peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/test_reductions.py
from datetime import timedelta | |
from decimal import Decimal | |
import re | |
from dateutil.tz import tzlocal | |
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
from pandas.compat import ( | |
IS64, | |
is_platform_windows, | |
) | |
from pandas.compat.numpy import np_version_gt2 | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
CategoricalDtype, | |
DataFrame, | |
DatetimeIndex, | |
Index, | |
PeriodIndex, | |
RangeIndex, | |
Series, | |
Timestamp, | |
date_range, | |
isna, | |
notna, | |
to_datetime, | |
to_timedelta, | |
) | |
import pandas._testing as tm | |
from pandas.core import ( | |
algorithms, | |
nanops, | |
) | |
is_windows_np2_or_is32 = (is_platform_windows() and not np_version_gt2) or not IS64 | |
is_windows_or_is32 = is_platform_windows() or not IS64 | |
def make_skipna_wrapper(alternative, skipna_alternative=None): | |
""" | |
Create a function for calling on an array. | |
Parameters | |
---------- | |
alternative : function | |
The function to be called on the array with no NaNs. | |
Only used when 'skipna_alternative' is None. | |
skipna_alternative : function | |
The function to be called on the original array | |
Returns | |
------- | |
function | |
""" | |
if skipna_alternative: | |
def skipna_wrapper(x): | |
return skipna_alternative(x.values) | |
else: | |
def skipna_wrapper(x): | |
nona = x.dropna() | |
if len(nona) == 0: | |
return np.nan | |
return alternative(nona) | |
return skipna_wrapper | |
def assert_stat_op_calc( | |
opname, | |
alternative, | |
frame, | |
has_skipna=True, | |
check_dtype=True, | |
check_dates=False, | |
rtol=1e-5, | |
atol=1e-8, | |
skipna_alternative=None, | |
): | |
""" | |
Check that operator opname works as advertised on frame | |
Parameters | |
---------- | |
opname : str | |
Name of the operator to test on frame | |
alternative : function | |
Function that opname is tested against; i.e. "frame.opname()" should | |
equal "alternative(frame)". | |
frame : DataFrame | |
The object that the tests are executed on | |
has_skipna : bool, default True | |
Whether the method "opname" has the kwarg "skip_na" | |
check_dtype : bool, default True | |
Whether the dtypes of the result of "frame.opname()" and | |
"alternative(frame)" should be checked. | |
check_dates : bool, default false | |
Whether opname should be tested on a Datetime Series | |
rtol : float, default 1e-5 | |
Relative tolerance. | |
atol : float, default 1e-8 | |
Absolute tolerance. | |
skipna_alternative : function, default None | |
NaN-safe version of alternative | |
""" | |
f = getattr(frame, opname) | |
if check_dates: | |
df = DataFrame({"b": date_range("1/1/2001", periods=2)}) | |
with tm.assert_produces_warning(None): | |
result = getattr(df, opname)() | |
assert isinstance(result, Series) | |
df["a"] = range(len(df)) | |
with tm.assert_produces_warning(None): | |
result = getattr(df, opname)() | |
assert isinstance(result, Series) | |
assert len(result) | |
if has_skipna: | |
def wrapper(x): | |
return alternative(x.values) | |
skipna_wrapper = make_skipna_wrapper(alternative, skipna_alternative) | |
result0 = f(axis=0, skipna=False) | |
result1 = f(axis=1, skipna=False) | |
tm.assert_series_equal( | |
result0, frame.apply(wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol | |
) | |
tm.assert_series_equal( | |
result1, | |
frame.apply(wrapper, axis=1), | |
rtol=rtol, | |
atol=atol, | |
) | |
else: | |
skipna_wrapper = alternative | |
result0 = f(axis=0) | |
result1 = f(axis=1) | |
tm.assert_series_equal( | |
result0, | |
frame.apply(skipna_wrapper), | |
check_dtype=check_dtype, | |
rtol=rtol, | |
atol=atol, | |
) | |
if opname in ["sum", "prod"]: | |
expected = frame.apply(skipna_wrapper, axis=1) | |
tm.assert_series_equal( | |
result1, expected, check_dtype=False, rtol=rtol, atol=atol | |
) | |
# check dtypes | |
if check_dtype: | |
lcd_dtype = frame.values.dtype | |
assert lcd_dtype == result0.dtype | |
assert lcd_dtype == result1.dtype | |
# bad axis | |
with pytest.raises(ValueError, match="No axis named 2"): | |
f(axis=2) | |
# all NA case | |
if has_skipna: | |
all_na = frame * np.nan | |
r0 = getattr(all_na, opname)(axis=0) | |
r1 = getattr(all_na, opname)(axis=1) | |
if opname in ["sum", "prod"]: | |
unit = 1 if opname == "prod" else 0 # result for empty sum/prod | |
expected = Series(unit, index=r0.index, dtype=r0.dtype) | |
tm.assert_series_equal(r0, expected) | |
expected = Series(unit, index=r1.index, dtype=r1.dtype) | |
tm.assert_series_equal(r1, expected) | |
def bool_frame_with_na(): | |
""" | |
Fixture for DataFrame of booleans with index of unique strings | |
Columns are ['A', 'B', 'C', 'D']; some entries are missing | |
""" | |
df = DataFrame( | |
np.concatenate( | |
[np.ones((15, 4), dtype=bool), np.zeros((15, 4), dtype=bool)], axis=0 | |
), | |
index=Index([f"foo_{i}" for i in range(30)], dtype=object), | |
columns=Index(list("ABCD"), dtype=object), | |
dtype=object, | |
) | |
# set some NAs | |
df.iloc[5:10] = np.nan | |
df.iloc[15:20, -2:] = np.nan | |
return df | |
def float_frame_with_na(): | |
""" | |
Fixture for DataFrame of floats with index of unique strings | |
Columns are ['A', 'B', 'C', 'D']; some entries are missing | |
""" | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((30, 4)), | |
index=Index([f"foo_{i}" for i in range(30)], dtype=object), | |
columns=Index(list("ABCD"), dtype=object), | |
) | |
# set some NAs | |
df.iloc[5:10] = np.nan | |
df.iloc[15:20, -2:] = np.nan | |
return df | |
class TestDataFrameAnalytics: | |
# --------------------------------------------------------------------- | |
# Reductions | |
def test_stat_op_api_float_string_frame( | |
self, float_string_frame, axis, opname, using_infer_string | |
): | |
if ( | |
(opname in ("sum", "min", "max") and axis == 0) | |
or opname | |
in ( | |
"count", | |
"nunique", | |
) | |
) and not (using_infer_string and opname == "sum"): | |
getattr(float_string_frame, opname)(axis=axis) | |
else: | |
if opname in ["var", "std", "sem", "skew", "kurt"]: | |
msg = "could not convert string to float: 'bar'" | |
elif opname == "product": | |
if axis == 1: | |
msg = "can't multiply sequence by non-int of type 'float'" | |
else: | |
msg = "can't multiply sequence by non-int of type 'str'" | |
elif opname == "sum": | |
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'" | |
elif opname == "mean": | |
if axis == 0: | |
# different message on different builds | |
msg = "|".join( | |
[ | |
r"Could not convert \['.*'\] to numeric", | |
"Could not convert string '(bar){30}' to numeric", | |
] | |
) | |
else: | |
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'" | |
elif opname in ["min", "max"]: | |
msg = "'[><]=' not supported between instances of 'float' and 'str'" | |
elif opname == "median": | |
msg = re.compile( | |
r"Cannot convert \[.*\] to numeric|does not support", flags=re.S | |
) | |
if not isinstance(msg, re.Pattern): | |
