy["D"] | |
# adding NAs to first 5 values of column "C" | |
frame_copy.loc[: frame_copy.index[4], "C"] = np.nan | |
added = float_frame + frame_copy | |
indexer = added["A"].dropna().index | |
exp = (float_frame["A"] * 2).copy() | |
tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer]) | |
exp.loc[~exp.index.isin(indexer)] = np.nan | |
tm.assert_series_equal(added["A"], exp.loc[added["A"].index]) | |
assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all() | |
# assert(False) | |
assert np.isnan(added["D"]).all() | |
self_added = float_frame + float_frame | |
tm.assert_index_equal(self_added.index, float_frame.index) | |
added_rev = frame_copy + float_frame | |
assert np.isnan(added["D"]).all() | |
assert np.isnan(added_rev["D"]).all() | |
# corner cases | |
# empty | |
plus_empty = float_frame + DataFrame() | |
assert np.isnan(plus_empty.values).all() | |
empty_plus = DataFrame() + float_frame | |
assert np.isnan(empty_plus.values).all() | |
empty_empty = DataFrame() + DataFrame() | |
assert empty_empty.empty | |
# out of order | |
reverse = float_frame.reindex(columns=float_frame.columns[::-1]) | |
tm.assert_frame_equal(reverse + float_frame, float_frame * 2) | |
# mix vs float64, upcast | |
added = float_frame + mixed_float_frame | |
_check_mixed_float(added, dtype="float64") | |
added = mixed_float_frame + float_frame | |
_check_mixed_float(added, dtype="float64") | |
# mix vs mix | |
added = mixed_float_frame + mixed_float_frame | |
_check_mixed_float(added, dtype={"C": None}) | |
# with int | |
added = float_frame + mixed_int_frame | |
_check_mixed_float(added, dtype="float64") | |
def test_combine_series(self, float_frame, mixed_float_frame, mixed_int_frame): | |
# Series | |
series = float_frame.xs(float_frame.index[0]) | |
added = float_frame + series | |
for key, s in added.items(): | |
tm.assert_series_equal(s, float_frame[key] + series[key]) | |
larger_series = series.to_dict() | |
larger_series["E"] = 1 | |
larger_series = Series(larger_series) | |
larger_added = float_frame + larger_series | |
for key, s in float_frame.items(): | |
tm.assert_series_equal(larger_added[key], s + series[key]) | |
assert "E" in larger_added | |
assert np.isnan(larger_added["E"]).all() | |
# no upcast needed | |
added = mixed_float_frame + series | |
assert np.all(added.dtypes == series.dtype) | |
# vs mix (upcast) as needed | |
added = mixed_float_frame + series.astype("float32") | |
_check_mixed_float(added, dtype={"C": None}) | |
added = mixed_float_frame + series.astype("float16") | |
_check_mixed_float(added, dtype={"C": None}) | |
# these used to raise with numexpr as we are adding an int64 to an | |
# uint64....weird vs int | |
added = mixed_int_frame + (100 * series).astype("int64") | |
_check_mixed_int( | |
added, dtype={"A": "int64", "B": "float64", "C": "int64", "D": "int64"} | |
) | |
added = mixed_int_frame + (100 * series).astype("int32") | |
_check_mixed_int( | |
added, dtype={"A": "int32", "B": "float64", "C": "int32", "D": "int64"} | |
) | |
def test_combine_timeseries(self, datetime_frame): | |
# TimeSeries | |
ts = datetime_frame["A"] | |
# 10890 | |
# we no longer allow auto timeseries broadcasting | |
# and require explicit broadcasting | |
added = datetime_frame.add(ts, axis="index") | |
for key, col in datetime_frame.items(): | |
result = col + ts | |
tm.assert_series_equal(added[key], result, check_names=False) | |
assert added[key].name == key | |
if col.name == ts.name: | |
assert result.name == "A" | |
else: | |
assert result.name is None | |
smaller_frame = datetime_frame[:-5] | |
