peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/test_repr.py
from datetime import ( | |
datetime, | |
timedelta, | |
) | |
from io import StringIO | |
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
from pandas import ( | |
NA, | |
Categorical, | |
CategoricalIndex, | |
DataFrame, | |
IntervalIndex, | |
MultiIndex, | |
NaT, | |
PeriodIndex, | |
Series, | |
Timestamp, | |
date_range, | |
option_context, | |
period_range, | |
) | |
import pandas._testing as tm | |
class TestDataFrameRepr: | |
def test_repr_should_return_str(self): | |
# https://docs.python.org/3/reference/datamodel.html#object.__repr__ | |
# "...The return value must be a string object." | |
# (str on py2.x, str (unicode) on py3) | |
data = [8, 5, 3, 5] | |
index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] | |
cols = ["\u03c8"] | |
df = DataFrame(data, columns=cols, index=index1) | |
assert type(df.__repr__()) is str # noqa: E721 | |
ser = df[cols[0]] | |
assert type(ser.__repr__()) is str # noqa: E721 | |
def test_repr_bytes_61_lines(self): | |
# GH#12857 | |
lets = list("ACDEFGHIJKLMNOP") | |
words = np.random.default_rng(2).choice(lets, (1000, 50)) | |
df = DataFrame(words).astype("U1") | |
assert (df.dtypes == object).all() | |
# smoke tests; at one point this raised with 61 but not 60 | |
repr(df) | |
repr(df.iloc[:60, :]) | |
repr(df.iloc[:61, :]) | |
def test_repr_unicode_level_names(self, frame_or_series): | |
index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=["\u0394", "i1"]) | |
obj = DataFrame(np.random.default_rng(2).standard_normal((2, 4)), index=index) | |
obj = tm.get_obj(obj, frame_or_series) | |
repr(obj) | |
def test_assign_index_sequences(self): | |
# GH#2200 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index( | |
["a", "b"] | |
) | |
index = list(df.index) | |
index[0] = ("faz", "boo") | |
df.index = index | |
repr(df) | |
# this travels an improper code path | |
index[0] = ["faz", "boo"] | |
df.index = index | |
repr(df) | |
def test_repr_with_mi_nat(self): | |
df = DataFrame({"X": [1, 2]}, index=[[NaT, Timestamp("20130101")], ["a", "b"]]) | |
result = repr(df) | |
expected = " X\nNaT a 1\n2013-01-01 b 2" | |
assert result == expected | |
def test_repr_with_different_nulls(self): | |
# GH45263 | |
df = DataFrame([1, 2, 3, 4], [True, None, np.nan, NaT]) | |
result = repr(df) | |
expected = """ 0 | |
True 1 | |
None 2 | |
NaN 3 | |
NaT 4""" | |
assert result == expected | |
def test_repr_with_different_nulls_cols(self): | |
# GH45263 | |
d = {np.nan: [1, 2], None: [3, 4], NaT: [6, 7], True: [8, 9]} | |
df = DataFrame(data=d) | |
result = repr(df) | |
expected = """ NaN None NaT True | |
0 1 3 6 8 | |
1 2 4 7 9""" | |
assert result == expected | |
def test_multiindex_na_repr(self): | |
# only an issue with long columns | |
df3 = DataFrame( | |
{ | |
"A" * 30: {("A", "A0006000", "nuit"): "A0006000"}, | |
"B" * 30: {("A", "A0006000", "nuit"): np.nan}, | |
"C" * 30: {("A", "A0006000", "nuit"): np.nan}, | |
"D" * 30: {("A", "A0006000", "nuit"): np.nan}, | |
"E" * 30: {("A", "A0006000", "nuit"): "A"}, | |
"F" * 30: {("A", "A0006000", "nuit"): np.nan}, | |
} | |
) | |
idf = df3.set_index(["A" * 30, "C" * 30]) | |
repr(idf) | |
def test_repr_name_coincide(self): | |
index = MultiIndex.from_tuples( | |
[("a", 0, "foo"), ("b", 1, "bar")], names=["a", "b", "c"] | |
) | |
df = DataFrame({"value": [0, 1]}, index=index) | |
lines = repr(df).split("\n") | |