msg = msg + "|does not support" | |
with pytest.raises(TypeError, match=msg): | |
getattr(float_string_frame, opname)(axis=axis) | |
if opname != "nunique": | |
getattr(float_string_frame, opname)(axis=axis, numeric_only=True) | |
def test_stat_op_api_float_frame(self, float_frame, axis, opname): | |
getattr(float_frame, opname)(axis=axis, numeric_only=False) | |
def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): | |
def count(s): | |
return notna(s).sum() | |
def nunique(s): | |
return len(algorithms.unique1d(s.dropna())) | |
def var(x): | |
return np.var(x, ddof=1) | |
def std(x): | |
return np.std(x, ddof=1) | |
def sem(x): | |
return np.std(x, ddof=1) / np.sqrt(len(x)) | |
assert_stat_op_calc( | |
"nunique", | |
nunique, | |
float_frame_with_na, | |
has_skipna=False, | |
check_dtype=False, | |
check_dates=True, | |
) | |
# GH#32571: rol needed for flaky CI builds | |
# mixed types (with upcasting happening) | |
assert_stat_op_calc( | |
"sum", | |
np.sum, | |
mixed_float_frame.astype("float32"), | |
check_dtype=False, | |
rtol=1e-3, | |
) | |
assert_stat_op_calc( | |
"sum", np.sum, float_frame_with_na, skipna_alternative=np.nansum | |
) | |
assert_stat_op_calc("mean", np.mean, float_frame_with_na, check_dates=True) | |
assert_stat_op_calc( | |
"product", np.prod, float_frame_with_na, skipna_alternative=np.nanprod | |
) | |
assert_stat_op_calc("var", var, float_frame_with_na) | |
assert_stat_op_calc("std", std, float_frame_with_na) | |
assert_stat_op_calc("sem", sem, float_frame_with_na) | |
assert_stat_op_calc( | |
"count", | |
count, | |
float_frame_with_na, | |
has_skipna=False, | |
check_dtype=False, | |
check_dates=True, | |
) | |
def test_stat_op_calc_skew_kurtosis(self, float_frame_with_na): | |
sp_stats = pytest.importorskip("scipy.stats") | |
def skewness(x): | |
if len(x) < 3: | |
return np.nan | |
return sp_stats.skew(x, bias=False) | |
def kurt(x): | |
if len(x) < 4: | |
return np.nan | |
return sp_stats.kurtosis(x, bias=False) | |
assert_stat_op_calc("skew", skewness, float_frame_with_na) | |
assert_stat_op_calc("kurt", kurt, float_frame_with_na) | |
def test_median(self, float_frame_with_na, int_frame): | |
def wrapper(x): | |
if isna(x).any(): | |
return np.nan | |
return np.median(x) | |
assert_stat_op_calc("median", wrapper, float_frame_with_na, check_dates=True) | |
assert_stat_op_calc( | |
"median", wrapper, int_frame, check_dtype=False, check_dates=True | |
) | |
def test_stat_operators_attempt_obj_array(self, method, df, axis): | |
# GH#676 | |
assert df.values.dtype == np.object_ | |
result = getattr(df, method)(axis=axis) | |
expected = getattr(df.astype("f8"), method)(axis=axis).astype(object) | |
if axis in [1, "columns"] and method in ["min", "max"]: | |
expected[expected.isna()] = None | |
tm.assert_series_equal(result, expected) | |
def test_mixed_ops(self, op): | |
# GH#16116 | |
df = DataFrame( | |
{ | |
"int": [1, 2, 3, 4], | |
"float": [1.0, 2.0, 3.0, 4.0], | |
"str": ["a", "b", "c", "d"], | |
} | |
) | |
msg = "|".join( | |
[ | |
"Could not convert", | |
"could not convert", | |
"can't multiply sequence by non-int", | |
"does not support", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
getattr(df, op)() | |
with pd.option_context("use_bottleneck", False): | |
msg = "|".join( | |
[ | |
"Could not convert", | |
"could not convert", | |
"can't multiply sequence by non-int", | |
"does not support", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
getattr(df, op)() | |
def test_reduce_mixed_frame(self): | |
# GH 6806 | |
df = DataFrame( | |
{ | |
"bool_data": [True, True, False, False, False], | |
"int_data": [10, 20, 30, 40, 50], | |
"string_data": ["a", "b", "c", "d", "e"], | |
} | |
) | |
df.reindex(columns=["bool_data", "int_data", "string_data"]) | |
test = df.sum(axis=0) | |
tm.assert_numpy_array_equal( | |
test.values, np.array([2, 150, "abcde"], dtype=object) | |
) | |
alt = df.T.sum(axis=1) | |
tm.assert_series_equal(test, alt) | |
def test_nunique(self): | |
df = DataFrame({"A": [1, 1, 1], "B": [1, 2, 3], "C": [1, np.nan, 3]}) | |
tm.assert_series_equal(df.nunique(), Series({"A": 1, "B": 3, "C": 2})) | |
tm.assert_series_equal( | |
df.nunique(dropna=False), Series({"A": 1, "B": 3, "C": 3}) | |
) | |
tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) | |
tm.assert_series_equal( | |
df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2}) | |
) | |
def test_mean_mixed_datetime_numeric(self, tz): | |
# https://github.com/pandas-dev/pandas/issues/24752 | |
df = DataFrame({"A": [1, 1], "B": [Timestamp("2000", tz=tz)] * 2}) | |
result = df.mean() | |
expected = Series([1.0, Timestamp("2000", tz=tz)], index=["A", "B"]) | |
tm.assert_series_equal(result, expected) | |
def test_mean_includes_datetimes(self, tz): | |
# https://github.com/pandas-dev/pandas/issues/24752 | |
# Behavior in 0.24.0rc1 was buggy. | |
# As of 2.0 with numeric_only=None we do *not* drop datetime columns | |
df = DataFrame({"A": [Timestamp("2000", tz=tz)] * 2}) | |
result = df.mean() | |
expected = Series([Timestamp("2000", tz=tz)], index=["A"]) | |
tm.assert_series_equal(result, expected) | |
def test_mean_mixed_string_decimal(self): | |
# GH 11670 | |
# possible bug when calculating mean of DataFrame? | |
d = [ | |
{"A": 2, "B": None, "C": Decimal("628.00")}, | |
{"A": 1, "B": None, "C": Decimal("383.00")}, | |
{"A": 3, "B": None, "C": Decimal("651.00")}, | |
{"A": 2, "B": None, "C": Decimal("575.00")}, | |
{"A": 4, "B": None, "C": Decimal("1114.00")}, | |
{"A": 1, "B": "TEST", "C": Decimal("241.00")}, | |
{"A": 2, "B": None, "C": Decimal("572.00")}, | |
{"A": 4, "B": None, "C": Decimal("609.00")}, | |
{"A": 3, "B": None, "C": Decimal("820.00")}, | |
{"A": 5, "B": None, "C": Decimal("1223.00")}, | |
] | |
df = DataFrame(d) | |
with pytest.raises( | |
TypeError, match="unsupported operand type|does not support" | |
): | |
df.mean() | |
result = df[["A", "C"]].mean() | |
expected = Series([2.7, 681.6], index=["A", "C"], dtype=object) | |
tm.assert_series_equal(result, expected) | |
def test_var_std(self, datetime_frame): | |
result = datetime_frame.std(ddof=4) | |
expected = datetime_frame.apply(lambda x: x.std(ddof=4)) | |
tm.assert_almost_equal(result, expected) | |
result = datetime_frame.var(ddof=4) | |
expected = datetime_frame.apply(lambda x: x.var(ddof=4)) | |
tm.assert_almost_equal(result, expected) | |
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0) | |
result = nanops.nanvar(arr, axis=0) | |
assert not (result < 0).any() | |
with pd.option_context("use_bottleneck", False): | |
result = nanops.nanvar(arr, axis=0) | |
assert not (result < 0).any() | |
def test_numeric_only_flag(self, meth): | |
# GH 9201 | |
df1 = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), | |
columns=["foo", "bar", "baz"], | |
) | |
# Cast to object to avoid implicit cast when setting entry to "100" below | |
df1 = df1.astype({"foo": object}) | |
