peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/test_iteration.py
import datetime | |
import numpy as np | |
import pytest | |
from pandas.compat import ( | |
IS64, | |
is_platform_windows, | |
) | |
from pandas import ( | |
Categorical, | |
DataFrame, | |
Series, | |
date_range, | |
) | |
import pandas._testing as tm | |
class TestIteration: | |
def test_keys(self, float_frame): | |
assert float_frame.keys() is float_frame.columns | |
def test_iteritems(self): | |
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"]) | |
for k, v in df.items(): | |
assert isinstance(v, DataFrame._constructor_sliced) | |
def test_items(self): | |
# GH#17213, GH#13918 | |
cols = ["a", "b", "c"] | |
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols) | |
for c, (k, v) in zip(cols, df.items()): | |
assert c == k | |
assert isinstance(v, Series) | |
assert (df[k] == v).all() | |
def test_items_names(self, float_string_frame): | |
for k, v in float_string_frame.items(): | |
assert v.name == k | |
def test_iter(self, float_frame): | |
assert list(float_frame) == list(float_frame.columns) | |
def test_iterrows(self, float_frame, float_string_frame): | |
for k, v in float_frame.iterrows(): | |
exp = float_frame.loc[k] | |
tm.assert_series_equal(v, exp) | |
for k, v in float_string_frame.iterrows(): | |
exp = float_string_frame.loc[k] | |
tm.assert_series_equal(v, exp) | |
def test_iterrows_iso8601(self): | |
# GH#19671 | |
s = DataFrame( | |
{ | |
"non_iso8601": ["M1701", "M1802", "M1903", "M2004"], | |
"iso8601": date_range("2000-01-01", periods=4, freq="ME"), | |
} | |
) | |
for k, v in s.iterrows(): | |
exp = s.loc[k] | |
tm.assert_series_equal(v, exp) | |
def test_iterrows_corner(self): | |
# GH#12222 | |
df = DataFrame( | |
{ | |
"a": [datetime.datetime(2015, 1, 1)], | |
"b": [None], | |
"c": [None], | |
"d": [""], | |
"e": [[]], | |
"f": [set()], | |
"g": [{}], | |
} | |
) | |
expected = Series( | |
[datetime.datetime(2015, 1, 1), None, None, "", [], set(), {}], | |
index=list("abcdefg"), | |
name=0, | |
dtype="object", | |
) | |
_, result = next(df.iterrows()) | |
tm.assert_series_equal(result, expected) | |
def test_itertuples(self, float_frame): | |
for i, tup in enumerate(float_frame.itertuples()): | |
ser = DataFrame._constructor_sliced(tup[1:]) | |
ser.name = tup[0] | |
expected = float_frame.iloc[i, :].reset_index(drop=True) | |
tm.assert_series_equal(ser, expected) | |
def test_itertuples_index_false(self): | |
df = DataFrame( | |
{"floats": np.random.default_rng(2).standard_normal(5), "ints": range(5)}, | |
columns=["floats", "ints"], | |
) | |
for tup in df.itertuples(index=False): | |
assert isinstance(tup[1], int) | |
def test_itertuples_duplicate_cols(self): | |
df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]}) | |
dfaa = df[["a", "a"]] | |
assert list(dfaa.itertuples()) == [(0, 1, 1), (1, 2, 2), (2, 3, 3)] | |
# repr with int on 32-bit/windows | |
if not (is_platform_windows() or not IS64): | |
assert ( | |
repr(list(df.itertuples(name=None))) | |
== "[(0, 1, 4), (1, 2, 5), (2, 3, 6)]" | |
) | |
def test_itertuples_tuple_name(self): | |
df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]}) | |
tup = next(df.itertuples(name="TestName")) | |
assert tup._fields == ("Index", "a", "b") | |
assert (tup.Index, tup.a, tup.b) == tup | |
assert type(tup).__name__ == "TestName" | |
def test_itertuples_disallowed_col_labels(self): | |
df = DataFrame(data={"def": [1, 2, 3], "return": [4, 5, 6]}) | |
tup2 = next(df.itertuples(name="TestName")) | |
assert tup2 == (0, 1, 4) | |
assert tup2._fields == ("Index", "_1", "_2") | |
def test_itertuples_py2_3_field_limit_namedtuple(self, limit, index): | |
# GH#28282 | |
df = DataFrame([{f"foo_{i}": f"bar_{i}" for i in range(limit)}]) | |
result = next(df.itertuples(index=index)) | |
assert isinstance(result, tuple) | |
assert hasattr(result, "_fields") | |
def test_sequence_like_with_categorical(self): | |
# GH#7839 | |
# make sure can iterate | |
df = DataFrame( | |
{"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]} | |
) | |
df["grade"] = Categorical(df["raw_grade"]) | |
# basic sequencing testing | |
result = list(df.grade.values) | |
expected = np.array(df.grade.values).tolist() | |
tm.assert_almost_equal(result, expected) | |
# iteration | |
for t in df.itertuples(index=False): | |
str(t) | |
for row, s in df.iterrows(): | |
str(s) | |
for c, col in df.items(): | |
str(col) | |