assert lines[2].startswith("a 0 foo") | |
def test_repr_to_string( | |
self, | |
multiindex_year_month_day_dataframe_random_data, | |
multiindex_dataframe_random_data, | |
): | |
ymd = multiindex_year_month_day_dataframe_random_data | |
frame = multiindex_dataframe_random_data | |
repr(frame) | |
repr(ymd) | |
repr(frame.T) | |
repr(ymd.T) | |
buf = StringIO() | |
frame.to_string(buf=buf) | |
ymd.to_string(buf=buf) | |
frame.T.to_string(buf=buf) | |
ymd.T.to_string(buf=buf) | |
def test_repr_empty(self): | |
# empty | |
repr(DataFrame()) | |
# empty with index | |
frame = DataFrame(index=np.arange(1000)) | |
repr(frame) | |
def test_repr_mixed(self, float_string_frame): | |
# mixed | |
repr(float_string_frame) | |
def test_repr_mixed_big(self): | |
# big mixed | |
biggie = DataFrame( | |
{ | |
"A": np.random.default_rng(2).standard_normal(200), | |
"B": [str(i) for i in range(200)], | |
}, | |
index=range(200), | |
) | |
biggie.loc[:20, "A"] = np.nan | |
biggie.loc[:20, "B"] = np.nan | |
repr(biggie) | |
def test_repr(self): | |
# columns but no index | |
no_index = DataFrame(columns=[0, 1, 3]) | |
repr(no_index) | |
df = DataFrame(["a\n\r\tb"], columns=["a\n\r\td"], index=["a\n\r\tf"]) | |
assert "\t" not in repr(df) | |
assert "\r" not in repr(df) | |
assert "a\n" not in repr(df) | |
def test_repr_dimensions(self): | |
df = DataFrame([[1, 2], [3, 4]]) | |
with option_context("display.show_dimensions", True): | |
assert "2 rows x 2 columns" in repr(df) | |
with option_context("display.show_dimensions", False): | |
assert "2 rows x 2 columns" not in repr(df) | |
with option_context("display.show_dimensions", "truncate"): | |
assert "2 rows x 2 columns" not in repr(df) | |
def test_repr_big(self): | |
# big one | |
biggie = DataFrame(np.zeros((200, 4)), columns=range(4), index=range(200)) | |
repr(biggie) | |
def test_repr_unsortable(self): | |
# columns are not sortable | |
unsortable = DataFrame( | |
{ | |
"foo": [1] * 50, | |
datetime.today(): [1] * 50, | |
"bar": ["bar"] * 50, | |
datetime.today() + timedelta(1): ["bar"] * 50, | |
}, | |
index=np.arange(50), | |
) | |
repr(unsortable) | |
def test_repr_float_frame_options(self, float_frame): | |
repr(float_frame) | |
with option_context("display.precision", 3): | |
repr(float_frame) | |
with option_context("display.max_rows", 10, "display.max_columns", 2): | |
repr(float_frame) | |
with option_context("display.max_rows", 1000, "display.max_columns", 1000): | |
repr(float_frame) | |
def test_repr_unicode(self): | |
uval = "\u03c3\u03c3\u03c3\u03c3" | |
df = DataFrame({"A": [uval, uval]}) | |
result = repr(df) | |
ex_top = " A" | |
assert result.split("\n")[0].rstrip() == ex_top | |
df = DataFrame({"A": [uval, uval]}) | |
result = repr(df) | |
assert result.split("\n")[0].rstrip() == ex_top | |
def test_unicode_string_with_unicode(self): | |
df = DataFrame({"A": ["\u05d0"]}) | |
str(df) | |
def test_repr_unicode_columns(self): | |
df = DataFrame({"\u05d0": [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) | |
repr(df.columns) # should not raise UnicodeDecodeError | |
def test_str_to_bytes_raises(self): | |
# GH 26447 | |
df = DataFrame({"A": ["abc"]}) | |
msg = "^'str' object cannot be interpreted as an integer$" | |
with pytest.raises(TypeError, match=msg): | |
bytes(df) | |
def test_very_wide_repr(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 20)), | |
columns=np.array(["a" * 10] * 20, dtype=object), | |