# set one entry to a number in str format | |
df1.loc[0, "foo"] = "100" | |
df2 = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), | |
columns=["foo", "bar", "baz"], | |
) | |
# Cast to object to avoid implicit cast when setting entry to "a" below | |
df2 = df2.astype({"foo": object}) | |
# set one entry to a non-number str | |
df2.loc[0, "foo"] = "a" | |
result = getattr(df1, meth)(axis=1, numeric_only=True) | |
expected = getattr(df1[["bar", "baz"]], meth)(axis=1) | |
tm.assert_series_equal(expected, result) | |
result = getattr(df2, meth)(axis=1, numeric_only=True) | |
expected = getattr(df2[["bar", "baz"]], meth)(axis=1) | |
tm.assert_series_equal(expected, result) | |
# df1 has all numbers, df2 has a letter inside | |
msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" | |
with pytest.raises(TypeError, match=msg): | |
getattr(df1, meth)(axis=1, numeric_only=False) | |
msg = "could not convert string to float: 'a'" | |
with pytest.raises(TypeError, match=msg): | |
getattr(df2, meth)(axis=1, numeric_only=False) | |
def test_sem(self, datetime_frame): | |
result = datetime_frame.sem(ddof=4) | |
expected = datetime_frame.apply(lambda x: x.std(ddof=4) / np.sqrt(len(x))) | |
tm.assert_almost_equal(result, expected) | |
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0) | |
result = nanops.nansem(arr, axis=0) | |
assert not (result < 0).any() | |
with pd.option_context("use_bottleneck", False): | |
result = nanops.nansem(arr, axis=0) | |
assert not (result < 0).any() | |
def test_mode_dropna(self, dropna, expected): | |
df = DataFrame( | |
{ | |
"A": [12, 12, 19, 11], | |
"B": [10, 10, np.nan, 3], | |
"C": [1, np.nan, np.nan, np.nan], | |
"D": Series([np.nan, np.nan, "a", np.nan], dtype=object), | |
"E": Categorical([np.nan, np.nan, "a", np.nan]), | |
"F": DatetimeIndex(["NaT", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"), | |
"G": to_timedelta(["1 days", "nan", "nan", "nan"]), | |
"H": [8, 8, 9, 9], | |
"I": [9, 9, 8, 8], | |
"J": [1, 1, np.nan, np.nan], | |
"K": Categorical(["a", np.nan, "a", np.nan]), | |
"L": DatetimeIndex( | |
["2000-01-02", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]" | |
), | |
"M": to_timedelta(["1 days", "nan", "1 days", "nan"]), | |
"N": np.arange(4, dtype="int64"), | |
} | |
) | |
result = df[sorted(expected.keys())].mode(dropna=dropna) | |
expected = DataFrame(expected) | |
tm.assert_frame_equal(result, expected) | |
def test_mode_sortwarning(self, using_infer_string): | |
# Check for the warning that is raised when the mode | |
# results cannot be sorted | |
df = DataFrame({"A": [np.nan, np.nan, "a", "a"]}) | |
expected = DataFrame({"A": ["a", np.nan]}) | |
warning = None if using_infer_string else UserWarning | |
with tm.assert_produces_warning(warning): | |
result = df.mode(dropna=False) | |
result = result.sort_values(by="A").reset_index(drop=True) | |
tm.assert_frame_equal(result, expected) | |
def test_mode_empty_df(self): | |
df = DataFrame([], columns=["a", "b"]) | |
result = df.mode() | |
expected = DataFrame([], columns=["a", "b"], index=Index([], dtype=np.int64)) | |
tm.assert_frame_equal(result, expected) | |
def test_operators_timedelta64(self): | |
df = DataFrame( | |
{ | |
"A": date_range("2012-1-1", periods=3, freq="D"), | |
"B": date_range("2012-1-2", periods=3, freq="D"), | |
"C": Timestamp("20120101") - timedelta(minutes=5, seconds=5), | |
} | |
) | |
diffs = DataFrame({"A": df["A"] - df["C"], "B": df["A"] - df["B"]}) | |
# min | |
result = diffs.min() | |
assert result.iloc[0] == diffs.loc[0, "A"] | |
assert result.iloc[1] == diffs.loc[0, "B"] | |
result = diffs.min(axis=1) | |
assert (result == diffs.loc[0, "B"]).all() | |
# max | |
result = diffs.max() | |
assert result.iloc[0] == diffs.loc[2, "A"] | |
assert result.iloc[1] == diffs.loc[2, "B"] | |
result = diffs.max(axis=1) | |
assert (result == diffs["A"]).all() | |
# abs | |
result = diffs.abs() | |
result2 = abs(diffs) | |
expected = DataFrame({"A": df["A"] - df["C"], "B": df["B"] - df["A"]}) | |
tm.assert_frame_equal(result, expected) | |
tm.assert_frame_equal(result2, expected) | |
# mixed frame | |
mixed = diffs.copy() | |
mixed["C"] = "foo" | |
mixed["D"] = 1 | |
mixed["E"] = 1.0 | |
mixed["F"] = Timestamp("20130101") | |
# results in an object array | |
result = mixed.min() | |
expected = Series( | |
[ | |
pd.Timedelta(timedelta(seconds=5 * 60 + 5)), | |
pd.Timedelta(timedelta(days=-1)), | |
"foo", | |
1, | |
1.0, | |
Timestamp("20130101"), | |
], | |
index=mixed.columns, | |
) | |
tm.assert_series_equal(result, expected) | |
# excludes non-numeric | |
result = mixed.min(axis=1, numeric_only=True) | |
expected = Series([1, 1, 1.0], index=[0, 1, 2]) | |
tm.assert_series_equal(result, expected) | |
# works when only those columns are selected | |
result = mixed[["A", "B"]].min(1) | |
expected = Series([timedelta(days=-1)] * 3) | |
tm.assert_series_equal(result, expected) | |
result = mixed[["A", "B"]].min() | |
expected = Series( | |
[timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=["A", "B"] | |
) | |
tm.assert_series_equal(result, expected) | |
# GH 3106 | |
df = DataFrame( | |
{ | |
"time": date_range("20130102", periods=5), | |
"time2": date_range("20130105", periods=5), | |
} | |
) | |
df["off1"] = df["time2"] - df["time"] | |
assert df["off1"].dtype == "timedelta64[ns]" | |
df["off2"] = df["time"] - df["time2"] | |
df._consolidate_inplace() | |
assert df["off1"].dtype == "timedelta64[ns]" | |
assert df["off2"].dtype == "timedelta64[ns]" | |
def test_std_timedelta64_skipna_false(self): | |
# GH#37392 | |
tdi = pd.timedelta_range("1 Day", periods=10) | |
df = DataFrame({"A": tdi, "B": tdi}, copy=True) | |
df.iloc[-2, -1] = pd.NaT | |
result = df.std(skipna=False) | |
expected = Series( | |
[df["A"].std(), pd.NaT], index=["A", "B"], dtype="timedelta64[ns]" | |
) | |
tm.assert_series_equal(result, expected) | |
result = df.std(axis=1, skipna=False) | |
expected = Series([pd.Timedelta(0)] * 8 + [pd.NaT, pd.Timedelta(0)]) | |
tm.assert_series_equal(result, expected) | |
def test_std_datetime64_with_nat( | |
self, values, skipna, using_array_manager, request, unit | |
): | |
# GH#51335 | |
if using_array_manager and ( | |
not skipna or all(value is pd.NaT for value in values) | |
): | |
mark = pytest.mark.xfail( | |
reason="GH#51446: Incorrect type inference on NaT in reduction result" | |
) | |
request.applymarker(mark) | |
dti = to_datetime(values).as_unit(unit) | |
df = DataFrame({"a": dti}) | |
result = df.std(skipna=skipna) | |
if not skipna or all(value is pd.NaT for value in values): | |
expected = Series({"a": pd.NaT}, dtype=f"timedelta64[{unit}]") | |
else: | |
# 86400000000000ns == 1 day | |
expected = Series({"a": 86400000000000}, dtype=f"timedelta64[{unit}]") | |
tm.assert_series_equal(result, expected) | |
def test_sum_corner(self): | |
empty_frame = DataFrame() | |
axis0 = empty_frame.sum(0) | |
axis1 = empty_frame.sum(1) | |
assert isinstance(axis0, Series) | |
assert isinstance(axis1, Series) | |
