peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/test_npfuncs.py
""" | |
Tests for np.foo applied to DataFrame, not necessarily ufuncs. | |
""" | |
import numpy as np | |
from pandas import ( | |
Categorical, | |
DataFrame, | |
) | |
import pandas._testing as tm | |
class TestAsArray: | |
def test_asarray_homogeneous(self): | |
df = DataFrame({"A": Categorical([1, 2]), "B": Categorical([1, 2])}) | |
result = np.asarray(df) | |
# may change from object in the future | |
expected = np.array([[1, 1], [2, 2]], dtype="object") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_np_sqrt(self, float_frame): | |
with np.errstate(all="ignore"): | |
result = np.sqrt(float_frame) | |
assert isinstance(result, type(float_frame)) | |
assert result.index.is_(float_frame.index) | |
assert result.columns.is_(float_frame.columns) | |
tm.assert_frame_equal(result, float_frame.apply(np.sqrt)) | |
def test_sum_deprecated_axis_behavior(self): | |
# GH#52042 deprecated behavior of df.sum(axis=None), which gets | |
# called when we do np.sum(df) | |
arr = np.random.default_rng(2).standard_normal((4, 3)) | |
df = DataFrame(arr) | |
msg = "The behavior of DataFrame.sum with axis=None is deprecated" | |
with tm.assert_produces_warning( | |
FutureWarning, match=msg, check_stacklevel=False | |
): | |
res = np.sum(df) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected = df.sum(axis=None) | |
tm.assert_series_equal(res, expected) | |
def test_np_ravel(self): | |
# GH26247 | |
arr = np.array( | |
[ | |
[0.11197053, 0.44361564, -0.92589452], | |
[0.05883648, -0.00948922, -0.26469934], | |
] | |
) | |
result = np.ravel([DataFrame(batch.reshape(1, 3)) for batch in arr]) | |
expected = np.array( | |
[ | |
0.11197053, | |
0.44361564, | |
-0.92589452, | |
0.05883648, | |
-0.00948922, | |
-0.26469934, | |
] | |
) | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.ravel(DataFrame(arr[0].reshape(1, 3), columns=["x1", "x2", "x3"])) | |
expected = np.array([0.11197053, 0.44361564, -0.92589452]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.ravel( | |
[ | |
DataFrame(batch.reshape(1, 3), columns=["x1", "x2", "x3"]) | |
for batch in arr | |
] | |
) | |
expected = np.array( | |
[ | |
0.11197053, | |
0.44361564, | |
-0.92589452, | |
0.05883648, | |
-0.00948922, | |
-0.26469934, | |
] | |
) | |
tm.assert_numpy_array_equal(result, expected) | |