) | |
repr(df) | |
def test_repr_column_name_unicode_truncation_bug(self): | |
# #1906 | |
df = DataFrame( | |
{ | |
"Id": [7117434], | |
"StringCol": ( | |
"Is it possible to modify drop plot code" | |
"so that the output graph is displayed " | |
"in iphone simulator, Is it possible to " | |
"modify drop plot code so that the " | |
"output graph is \xe2\x80\xa8displayed " | |
"in iphone simulator.Now we are adding " | |
"the CSV file externally. I want to Call " | |
"the File through the code.." | |
), | |
} | |
) | |
with option_context("display.max_columns", 20): | |
assert "StringCol" in repr(df) | |
def test_latex_repr(self): | |
pytest.importorskip("jinja2") | |
expected = r"""\begin{tabular}{llll} | |
\toprule | |
& 0 & 1 & 2 \\ | |
\midrule | |
0 & $\alpha$ & b & c \\ | |
1 & 1 & 2 & 3 \\ | |
\bottomrule | |
\end{tabular} | |
""" | |
with option_context( | |
"styler.format.escape", None, "styler.render.repr", "latex" | |
): | |
df = DataFrame([[r"$\alpha$", "b", "c"], [1, 2, 3]]) | |
result = df._repr_latex_() | |
assert result == expected | |
# GH 12182 | |
assert df._repr_latex_() is None | |
def test_repr_with_datetimeindex(self): | |
df = DataFrame({"A": [1, 2, 3]}, index=date_range("2000", periods=3)) | |
result = repr(df) | |
expected = " A\n2000-01-01 1\n2000-01-02 2\n2000-01-03 3" | |
assert result == expected | |
def test_repr_with_intervalindex(self): | |
# https://github.com/pandas-dev/pandas/pull/24134/files | |
df = DataFrame( | |
{"A": [1, 2, 3, 4]}, index=IntervalIndex.from_breaks([0, 1, 2, 3, 4]) | |
) | |
result = repr(df) | |
expected = " A\n(0, 1] 1\n(1, 2] 2\n(2, 3] 3\n(3, 4] 4" | |
assert result == expected | |
def test_repr_with_categorical_index(self): | |
df = DataFrame({"A": [1, 2, 3]}, index=CategoricalIndex(["a", "b", "c"])) | |
result = repr(df) | |
expected = " A\na 1\nb 2\nc 3" | |
assert result == expected | |
def test_repr_categorical_dates_periods(self): | |
# normal DataFrame | |
dt = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern") | |
p = period_range("2011-01", freq="M", periods=5) | |
df = DataFrame({"dt": dt, "p": p}) | |
exp = """ dt p | |
0 2011-01-01 09:00:00-05:00 2011-01 | |
1 2011-01-01 10:00:00-05:00 2011-02 | |
2 2011-01-01 11:00:00-05:00 2011-03 | |
3 2011-01-01 12:00:00-05:00 2011-04 | |
4 2011-01-01 13:00:00-05:00 2011-05""" | |
assert repr(df) == exp | |
df2 = DataFrame({"dt": Categorical(dt), "p": Categorical(p)}) | |
assert repr(df2) == exp | |
def test_repr_np_nat_with_object(self, arg, box, expected): | |
# GH 25445 | |
result = repr(box([arg("NaT")], dtype=object)) | |
assert result == expected | |
def test_frame_datetime64_pre1900_repr(self): | |
df = DataFrame({"year": date_range("1/1/1700", periods=50, freq="YE-DEC")}) | |
# it works! | |
repr(df) | |
def test_frame_to_string_with_periodindex(self): | |
index = PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M") | |
frame = DataFrame(np.random.default_rng(2).standard_normal((3, 4)), index=index) | |
# it works! | |
frame.to_string() | |
def test_to_string_ea_na_in_multiindex(self): | |
# GH#47986 | |
df = DataFrame( | |
{"a": [1, 2]}, | |
index=MultiIndex.from_arrays([Series([NA, 1], dtype="Int64")]), | |
) | |
result = df.to_string() | |
expected = """ a | |
<NA> 1 | |
1 2""" | |
assert result == expected | |
def test_datetime64tz_slice_non_truncate(self): | |
# GH 30263 | |
df = DataFrame({"x": date_range("2019", periods=10, tz="UTC")}) | |