smaller_added = smaller_frame.add(ts, axis="index") | |
tm.assert_index_equal(smaller_added.index, datetime_frame.index) | |
smaller_ts = ts[:-5] | |
smaller_added2 = datetime_frame.add(smaller_ts, axis="index") | |
tm.assert_frame_equal(smaller_added, smaller_added2) | |
# length 0, result is all-nan | |
result = datetime_frame.add(ts[:0], axis="index") | |
expected = DataFrame( | |
np.nan, index=datetime_frame.index, columns=datetime_frame.columns | |
) | |
tm.assert_frame_equal(result, expected) | |
# Frame is all-nan | |
result = datetime_frame[:0].add(ts, axis="index") | |
expected = DataFrame( | |
np.nan, index=datetime_frame.index, columns=datetime_frame.columns | |
) | |
tm.assert_frame_equal(result, expected) | |
# empty but with non-empty index | |
frame = datetime_frame[:1].reindex(columns=[]) | |
result = frame.mul(ts, axis="index") | |
assert len(result) == len(ts) | |
def test_combineFunc(self, float_frame, mixed_float_frame): | |
result = float_frame * 2 | |
tm.assert_numpy_array_equal(result.values, float_frame.values * 2) | |
# vs mix | |
result = mixed_float_frame * 2 | |
for c, s in result.items(): | |
tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2) | |
_check_mixed_float(result, dtype={"C": None}) | |
result = DataFrame() * 2 | |
assert result.index.equals(DataFrame().index) | |
assert len(result.columns) == 0 | |
def test_comparisons(self, simple_frame, float_frame, func): | |
df1 = DataFrame( | |
np.random.default_rng(2).standard_normal((30, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=pd.date_range("2000-01-01", periods=30, freq="B"), | |
) | |
df2 = df1.copy() | |
row = simple_frame.xs("a") | |
ndim_5 = np.ones(df1.shape + (1, 1, 1)) | |
result = func(df1, df2) | |
tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) | |
msg = ( | |
"Unable to coerce to Series/DataFrame, " | |
"dimension must be <= 2: (30, 4, 1, 1, 1)" | |
) | |
with pytest.raises(ValueError, match=re.escape(msg)): | |
func(df1, ndim_5) | |
result2 = func(simple_frame, row) | |
tm.assert_numpy_array_equal( | |
result2.values, func(simple_frame.values, row.values) | |
) | |
result3 = func(float_frame, 0) | |
tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0)) | |
msg = ( | |
r"Can only compare identically-labeled \(both index and columns\) " | |
"DataFrame objects" | |
) | |
with pytest.raises(ValueError, match=msg): | |
func(simple_frame, simple_frame[:2]) | |
def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne): | |
# GH 11565 | |
df = DataFrame( | |
{x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]} | |
) | |
f = getattr(operator, compare_operators_no_eq_ne) | |
msg = "'[<>]=?' not supported between instances of 'str' and 'int'" | |
with pytest.raises(TypeError, match=msg): | |
f(df, 0) | |
def test_comparison_protected_from_errstate(self): | |
missing_df = DataFrame( | |
np.ones((10, 4), dtype=np.float64), | |
columns=Index(list("ABCD"), dtype=object), | |
) | |
missing_df.loc[missing_df.index[0], "A"] = np.nan | |
with np.errstate(invalid="ignore"): | |
expected = missing_df.values < 0 | |
with np.errstate(invalid="raise"): | |
result = (missing_df < 0).values | |
tm.assert_numpy_array_equal(result, expected) | |
def test_boolean_comparison(self): | |
# GH 4576 | |
# boolean comparisons with a tuple/list give unexpected results | |
df = DataFrame(np.arange(6).reshape((3, 2))) | |
b = np.array([2, 2]) | |
b_r = np.atleast_2d([2, 2]) | |
b_c = b_r.T | |
lst = [2, 2, 2] | |
tup = tuple(lst) | |
# gt | |
expected = DataFrame([[False, False], [False, True], [True, True]]) | |