assert len(axis0) == 0 | |
assert len(axis1) == 0 | |
def test_axis_1_empty(self, all_reductions, index): | |
df = DataFrame(columns=["a"], index=index) | |
result = getattr(df, all_reductions)(axis=1) | |
if all_reductions in ("any", "all"): | |
expected_dtype = "bool" | |
elif all_reductions == "count": | |
expected_dtype = "int64" | |
else: | |
expected_dtype = "object" | |
expected = Series([], index=index, dtype=expected_dtype) | |
tm.assert_series_equal(result, expected) | |
def test_sum_prod_nanops(self, method, unit, numeric_only): | |
idx = ["a", "b", "c"] | |
df = DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]}) | |
# The default | |
result = getattr(df, method)(numeric_only=numeric_only) | |
expected = Series([unit, unit, unit], index=idx, dtype="float64") | |
tm.assert_series_equal(result, expected) | |
# min_count=1 | |
result = getattr(df, method)(numeric_only=numeric_only, min_count=1) | |
expected = Series([unit, unit, np.nan], index=idx) | |
tm.assert_series_equal(result, expected) | |
# min_count=0 | |
result = getattr(df, method)(numeric_only=numeric_only, min_count=0) | |
expected = Series([unit, unit, unit], index=idx, dtype="float64") | |
tm.assert_series_equal(result, expected) | |
result = getattr(df.iloc[1:], method)(numeric_only=numeric_only, min_count=1) | |
expected = Series([unit, np.nan, np.nan], index=idx) | |
tm.assert_series_equal(result, expected) | |
# min_count > 1 | |
df = DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5}) | |
result = getattr(df, method)(numeric_only=numeric_only, min_count=5) | |
expected = Series(result, index=["A", "B"]) | |
tm.assert_series_equal(result, expected) | |
result = getattr(df, method)(numeric_only=numeric_only, min_count=6) | |
expected = Series(result, index=["A", "B"]) | |
tm.assert_series_equal(result, expected) | |
def test_sum_nanops_timedelta(self): | |
# prod isn't defined on timedeltas | |
idx = ["a", "b", "c"] | |
df = DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]}) | |
df2 = df.apply(to_timedelta) | |
# 0 by default | |
result = df2.sum() | |
expected = Series([0, 0, 0], dtype="m8[ns]", index=idx) | |
tm.assert_series_equal(result, expected) | |
# min_count=0 | |
result = df2.sum(min_count=0) | |
tm.assert_series_equal(result, expected) | |
# min_count=1 | |
result = df2.sum(min_count=1) | |
expected = Series([0, 0, np.nan], dtype="m8[ns]", index=idx) | |
tm.assert_series_equal(result, expected) | |
def test_sum_nanops_min_count(self): | |
# https://github.com/pandas-dev/pandas/issues/39738 | |
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) | |
result = df.sum(min_count=10) | |
expected = Series([np.nan, np.nan], index=["x", "y"]) | |
tm.assert_series_equal(result, expected) | |
def test_sum_nanops_dtype_min_count(self, float_type, kwargs, expected_result): | |
# GH#46947 | |
df = DataFrame({"a": [1.0, 2.3, 4.4], "b": [2.2, 3, np.nan]}, dtype=float_type) | |
result = df.sum(**kwargs) | |
expected = Series(expected_result).astype(float_type) | |
tm.assert_series_equal(result, expected) | |
def test_prod_nanops_dtype_min_count(self, float_type, kwargs, expected_result): | |
# GH#46947 | |
df = DataFrame( | |
{"a": [1.0, 2.0, 4.4], "b": [2.0, 2.0, np.nan]}, dtype=float_type | |
) | |
result = df.prod(**kwargs) | |
expected = Series(expected_result).astype(float_type) | |
tm.assert_series_equal(result, expected) | |
def test_sum_object(self, float_frame): | |
values = float_frame.values.astype(int) | |
frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns) | |
deltas = frame * timedelta(1) | |
deltas.sum() | |
def test_sum_bool(self, float_frame): | |
# ensure this works, bug report | |
bools = np.isnan(float_frame) | |
bools.sum(1) | |
bools.sum(0) | |
def test_sum_mixed_datetime(self): | |
# GH#30886 | |
df = DataFrame({"A": date_range("2000", periods=4), "B": [1, 2, 3, 4]}).reindex( | |
[2, 3, 4] | |
) | |
with pytest.raises(TypeError, match="does not support reduction 'sum'"): | |
df.sum() | |
def test_mean_corner(self, float_frame, float_string_frame): | |
# unit test when have object data | |
msg = "Could not convert|does not support" | |
with pytest.raises(TypeError, match=msg): | |
float_string_frame.mean(axis=0) | |
# xs sum mixed type, just want to know it works... | |
with pytest.raises(TypeError, match="unsupported operand type"): | |
float_string_frame.mean(axis=1) | |
# take mean of boolean column | |
float_frame["bool"] = float_frame["A"] > 0 | |
means = float_frame.mean(0) | |
assert means["bool"] == float_frame["bool"].values.mean() | |
def test_mean_datetimelike(self): | |
# GH#24757 check that datetimelike are excluded by default, handled | |
# correctly with numeric_only=True | |
# As of 2.0, datetimelike are *not* excluded with numeric_only=None | |
df = DataFrame( | |
{ | |
"A": np.arange(3), | |
"B": date_range("2016-01-01", periods=3), | |
"C": pd.timedelta_range("1D", periods=3), | |
"D": pd.period_range("2016", periods=3, freq="Y"), | |
} | |
) | |
result = df.mean(numeric_only=True) | |
expected = Series({"A": 1.0}) | |
tm.assert_series_equal(result, expected) | |
with pytest.raises(TypeError, match="mean is not implemented for PeriodArray"): | |
df.mean() | |
def test_mean_datetimelike_numeric_only_false(self): | |
df = DataFrame( | |
{ | |
"A": np.arange(3), | |
"B": date_range("2016-01-01", periods=3), | |
"C": pd.timedelta_range("1D", periods=3), | |
} | |
) | |
# datetime(tz) and timedelta work | |
result = df.mean(numeric_only=False) | |
expected = Series({"A": 1, "B": df.loc[1, "B"], "C": df.loc[1, "C"]}) | |
tm.assert_series_equal(result, expected) | |
# mean of period is not allowed | |
df["D"] = pd.period_range("2016", periods=3, freq="Y") | |
with pytest.raises(TypeError, match="mean is not implemented for Period"): | |
df.mean(numeric_only=False) | |
def test_mean_extensionarray_numeric_only_true(self): | |
# https://github.com/pandas-dev/pandas/issues/33256 | |
arr = np.random.default_rng(2).integers(1000, size=(10, 5)) | |
df = DataFrame(arr, dtype="Int64") | |
result = df.mean(numeric_only=True) | |
expected = DataFrame(arr).mean().astype("Float64") | |
tm.assert_series_equal(result, expected) | |
def test_stats_mixed_type(self, float_string_frame): | |
with pytest.raises(TypeError, match="could not convert"): | |
float_string_frame.std(1) | |
with pytest.raises(TypeError, match="could not convert"): | |
float_string_frame.var(1) | |
with pytest.raises(TypeError, match="unsupported operand type"): | |
float_string_frame.mean(1) | |
with pytest.raises(TypeError, match="could not convert"): | |
float_string_frame.skew(1) | |
def test_sum_bools(self): | |
df = DataFrame(index=range(1), columns=range(10)) | |
bools = isna(df) | |
assert bools.sum(axis=1)[0] == 10 | |
# ---------------------------------------------------------------------- | |
# Index of max / min | |
def test_idxmin(self, float_frame, int_frame, skipna, axis): | |
frame = float_frame | |
frame.iloc[5:10] = np.nan | |