expected = repr(df) | |
df = df.iloc[:, :5] | |
result = repr(df) | |
assert result == expected | |
def test_to_records_no_typeerror_in_repr(self): | |
# GH 48526 | |
df = DataFrame([["a", "b"], ["c", "d"], ["e", "f"]], columns=["left", "right"]) | |
df["record"] = df[["left", "right"]].to_records() | |
expected = """ left right record | |
0 a b [0, a, b] | |
1 c d [1, c, d] | |
2 e f [2, e, f]""" | |
result = repr(df) | |
assert result == expected | |
def test_to_records_with_na_record_value(self): | |
# GH 48526 | |
df = DataFrame( | |
[["a", np.nan], ["c", "d"], ["e", "f"]], columns=["left", "right"] | |
) | |
df["record"] = df[["left", "right"]].to_records() | |
expected = """ left right record | |
0 a NaN [0, a, nan] | |
1 c d [1, c, d] | |
2 e f [2, e, f]""" | |
result = repr(df) | |
assert result == expected | |
def test_to_records_with_na_record(self): | |
# GH 48526 | |
df = DataFrame( | |
[["a", "b"], [np.nan, np.nan], ["e", "f"]], columns=[np.nan, "right"] | |
) | |
df["record"] = df[[np.nan, "right"]].to_records() | |
expected = """ NaN right record | |
0 a b [0, a, b] | |
1 NaN NaN [1, nan, nan] | |
2 e f [2, e, f]""" | |
result = repr(df) | |
assert result == expected | |
def test_to_records_with_inf_as_na_record(self): | |
# GH 48526 | |
expected = """ NaN inf record | |
0 inf b [0, inf, b] | |
1 NaN NaN [1, nan, nan] | |
2 e f [2, e, f]""" | |
msg = "use_inf_as_na option is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
with option_context("use_inf_as_na", True): | |
df = DataFrame( | |
[[np.inf, "b"], [np.nan, np.nan], ["e", "f"]], | |
columns=[np.nan, np.inf], | |
) | |
df["record"] = df[[np.nan, np.inf]].to_records() | |
result = repr(df) | |
assert result == expected | |
def test_to_records_with_inf_record(self): | |
# GH 48526 | |
expected = """ NaN inf record | |
0 inf b [0, inf, b] | |
1 NaN NaN [1, nan, nan] | |
2 e f [2, e, f]""" | |
msg = "use_inf_as_na option is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
with option_context("use_inf_as_na", False): | |
df = DataFrame( | |
[[np.inf, "b"], [np.nan, np.nan], ["e", "f"]], | |
columns=[np.nan, np.inf], | |
) | |
df["record"] = df[[np.nan, np.inf]].to_records() | |
result = repr(df) | |
assert result == expected | |
def test_masked_ea_with_formatter(self): | |
# GH#39336 | |
df = DataFrame( | |
{ | |
"a": Series([0.123456789, 1.123456789], dtype="Float64"), | |
"b": Series([1, 2], dtype="Int64"), | |
} | |
) | |
result = df.to_string(formatters=["{:.2f}".format, "{:.2f}".format]) | |
expected = """ a b | |
0 0.12 1.00 | |
1 1.12 2.00""" | |
assert result == expected | |
def test_repr_ea_columns(self, any_string_dtype): | |
# GH#54797 | |
pytest.importorskip("pyarrow") | |
df = DataFrame({"long_column_name": [1, 2, 3], "col2": [4, 5, 6]}) | |
df.columns = df.columns.astype(any_string_dtype) | |
expected = """ long_column_name col2 | |
0 1 4 | |
1 2 5 | |
2 3 6""" | |
assert repr(df) == expected | |
def test_repr_with_complex_nans(data, output, as_frame): | |
# GH#53762, GH#53841 | |
obj = Series(np.array(data)) | |
if as_frame: | |
obj = obj.to_frame(name="val") | |
reprs = [f"{i} {val}" for i, val in enumerate(output)] | |
expected = f"{'val': >{len(reprs[0])}}\n" + "\n".join(reprs) | |
else: | |
reprs = [f"{i} {val}" for i, val in enumerate(output)] | |
expected = "\n".join(reprs) + "\ndtype: complex128" | |
assert str(obj) == expected, f"\n{str(obj)}\n\n{expected}" | |