result = df > b | |
tm.assert_frame_equal(result, expected) | |
result = df.values > b | |
tm.assert_numpy_array_equal(result, expected.values) | |
msg1d = "Unable to coerce to Series, length must be 2: given 3" | |
msg2d = "Unable to coerce to DataFrame, shape must be" | |
msg2db = "operands could not be broadcast together with shapes" | |
with pytest.raises(ValueError, match=msg1d): | |
# wrong shape | |
df > lst | |
with pytest.raises(ValueError, match=msg1d): | |
# wrong shape | |
df > tup | |
# broadcasts like ndarray (GH#23000) | |
result = df > b_r | |
tm.assert_frame_equal(result, expected) | |
result = df.values > b_r | |
tm.assert_numpy_array_equal(result, expected.values) | |
with pytest.raises(ValueError, match=msg2d): | |
df > b_c | |
with pytest.raises(ValueError, match=msg2db): | |
df.values > b_c | |
# == | |
expected = DataFrame([[False, False], [True, False], [False, False]]) | |
result = df == b | |
tm.assert_frame_equal(result, expected) | |
with pytest.raises(ValueError, match=msg1d): | |
df == lst | |
with pytest.raises(ValueError, match=msg1d): | |
df == tup | |
# broadcasts like ndarray (GH#23000) | |
result = df == b_r | |
tm.assert_frame_equal(result, expected) | |
result = df.values == b_r | |
tm.assert_numpy_array_equal(result, expected.values) | |
with pytest.raises(ValueError, match=msg2d): | |
df == b_c | |
assert df.values.shape != b_c.shape | |
# with alignment | |
df = DataFrame( | |
np.arange(6).reshape((3, 2)), columns=list("AB"), index=list("abc") | |
) | |
expected.index = df.index | |
expected.columns = df.columns | |
with pytest.raises(ValueError, match=msg1d): | |
df == lst | |
with pytest.raises(ValueError, match=msg1d): | |
df == tup | |
def test_inplace_ops_alignment(self): | |
# inplace ops / ops alignment | |
# GH 8511 | |
columns = list("abcdefg") | |
X_orig = DataFrame( | |
np.arange(10 * len(columns)).reshape(-1, len(columns)), | |
columns=columns, | |
index=range(10), | |
) | |
Z = 100 * X_orig.iloc[:, 1:-1].copy() | |
block1 = list("bedcf") | |
subs = list("bcdef") | |
# add | |
X = X_orig.copy() | |
result1 = (X[block1] + Z).reindex(columns=subs) | |
X[block1] += Z | |
result2 = X.reindex(columns=subs) | |
X = X_orig.copy() | |
result3 = (X[block1] + Z[block1]).reindex(columns=subs) | |
X[block1] += Z[block1] | |
result4 = X.reindex(columns=subs) | |
tm.assert_frame_equal(result1, result2) | |
tm.assert_frame_equal(result1, result3) | |
tm.assert_frame_equal(result1, result4) | |
# sub | |
X = X_orig.copy() | |
result1 = (X[block1] - Z).reindex(columns=subs) | |
X[block1] -= Z | |
result2 = X.reindex(columns=subs) | |
X = X_orig.copy() | |
result3 = (X[block1] - Z[block1]).reindex(columns=subs) | |
X[block1] -= Z[block1] | |
result4 = X.reindex(columns=subs) | |
tm.assert_frame_equal(result1, result2) | |
tm.assert_frame_equal(result1, result3) | |
tm.assert_frame_equal(result1, result4) | |
def test_inplace_ops_identity(self): | |
# GH 5104 | |
# make sure that we are actually changing the object | |
s_orig = Series([1, 2, 3]) | |
df_orig = DataFrame( | |
np.random.default_rng(2).integers(0, 5, size=10).reshape(-1, 5) | |
) | |
# no dtype change | |
s = s_orig.copy() | |
s2 = s | |
s += 1 | |
tm.assert_series_equal(s, s2) | |
tm.assert_series_equal(s_orig + 1, s) | |
assert s is s2 | |
assert s._mgr is s2._mgr | |
df = df_orig.copy() | |
df2 = df | |
df += 1 | |
tm.assert_frame_equal(df, df2) | |
tm.assert_frame_equal(df_orig + 1, df) | |
assert df is df2 | |
assert df._mgr is df2._mgr | |
# dtype change | |
s = s_orig.copy() | |