frame.iloc[15:20, -2:] = np.nan | |
for df in [frame, int_frame]: | |
warn = None | |
if skipna is False or axis == 1: | |
warn = None if df is int_frame else FutureWarning | |
msg = "The behavior of DataFrame.idxmin with all-NA values" | |
with tm.assert_produces_warning(warn, match=msg): | |
result = df.idxmin(axis=axis, skipna=skipna) | |
msg2 = "The behavior of Series.idxmin" | |
with tm.assert_produces_warning(warn, match=msg2): | |
expected = df.apply(Series.idxmin, axis=axis, skipna=skipna) | |
expected = expected.astype(df.index.dtype) | |
tm.assert_series_equal(result, expected) | |
def test_idxmin_empty(self, index, skipna, axis): | |
# GH53265 | |
if axis == 0: | |
frame = DataFrame(index=index) | |
else: | |
frame = DataFrame(columns=index) | |
result = frame.idxmin(axis=axis, skipna=skipna) | |
expected = Series(dtype=index.dtype) | |
tm.assert_series_equal(result, expected) | |
def test_idxmin_numeric_only(self, numeric_only): | |
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")}) | |
result = df.idxmin(numeric_only=numeric_only) | |
if numeric_only: | |
expected = Series([2, 1], index=["a", "b"]) | |
else: | |
expected = Series([2, 1, 0], index=["a", "b", "c"]) | |
tm.assert_series_equal(result, expected) | |
def test_idxmin_axis_2(self, float_frame): | |
frame = float_frame | |
msg = "No axis named 2 for object type DataFrame" | |
with pytest.raises(ValueError, match=msg): | |
frame.idxmin(axis=2) | |
def test_idxmax(self, float_frame, int_frame, skipna, axis): | |
frame = float_frame | |
frame.iloc[5:10] = np.nan | |
frame.iloc[15:20, -2:] = np.nan | |
for df in [frame, int_frame]: | |
warn = None | |
if skipna is False or axis == 1: | |
warn = None if df is int_frame else FutureWarning | |
msg = "The behavior of DataFrame.idxmax with all-NA values" | |
with tm.assert_produces_warning(warn, match=msg): | |
result = df.idxmax(axis=axis, skipna=skipna) | |
msg2 = "The behavior of Series.idxmax" | |
with tm.assert_produces_warning(warn, match=msg2): | |
expected = df.apply(Series.idxmax, axis=axis, skipna=skipna) | |
expected = expected.astype(df.index.dtype) | |
tm.assert_series_equal(result, expected) | |
def test_idxmax_empty(self, index, skipna, axis): | |
# GH53265 | |
if axis == 0: | |
frame = DataFrame(index=index) | |
else: | |
frame = DataFrame(columns=index) | |
result = frame.idxmax(axis=axis, skipna=skipna) | |
expected = Series(dtype=index.dtype) | |
tm.assert_series_equal(result, expected) | |
def test_idxmax_numeric_only(self, numeric_only): | |
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")}) | |
result = df.idxmax(numeric_only=numeric_only) | |
if numeric_only: | |
expected = Series([1, 0], index=["a", "b"]) | |
else: | |
expected = Series([1, 0, 1], index=["a", "b", "c"]) | |
tm.assert_series_equal(result, expected) | |
def test_idxmax_arrow_types(self): | |
# GH#55368 | |
pytest.importorskip("pyarrow") | |
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1]}, dtype="int64[pyarrow]") | |
result = df.idxmax() | |
expected = Series([1, 0], index=["a", "b"]) | |
tm.assert_series_equal(result, expected) | |
result = df.idxmin() | |
expected = Series([2, 1], index=["a", "b"]) | |
tm.assert_series_equal(result, expected) | |
df = DataFrame({"a": ["b", "c", "a"]}, dtype="string[pyarrow]") | |
result = df.idxmax(numeric_only=False) | |
expected = Series([1], index=["a"]) | |
tm.assert_series_equal(result, expected) | |
result = df.idxmin(numeric_only=False) | |
expected = Series([2], index=["a"]) | |
tm.assert_series_equal(result, expected) | |
def test_idxmax_axis_2(self, float_frame): | |
frame = float_frame | |
msg = "No axis named 2 for object type DataFrame" | |
with pytest.raises(ValueError, match=msg): | |
frame.idxmax(axis=2) | |
def test_idxmax_mixed_dtype(self): | |
# don't cast to object, which would raise in nanops | |
dti = date_range("2016-01-01", periods=3) | |
# Copying dti is needed for ArrayManager otherwise when we set | |
# df.loc[0, 3] = pd.NaT below it edits dti | |
df = DataFrame({1: [0, 2, 1], 2: range(3)[::-1], 3: dti.copy(deep=True)}) | |
result = df.idxmax() | |
expected = Series([1, 0, 2], index=[1, 2, 3]) | |
tm.assert_series_equal(result, expected) | |
result = df.idxmin() | |
expected = Series([0, 2, 0], index=[1, 2, 3]) | |
tm.assert_series_equal(result, expected) | |
# with NaTs | |
df.loc[0, 3] = pd.NaT | |
result = df.idxmax() | |
expected = Series([1, 0, 2], index=[1, 2, 3]) | |
tm.assert_series_equal(result, expected) | |
result = df.idxmin() | |
expected = Series([0, 2, 1], index=[1, 2, 3]) | |
tm.assert_series_equal(result, expected) | |
# with multi-column dt64 block | |
df[4] = dti[::-1] | |
df._consolidate_inplace() | |
result = df.idxmax() | |
expected = Series([1, 0, 2, 0], index=[1, 2, 3, 4]) | |
tm.assert_series_equal(result, expected) | |
result = df.idxmin() | |
expected = Series([0, 2, 1, 2], index=[1, 2, 3, 4]) | |
tm.assert_series_equal(result, expected) | |
def test_idxmax_idxmin_convert_dtypes(self, op, expected_value): | |
# GH 40346 | |
df = DataFrame( | |
{ | |
"ID": [100, 100, 100, 200, 200, 200], | |
"value": [0, 0, 0, 1, 2, 0], | |
}, | |
dtype="Int64", | |
) | |
df = df.groupby("ID") | |
result = getattr(df, op)() | |
expected = DataFrame( | |
{"value": expected_value}, | |
index=Index([100, 200], name="ID", dtype="Int64"), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_idxmax_dt64_multicolumn_axis1(self): | |
dti = date_range("2016-01-01", periods=3) | |
df = DataFrame({3: dti, 4: dti[::-1]}, copy=True) | |
df.iloc[0, 0] = pd.NaT | |
df._consolidate_inplace() | |
result = df.idxmax(axis=1) | |
expected = Series([4, 3, 3]) | |
tm.assert_series_equal(result, expected) | |
result = df.idxmin(axis=1) | |
expected = Series([4, 3, 4]) | |
tm.assert_series_equal(result, expected) | |
# ---------------------------------------------------------------------- | |
# Logical reductions | |
def test_any_all_mixed_float(self, opname, axis, bool_only, float_string_frame): | |
# make sure op works on mixed-type frame | |
mixed = float_string_frame | |
mixed["_bool_"] = np.random.default_rng(2).standard_normal(len(mixed)) > 0.5 | |
getattr(mixed, opname)(axis=axis, bool_only=bool_only) | |
def test_any_all_bool_with_na(self, opname, axis, bool_frame_with_na): | |
getattr(bool_frame_with_na, opname)(axis=axis, bool_only=False) | |
def test_any_all_bool_frame(self, opname, bool_frame_with_na): | |
# GH#12863: numpy gives back non-boolean data for object type | |
# so fill NaNs to compare with pandas behavior | |
frame = bool_frame_with_na.fillna(True) | |
alternative = getattr(np, opname) | |
f = getattr(frame, opname) | |
def skipna_wrapper(x): | |
nona = x.dropna().values | |
return alternative(nona) | |
def wrapper(x): | |
return alternative(x.values) | |
result0 = f(axis=0, skipna=False) | |
result1 = f(axis=1, skipna=False) | |
tm.assert_series_equal(result0, frame.apply(wrapper)) | |