s2 = s | |
s += 1.5 | |
tm.assert_series_equal(s, s2) | |
tm.assert_series_equal(s_orig + 1.5, s) | |
df = df_orig.copy() | |
df2 = df | |
df += 1.5 | |
tm.assert_frame_equal(df, df2) | |
tm.assert_frame_equal(df_orig + 1.5, df) | |
assert df is df2 | |
assert df._mgr is df2._mgr | |
# mixed dtype | |
arr = np.random.default_rng(2).integers(0, 10, size=5) | |
df_orig = DataFrame({"A": arr.copy(), "B": "foo"}) | |
df = df_orig.copy() | |
df2 = df | |
df["A"] += 1 | |
expected = DataFrame({"A": arr.copy() + 1, "B": "foo"}) | |
tm.assert_frame_equal(df, expected) | |
tm.assert_frame_equal(df2, expected) | |
assert df._mgr is df2._mgr | |
df = df_orig.copy() | |
df2 = df | |
df["A"] += 1.5 | |
expected = DataFrame({"A": arr.copy() + 1.5, "B": "foo"}) | |
tm.assert_frame_equal(df, expected) | |
tm.assert_frame_equal(df2, expected) | |
assert df._mgr is df2._mgr | |
def test_inplace_ops_identity2(self, op): | |
df = DataFrame({"a": [1.0, 2.0, 3.0], "b": [1, 2, 3]}) | |
operand = 2 | |
if op in ("and", "or", "xor"): | |
# cannot use floats for boolean ops | |
df["a"] = [True, False, True] | |
df_copy = df.copy() | |
iop = f"__i{op}__" | |
op = f"__{op}__" | |
# no id change and value is correct | |
getattr(df, iop)(operand) | |
expected = getattr(df_copy, op)(operand) | |
tm.assert_frame_equal(df, expected) | |
expected = id(df) | |
assert id(df) == expected | |
def test_alignment_non_pandas(self, val): | |
index = ["A", "B", "C"] | |
columns = ["X", "Y", "Z"] | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((3, 3)), | |
index=index, | |
columns=columns, | |
) | |
align = DataFrame._align_for_op | |
expected = DataFrame({"X": val, "Y": val, "Z": val}, index=df.index) | |
tm.assert_frame_equal(align(df, val, axis=0)[1], expected) | |
expected = DataFrame( | |
{"X": [1, 1, 1], "Y": [2, 2, 2], "Z": [3, 3, 3]}, index=df.index | |
) | |
tm.assert_frame_equal(align(df, val, axis=1)[1], expected) | |
def test_alignment_non_pandas_length_mismatch(self, val): | |
index = ["A", "B", "C"] | |
columns = ["X", "Y", "Z"] | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((3, 3)), | |
index=index, | |
columns=columns, | |
) | |
align = DataFrame._align_for_op | |
# length mismatch | |
msg = "Unable to coerce to Series, length must be 3: given 2" | |
with pytest.raises(ValueError, match=msg): | |
align(df, val, axis=0) | |
with pytest.raises(ValueError, match=msg): | |
align(df, val, axis=1) | |
def test_alignment_non_pandas_index_columns(self): | |
index = ["A", "B", "C"] | |
columns = ["X", "Y", "Z"] | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((3, 3)), | |
index=index, | |
columns=columns, | |
) | |
align = DataFrame._align_for_op | |
val = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
tm.assert_frame_equal( | |
align(df, val, axis=0)[1], | |
DataFrame(val, index=df.index, columns=df.columns), | |
) | |
tm.assert_frame_equal( | |
align(df, val, axis=1)[1], | |
DataFrame(val, index=df.index, columns=df.columns), | |
) | |
# shape mismatch | |
msg = "Unable to coerce to DataFrame, shape must be" | |
val = np.array([[1, 2, 3], [4, 5, 6]]) | |
with pytest.raises(ValueError, match=msg): | |
align(df, val, axis=0) | |
with pytest.raises(ValueError, match=msg): | |
align(df, val, axis=1) | |
val = np.zeros((3, 3, 3)) | |
msg = re.escape( | |
"Unable to coerce to Series/DataFrame, dimension must be <= 2: (3, 3, 3)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
align(df, val, axis=0) | |
with pytest.raises(ValueError, match=msg): | |
align(df, val, axis=1) | |
def test_no_warning(self, all_arithmetic_operators): | |
df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]}) | |
b = df["B"] | |
with tm.assert_produces_warning(None): | |
getattr(df, all_arithmetic_operators)(b) | |
def test_dunder_methods_binary(self, all_arithmetic_operators): | |
# GH#??? frame.__foo__ should only accept one argument | |
df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]}) | |
b = df["B"] | |
with pytest.raises(TypeError, match="takes 2 positional arguments"): | |
getattr(df, all_arithmetic_operators)(b, 0) | |
def test_align_int_fill_bug(self): | |
# GH#910 | |
X = np.arange(10 * 10, dtype="float64").reshape(10, 10) | |
Y = np.ones((10, 1), dtype=int) | |
df1 = DataFrame(X) | |
df1["0.X"] = Y.squeeze() | |
df2 = df1.astype(float) | |
result = df1 - df1.mean() | |
expected = df2 - df2.mean() | |
tm.assert_frame_equal(result, expected) | |
def test_pow_with_realignment(): | |
# GH#32685 pow has special semantics for operating with null values | |
left = DataFrame({"A": [0, 1, 2]}) | |
right = DataFrame(index=[0, 1, 2]) | |
result = left**right | |
expected = DataFrame({"A": [np.nan, 1.0, np.nan]}) | |
tm.assert_frame_equal(result, expected) | |
def test_dataframe_series_extension_dtypes(): | |
# https://github.com/pandas-dev/pandas/issues/34311 | |
df = DataFrame( | |
np.random.default_rng(2).integers(0, 100, (10, 3)), columns=["a", "b", "c"] | |
) | |
ser = Series([1, 2, 3], index=["a", "b", "c"]) | |
expected = df.to_numpy("int64") + ser.to_numpy("int64").reshape(-1, 3) | |
expected = DataFrame(expected, columns=df.columns, dtype="Int64") | |
df_ea = df.astype("Int64") | |
result = df_ea + ser | |
tm.assert_frame_equal(result, expected) | |
result = df_ea + ser.astype("Int64") | |
tm.assert_frame_equal(result, expected) | |
def test_dataframe_blockwise_slicelike(): | |
# GH#34367 | |
arr = np.random.default_rng(2).integers(0, 1000, (100, 10)) | |
df1 = DataFrame(arr) | |
# Explicit cast to float to avoid implicit cast when setting nan | |
df2 = df1.copy().astype({1: "float", 3: "float", 7: "float"}) | |
df2.iloc[0, [1, 3, 7]] = np.nan | |
# Explicit cast to float to avoid implicit cast when setting nan | |
df3 = df1.copy().astype({5: "float"}) | |
df3.iloc[0, [5]] = np.nan | |
# Explicit cast to float to avoid implicit cast when setting nan | |
df4 = df1.copy().astype({2: "float", 3: "float", 4: "float"}) | |
df4.iloc[0, np.arange(2, 5)] = np.nan | |
# Explicit cast to float to avoid implicit cast when setting nan | |
df5 = df1.copy().astype({4: "float", 5: "float", 6: "float"}) | |
df5.iloc[0, np.arange(4, 7)] = np.nan | |
for left, right in [(df1, df2), (df2, df3), (df4, df5)]: | |
res = left + right | |
expected = DataFrame({i: left[i] + right[i] for i in left.columns}) | |
tm.assert_frame_equal(res, expected) | |
def test_dataframe_operation_with_non_numeric_types(df, col_dtype): | |
# GH #22663 | |
expected = DataFrame([[0.0, np.nan], [3.0, np.nan]], columns=list("ab")) | |
expected = expected.astype({"b": col_dtype}) | |
result = df + Series([-1.0], index=list("a")) | |
tm.assert_frame_equal(result, expected) | |
def test_arith_reindex_with_duplicates(): | |
# https://github.com/pandas-dev/pandas/issues/35194 | |
df1 = DataFrame(data=[[0]], columns=["second"]) | |
df2 = DataFrame(data=[[0, 0, 0]], columns=["first", "second", "second"]) | |
result = df1 + df2 | |
expected = DataFrame([[np.nan, 0, 0]], columns=["first", "second", "second"]) | |
tm.assert_frame_equal(result, expected) | |
def test_arith_list_of_arraylike_raise(to_add): | |