tm.assert_series_equal(result1, frame.apply(wrapper, axis=1)) | |
result0 = f(axis=0) | |
result1 = f(axis=1) | |
tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) | |
tm.assert_series_equal( | |
result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False | |
) | |
# bad axis | |
with pytest.raises(ValueError, match="No axis named 2"): | |
f(axis=2) | |
# all NA case | |
all_na = frame * np.nan | |
r0 = getattr(all_na, opname)(axis=0) | |
r1 = getattr(all_na, opname)(axis=1) | |
if opname == "any": | |
assert not r0.any() | |
assert not r1.any() | |
else: | |
assert r0.all() | |
assert r1.all() | |
def test_any_all_extra(self): | |
df = DataFrame( | |
{ | |
"A": [True, False, False], | |
"B": [True, True, False], | |
"C": [True, True, True], | |
}, | |
index=["a", "b", "c"], | |
) | |
result = df[["A", "B"]].any(axis=1) | |
expected = Series([True, True, False], index=["a", "b", "c"]) | |
tm.assert_series_equal(result, expected) | |
result = df[["A", "B"]].any(axis=1, bool_only=True) | |
tm.assert_series_equal(result, expected) | |
result = df.all(1) | |
expected = Series([True, False, False], index=["a", "b", "c"]) | |
tm.assert_series_equal(result, expected) | |
result = df.all(1, bool_only=True) | |
tm.assert_series_equal(result, expected) | |
# Axis is None | |
result = df.all(axis=None).item() | |
assert result is False | |
result = df.any(axis=None).item() | |
assert result is True | |
result = df[["C"]].all(axis=None).item() | |
assert result is True | |
def test_any_all_object_dtype( | |
self, axis, bool_agg_func, skipna, using_infer_string | |
): | |
# GH#35450 | |
df = DataFrame( | |
data=[ | |
[1, np.nan, np.nan, True], | |
[np.nan, 2, np.nan, True], | |
[np.nan, np.nan, np.nan, True], | |
[np.nan, np.nan, "5", np.nan], | |
] | |
) | |
if using_infer_string: | |
# na in object is True while in string pyarrow numpy it's false | |
val = not axis == 0 and not skipna and bool_agg_func == "all" | |
else: | |
val = True | |
result = getattr(df, bool_agg_func)(axis=axis, skipna=skipna) | |
expected = Series([True, True, val, True]) | |
tm.assert_series_equal(result, expected) | |
# GH#50947 deprecates this but it is not emitting a warning in some builds. | |
def test_any_datetime(self): | |
# GH 23070 | |
float_data = [1, np.nan, 3, np.nan] | |
datetime_data = [ | |
Timestamp("1960-02-15"), | |
Timestamp("1960-02-16"), | |
pd.NaT, | |
pd.NaT, | |
] | |
df = DataFrame({"A": float_data, "B": datetime_data}) | |
result = df.any(axis=1) | |
expected = Series([True, True, True, False]) | |
tm.assert_series_equal(result, expected) | |
def test_any_all_bool_only(self): | |
# GH 25101 | |
df = DataFrame( | |
{"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None]}, | |
columns=Index(["col1", "col2", "col3"], dtype=object), | |
) | |
result = df.all(bool_only=True) | |
expected = Series(dtype=np.bool_, index=[]) | |
tm.assert_series_equal(result, expected) | |
df = DataFrame( | |
{ | |
"col1": [1, 2, 3], | |
"col2": [4, 5, 6], | |
"col3": [None, None, None], | |
"col4": [False, False, True], | |
} | |
) | |
result = df.all(bool_only=True) | |
expected = Series({"col4": False}) | |
tm.assert_series_equal(result, expected) | |
def test_any_all_np_func(self, func, data, expected): | |
# GH 19976 | |
data = DataFrame(data) | |
if any(isinstance(x, CategoricalDtype) for x in data.dtypes): | |
with pytest.raises( | |
TypeError, match="dtype category does not support reduction" | |
): | |
func(data) | |
# method version | |
with pytest.raises( | |
TypeError, match="dtype category does not support reduction" | |
): | |
getattr(DataFrame(data), func.__name__)(axis=None) | |
else: | |
msg = "'(any|all)' with datetime64 dtypes is deprecated" | |
if data.dtypes.apply(lambda x: x.kind == "M").any(): | |
warn = FutureWarning | |
else: | |
warn = None | |
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False): | |
# GH#34479 | |
result = func(data) | |
assert isinstance(result, np.bool_) | |
assert result.item() is expected | |
# method version | |
with tm.assert_produces_warning(warn, match=msg): | |
# GH#34479 | |
result = getattr(DataFrame(data), func.__name__)(axis=None) | |
assert isinstance(result, np.bool_) | |
assert result.item() is expected | |
def test_any_all_object(self): | |
# GH 19976 | |
result = np.all(DataFrame(columns=["a", "b"])).item() | |
assert result is True | |
result = np.any(DataFrame(columns=["a", "b"])).item() | |
assert result is False | |
def test_any_all_object_bool_only(self): | |
df = DataFrame({"A": ["foo", 2], "B": [True, False]}).astype(object) | |
df._consolidate_inplace() | |
df["C"] = Series([True, True]) | |
# Categorical of bools is _not_ considered booly | |
df["D"] = df["C"].astype("category") | |
# The underlying bug is in DataFrame._get_bool_data, so we check | |
# that while we're here | |
res = df._get_bool_data() | |
expected = df[["C"]] | |
tm.assert_frame_equal(res, expected) | |
res = df.all(bool_only=True, axis=0) | |
expected = Series([True], index=["C"]) | |
tm.assert_series_equal(res, expected) | |
# operating on a subset of columns should not produce a _larger_ Series | |
res = df[["B", "C"]].all(bool_only=True, axis=0) | |
tm.assert_series_equal(res, expected) | |
assert df.all(bool_only=True, axis=None) | |
res = df.any(bool_only=True, axis=0) | |
expected = Series([True], index=["C"]) | |
tm.assert_series_equal(res, expected) | |
# operating on a subset of columns should not produce a _larger_ Series | |
res = df[["C"]].any(bool_only=True, axis=0) | |
tm.assert_series_equal(res, expected) | |
assert df.any(bool_only=True, axis=None) | |
# --------------------------------------------------------------------- | |
# Unsorted | |
def test_series_broadcasting(self): | |
# smoke test for numpy warnings | |
# GH 16378, GH 16306 | |
df = DataFrame([1.0, 1.0, 1.0]) | |
df_nan = DataFrame({"A": [np.nan, 2.0, np.nan]}) | |
s = Series([1, 1, 1]) | |
s_nan = Series([np.nan, np.nan, 1]) | |
with tm.assert_produces_warning(None): | |
df_nan.clip(lower=s, axis=0) | |
for op in ["lt", "le", "gt", "ge", "eq", "ne"]: | |
getattr(df, op)(s_nan, axis=0) | |
class TestDataFrameReductions: | |
def test_min_max_dt64_with_NaT(self): | |
# Both NaT and Timestamp are in DataFrame. | |
df = DataFrame({"foo": [pd.NaT, pd.NaT, Timestamp("2012-05-01")]}) | |
res = df.min() | |
exp = Series([Timestamp("2012-05-01")], index=["foo"]) | |
tm.assert_series_equal(res, exp) | |
res = df.max() | |
exp = Series([Timestamp("2012-05-01")], index=["foo"]) | |
tm.assert_series_equal(res, exp) | |
# GH12941, only NaTs are in DataFrame. | |
df = DataFrame({"foo": [pd.NaT, pd.NaT]}) | |
res = df.min() | |
exp = Series([pd.NaT], index=["foo"]) | |
tm.assert_series_equal(res, exp) | |
res = df.max() | |
exp = Series([pd.NaT], index=["foo"]) | |
tm.assert_series_equal(res, exp) | |
def test_min_max_dt64_with_NaT_skipna_false(self, request, tz_naive_fixture): | |
# GH#36907 | |
tz = tz_naive_fixture | |
if isinstance(tz, tzlocal) and is_platform_windows(): | |