# GH 36702. Raise when trying to add list of array-like to DataFrame | |
df = DataFrame({"x": [1, 2], "y": [1, 2]}) | |
msg = f"Unable to coerce list of {type(to_add[0])} to Series/DataFrame" | |
with pytest.raises(ValueError, match=msg): | |
df + to_add | |
with pytest.raises(ValueError, match=msg): | |
to_add + df | |
def test_inplace_arithmetic_series_update(using_copy_on_write, warn_copy_on_write): | |
# https://github.com/pandas-dev/pandas/issues/36373 | |
df = DataFrame({"A": [1, 2, 3]}) | |
df_orig = df.copy() | |
series = df["A"] | |
vals = series._values | |
with tm.assert_cow_warning(warn_copy_on_write): | |
series += 1 | |
if using_copy_on_write: | |
assert series._values is not vals | |
tm.assert_frame_equal(df, df_orig) | |
else: | |
assert series._values is vals | |
expected = DataFrame({"A": [2, 3, 4]}) | |
tm.assert_frame_equal(df, expected) | |
def test_arithmetic_multiindex_align(): | |
""" | |
Regression test for: https://github.com/pandas-dev/pandas/issues/33765 | |
""" | |
df1 = DataFrame( | |
[[1]], | |
index=["a"], | |
columns=MultiIndex.from_product([[0], [1]], names=["a", "b"]), | |
) | |
df2 = DataFrame([[1]], index=["a"], columns=Index([0], name="a")) | |
expected = DataFrame( | |
[[0]], | |
index=["a"], | |
columns=MultiIndex.from_product([[0], [1]], names=["a", "b"]), | |
) | |
result = df1 - df2 | |
tm.assert_frame_equal(result, expected) | |
def test_bool_frame_mult_float(): | |
# GH 18549 | |
df = DataFrame(True, list("ab"), list("cd")) | |
result = df * 1.0 | |
expected = DataFrame(np.ones((2, 2)), list("ab"), list("cd")) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_sub_nullable_int(any_int_ea_dtype): | |
# GH 32822 | |
series1 = Series([1, 2, None], dtype=any_int_ea_dtype) | |
series2 = Series([1, 2, 3], dtype=any_int_ea_dtype) | |
expected = DataFrame([0, 0, None], dtype=any_int_ea_dtype) | |
result = series1.to_frame() - series2.to_frame() | |
tm.assert_frame_equal(result, expected) | |
def test_frame_op_subclass_nonclass_constructor(): | |
# GH#43201 subclass._constructor is a function, not the subclass itself | |
class SubclassedSeries(Series): | |
def _constructor(self): | |
return SubclassedSeries | |
def _constructor_expanddim(self): | |
return SubclassedDataFrame | |
class SubclassedDataFrame(DataFrame): | |
_metadata = ["my_extra_data"] | |
def __init__(self, my_extra_data, *args, **kwargs) -> None: | |
self.my_extra_data = my_extra_data | |
super().__init__(*args, **kwargs) | |
def _constructor(self): | |
return functools.partial(type(self), self.my_extra_data) | |
def _constructor_sliced(self): | |
return SubclassedSeries | |
sdf = SubclassedDataFrame("some_data", {"A": [1, 2, 3], "B": [4, 5, 6]}) | |
result = sdf * 2 | |
expected = SubclassedDataFrame("some_data", {"A": [2, 4, 6], "B": [8, 10, 12]}) | |
tm.assert_frame_equal(result, expected) | |
result = sdf + sdf | |
tm.assert_frame_equal(result, expected) | |
def test_enum_column_equality(): | |
Cols = Enum("Cols", "col1 col2") | |
q1 = DataFrame({Cols.col1: [1, 2, 3]}) | |
q2 = DataFrame({Cols.col1: [1, 2, 3]}) | |
result = q1[Cols.col1] == q2[Cols.col1] | |
expected = Series([True, True, True], name=Cols.col1) | |
tm.assert_series_equal(result, expected) | |
def test_mixed_col_index_dtype(): | |
# GH 47382 | |
df1 = DataFrame(columns=list("abc"), data=1.0, index=[0]) | |
df2 = DataFrame(columns=list("abc"), data=0.0, index=[0]) | |
df1.columns = df2.columns.astype("string") | |
result = df1 + df2 | |
expected = DataFrame(columns=list("abc"), data=1.0, index=[0]) | |
tm.assert_frame_equal(result, expected) | |