pytest.skip( | |
"GH#37659 OSError raised within tzlocal bc Windows " | |
"chokes in times before 1970-01-01" | |
) | |
df = DataFrame( | |
{ | |
"a": [ | |
Timestamp("2020-01-01 08:00:00", tz=tz), | |
Timestamp("1920-02-01 09:00:00", tz=tz), | |
], | |
"b": [Timestamp("2020-02-01 08:00:00", tz=tz), pd.NaT], | |
} | |
) | |
res = df.min(axis=1, skipna=False) | |
expected = Series([df.loc[0, "a"], pd.NaT]) | |
assert expected.dtype == df["a"].dtype | |
tm.assert_series_equal(res, expected) | |
res = df.max(axis=1, skipna=False) | |
expected = Series([df.loc[0, "b"], pd.NaT]) | |
assert expected.dtype == df["a"].dtype | |
tm.assert_series_equal(res, expected) | |
def test_min_max_dt64_api_consistency_with_NaT(self): | |
# Calling the following sum functions returned an error for dataframes but | |
# returned NaT for series. These tests check that the API is consistent in | |
# min/max calls on empty Series/DataFrames. See GH:33704 for more | |
# information | |
df = DataFrame({"x": to_datetime([])}) | |
expected_dt_series = Series(to_datetime([])) | |
# check axis 0 | |
assert (df.min(axis=0).x is pd.NaT) == (expected_dt_series.min() is pd.NaT) | |
assert (df.max(axis=0).x is pd.NaT) == (expected_dt_series.max() is pd.NaT) | |
# check axis 1 | |
tm.assert_series_equal(df.min(axis=1), expected_dt_series) | |
tm.assert_series_equal(df.max(axis=1), expected_dt_series) | |
def test_min_max_dt64_api_consistency_empty_df(self): | |
# check DataFrame/Series api consistency when calling min/max on an empty | |
# DataFrame/Series. | |
df = DataFrame({"x": []}) | |
expected_float_series = Series([], dtype=float) | |
# check axis 0 | |
assert np.isnan(df.min(axis=0).x) == np.isnan(expected_float_series.min()) | |
assert np.isnan(df.max(axis=0).x) == np.isnan(expected_float_series.max()) | |
# check axis 1 | |
tm.assert_series_equal(df.min(axis=1), expected_float_series) | |
tm.assert_series_equal(df.min(axis=1), expected_float_series) | |
def test_preserve_timezone(self, initial: str, method): | |
# GH 28552 | |
initial_dt = to_datetime(initial) | |
expected = Series([initial_dt]) | |
df = DataFrame([expected]) | |
result = getattr(df, method)(axis=1) | |
tm.assert_series_equal(result, expected) | |
def test_minmax_tzaware_skipna_axis_1(self, method, skipna): | |
# GH#51242 | |
val = to_datetime("1900-01-01", utc=True) | |
df = DataFrame( | |
{"a": Series([pd.NaT, pd.NaT, val]), "b": Series([pd.NaT, val, val])} | |
) | |
op = getattr(df, method) | |
result = op(axis=1, skipna=skipna) | |
if skipna: | |
expected = Series([pd.NaT, val, val]) | |
else: | |
expected = Series([pd.NaT, pd.NaT, val]) | |
tm.assert_series_equal(result, expected) | |
def test_frame_any_with_timedelta(self): | |
# GH#17667 | |
df = DataFrame( | |
{ | |
"a": Series([0, 0]), | |
"t": Series([to_timedelta(0, "s"), to_timedelta(1, "ms")]), | |
} | |
) | |
result = df.any(axis=0) | |
expected = Series(data=[False, True], index=["a", "t"]) | |
tm.assert_series_equal(result, expected) | |
result = df.any(axis=1) | |
expected = Series(data=[False, True]) | |
tm.assert_series_equal(result, expected) | |
def test_reductions_skipna_none_raises( | |
self, request, frame_or_series, all_reductions | |
): | |
if all_reductions == "count": | |
request.applymarker( | |
pytest.mark.xfail(reason="Count does not accept skipna") | |
) | |
obj = frame_or_series([1, 2, 3]) | |
msg = 'For argument "skipna" expected type bool, received type NoneType.' | |
with pytest.raises(ValueError, match=msg): | |
getattr(obj, all_reductions)(skipna=None) | |
def test_reduction_timestamp_smallest_unit(self): | |
# GH#52524 | |
df = DataFrame( | |
{ | |
"a": Series([Timestamp("2019-12-31")], dtype="datetime64[s]"), | |
"b": Series( | |
[Timestamp("2019-12-31 00:00:00.123")], dtype="datetime64[ms]" | |
), | |
} | |
) | |
result = df.max() | |
expected = Series( | |
[Timestamp("2019-12-31"), Timestamp("2019-12-31 00:00:00.123")], | |
dtype="datetime64[ms]", | |
index=["a", "b"], | |
) | |
tm.assert_series_equal(result, expected) | |
def test_reduction_timedelta_smallest_unit(self): | |
# GH#52524 | |
df = DataFrame( | |
{ | |
"a": Series([pd.Timedelta("1 days")], dtype="timedelta64[s]"), | |
"b": Series([pd.Timedelta("1 days")], dtype="timedelta64[ms]"), | |
} | |
) | |
result = df.max() | |
expected = Series( | |
[pd.Timedelta("1 days"), pd.Timedelta("1 days")], | |
dtype="timedelta64[ms]", | |
index=["a", "b"], | |
) | |
tm.assert_series_equal(result, expected) | |
class TestNuisanceColumns: | |
def test_any_all_categorical_dtype_nuisance_column(self, method): | |
# GH#36076 DataFrame should match Series behavior | |
ser = Series([0, 1], dtype="category", name="A") | |
df = ser.to_frame() | |
# Double-check the Series behavior is to raise | |
with pytest.raises(TypeError, match="does not support reduction"): | |
getattr(ser, method)() | |
with pytest.raises(TypeError, match="does not support reduction"): | |
getattr(np, method)(ser) | |
with pytest.raises(TypeError, match="does not support reduction"): | |
getattr(df, method)(bool_only=False) | |
with pytest.raises(TypeError, match="does not support reduction"): | |
getattr(df, method)(bool_only=None) | |
with pytest.raises(TypeError, match="does not support reduction"): | |
getattr(np, method)(df, axis=0) | |
def test_median_categorical_dtype_nuisance_column(self): | |
# GH#21020 DataFrame.median should match Series.median | |
df = DataFrame({"A": Categorical([1, 2, 2, 2, 3])}) | |
ser = df["A"] | |
# Double-check the Series behavior is to raise | |
with pytest.raises(TypeError, match="does not support reduction"): | |
ser.median() | |
with pytest.raises(TypeError, match="does not support reduction"): | |
df.median(numeric_only=False) | |
with pytest.raises(TypeError, match="does not support reduction"): | |
df.median() | |
# same thing, but with an additional non-categorical column | |
df["B"] = df["A"].astype(int) | |
with pytest.raises(TypeError, match="does not support reduction"): | |
df.median(numeric_only=False) | |
with pytest.raises(TypeError, match="does not support reduction"): | |
df.median() | |
# TODO: np.median(df, axis=0) gives np.array([2.0, 2.0]) instead | |
# of expected.values | |
def test_min_max_categorical_dtype_non_ordered_nuisance_column(self, method): | |
# GH#28949 DataFrame.min should behave like Series.min | |
cat = Categorical(["a", "b", "c", "b"], ordered=False) | |
ser = Series(cat) | |
df = ser.to_frame("A") | |
# Double-check the Series behavior | |
with pytest.raises(TypeError, match="is not ordered for operation"): | |
getattr(ser, method)() | |
with pytest.raises(TypeError, match="is not ordered for operation"): | |
getattr(np, method)(ser) | |
with pytest.raises(TypeError, match="is not ordered for operation"): | |
getattr(df, method)(numeric_only=False) | |
with pytest.raises(TypeError, match="is not ordered for operation"): | |
getattr(df, method)() | |
with pytest.raises(TypeError, match="is not ordered for operation"): | |
getattr(np, method)(df, axis=0) | |
# same thing, but with an additional non-categorical column | |
df["B"] = df["A"].astype(object) | |
with pytest.raises(TypeError, match="is not ordered for operation"): | |
getattr(df, method)() | |
with pytest.raises(TypeError, match="is not ordered for operation"): | |
getattr(np, method)(df, axis=0) | |
class TestEmptyDataFrameReductions: | |
def test_df_empty_min_count_0(self, opname, dtype, exp_value, exp_dtype): | |
df = DataFrame({0: [], 1: []}, dtype=dtype) | |
result = getattr(df, opname)(min_count=0) | |
expected = Series([exp_value, exp_value], dtype=exp_dtype) | |
tm.assert_series_equal(result, expected) | |
def test_df_empty_min_count_1(self, opname, dtype, exp_dtype): | |
df = DataFrame({0: [], 1: []}, dtype=dtype) | |
result = getattr(df, opname)(min_count=1) | |
expected = Series([np.nan, np.nan], dtype=exp_dtype) | |
tm.assert_series_equal(result, expected) | |
def test_df_empty_nullable_min_count_0(self, opname, dtype, exp_value, exp_dtype): | |
df = DataFrame({0: [], 1: []}, dtype=dtype) | |
result = getattr(df, opname)(min_count=0) | |
expected = Series([exp_value, exp_value], dtype=exp_dtype) | |
tm.assert_series_equal(result, expected) | |
# TODO: why does min_count=1 impact the resulting Windows dtype | |
# differently than min_count=0? | |
def test_df_empty_nullable_min_count_1(self, opname, dtype, exp_dtype): | |
df = DataFrame({0: [], 1: []}, dtype=dtype) | |
result = getattr(df, opname)(min_count=1) | |
expected = Series([pd.NA, pd.NA], dtype=exp_dtype) | |
tm.assert_series_equal(result, expected) | |
def test_sum_timedelta64_skipna_false(using_array_manager, request): | |
# GH#17235 | |
if using_array_manager: | |
mark = pytest.mark.xfail( | |
reason="Incorrect type inference on NaT in reduction result" | |
) | |
request.applymarker(mark) | |
arr = np.arange(8).astype(np.int64).view("m8[s]").reshape(4, 2) | |
arr[-1, -1] = "Nat" | |
df = DataFrame(arr) | |
assert (df.dtypes == arr.dtype).all() | |
result = df.sum(skipna=False) | |
expected = Series([pd.Timedelta(seconds=12), pd.NaT], dtype="m8[s]") | |
tm.assert_series_equal(result, expected) | |
result = df.sum(axis=0, skipna=False) | |
tm.assert_series_equal(result, expected) | |
result = df.sum(axis=1, skipna=False) | |
expected = Series( | |
[ | |
pd.Timedelta(seconds=1), | |
pd.Timedelta(seconds=5), | |
pd.Timedelta(seconds=9), | |
pd.NaT, | |
], | |
dtype="m8[s]", | |
) | |
tm.assert_series_equal(result, expected) | |
def test_mixed_frame_with_integer_sum(): | |
# https://github.com/pandas-dev/pandas/issues/34520 | |
df = DataFrame([["a", 1]], columns=list("ab")) | |
df = df.astype({"b": "Int64"}) | |
result = df.sum() | |
expected = Series(["a", 1], index=["a", "b"]) | |
tm.assert_series_equal(result, expected) | |
def test_minmax_extensionarray(method, numeric_only): | |
# https://github.com/pandas-dev/pandas/issues/32651 | |
int64_info = np.iinfo("int64") | |
ser = Series([int64_info.max, None, int64_info.min], dtype=pd.Int64Dtype()) | |
df = DataFrame({"Int64": ser}) | |
result = getattr(df, method)(numeric_only=numeric_only) | |
expected = Series( | |
[getattr(int64_info, method)], | |
dtype="Int64", | |
index=Index(["Int64"]), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_frame_mixed_numeric_object_with_timestamp(ts_value): | |
# GH 13912 | |
df = DataFrame({"a": [1], "b": [1.1], "c": ["foo"], "d": [ts_value]}) | |
with pytest.raises(TypeError, match="does not support reduction"): | |
df.sum() | |
def test_prod_sum_min_count_mixed_object(): | |
# https://github.com/pandas-dev/pandas/issues/41074 | |
df = DataFrame([1, "a", True]) | |
result = df.prod(axis=0, min_count=1, numeric_only=False) | |
expected = Series(["a"], dtype=object) | |
tm.assert_series_equal(result, expected) | |
msg = re.escape("unsupported operand type(s) for +: 'int' and 'str'") | |
with pytest.raises(TypeError, match=msg): | |
df.sum(axis=0, min_count=1, numeric_only=False) | |
def test_reduction_axis_none_returns_scalar(method, numeric_only, dtype): | |
# GH#21597 As of 2.0, axis=None reduces over all axes. | |
df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), dtype=dtype) | |
result = getattr(df, method)(axis=None, numeric_only=numeric_only) | |
np_arr = df.to_numpy(dtype=np.float64) | |
if method in {"skew", "kurt"}: | |
comp_mod = pytest.importorskip("scipy.stats") | |
if method == "kurt": | |
method = "kurtosis" | |
expected = getattr(comp_mod, method)(np_arr, bias=False, axis=None) | |
tm.assert_almost_equal(result, expected) | |
else: | |
expected = getattr(np, method)(np_arr, axis=None) | |
assert result == expected | |
def test_fails_on_non_numeric(kernel): | |
# GH#46852 | |
df = DataFrame({"a": [1, 2, 3], "b": object}) | |
args = (df,) if kernel == "corrwith" else () | |
msg = "|".join( | |
[ | |
"not allowed for this dtype", | |
"argument must be a string or a number", | |
"not supported between instances of", | |
"unsupported operand type", | |
"argument must be a string or a real number", | |
] | |
) | |
if kernel == "median": | |
# slightly different message on different builds | |
msg1 = ( | |
r"Cannot convert \[\[<class 'object'> <class 'object'> " | |
r"<class 'object'>\]\] to numeric" | |
) | |
msg2 = ( | |
r"Cannot convert \[<class 'object'> <class 'object'> " | |
r"<class 'object'>\] to numeric" | |
) | |
msg = "|".join([msg1, msg2]) | |
with pytest.raises(TypeError, match=msg): | |
getattr(df, kernel)(*args) | |
def test_numeric_ea_axis_1(method, skipna, min_count, any_numeric_ea_dtype): | |
# GH 54341 | |
df = DataFrame( | |
{ | |
"a": Series([0, 1, 2, 3], dtype=any_numeric_ea_dtype), | |
"b": Series([0, 1, pd.NA, 3], dtype=any_numeric_ea_dtype), | |
}, | |
) | |
expected_df = DataFrame( | |
{ | |
"a": [0.0, 1.0, 2.0, 3.0], | |
"b": [0.0, 1.0, np.nan, 3.0], | |
}, | |
) | |
if method in ("count", "nunique"): | |
expected_dtype = "int64" | |
elif method in ("all", "any"): | |
expected_dtype = "boolean" | |
elif method in ( | |
"kurt", | |
"kurtosis", | |
"mean", | |
"median", | |
"sem", | |
"skew", | |
"std", | |
"var", | |
) and not any_numeric_ea_dtype.startswith("Float"): | |
expected_dtype = "Float64" | |
else: | |
expected_dtype = any_numeric_ea_dtype | |
kwargs = {} | |
if method not in ("count", "nunique", "quantile"): | |
kwargs["skipna"] = skipna | |
if method in ("prod", "product", "sum"): | |
kwargs["min_count"] = min_count | |
warn = None | |
msg = None | |
if not skipna and method in ("idxmax", "idxmin"): | |
warn = FutureWarning | |
msg = f"The behavior of DataFrame.{method} with all-NA values" | |
with tm.assert_produces_warning(warn, match=msg): | |
result = getattr(df, method)(axis=1, **kwargs) | |
with tm.assert_produces_warning(warn, match=msg): | |
expected = getattr(expected_df, method)(axis=1, **kwargs) | |
if method not in ("idxmax", "idxmin"): | |
expected = expected.astype(expected_dtype) | |
tm.assert_series_equal(result, expected) | |