peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/test_subclass.py
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
) | |
import pandas._testing as tm | |
pytestmark = pytest.mark.filterwarnings( | |
"ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning" | |
) | |
def gpd_style_subclass_df(): | |
class SubclassedDataFrame(DataFrame): | |
def _constructor(self): | |
return SubclassedDataFrame | |
return SubclassedDataFrame({"a": [1, 2, 3]}) | |
class TestDataFrameSubclassing: | |
def test_no_warning_on_mgr(self): | |
# GH#57032 | |
df = tm.SubclassedDataFrame( | |
{"X": [1, 2, 3], "Y": [1, 2, 3]}, index=["a", "b", "c"] | |
) | |
with tm.assert_produces_warning(None): | |
# df.isna() goes through _constructor_from_mgr, which we want to | |
# *not* pass a Manager do __init__ | |
df.isna() | |
df["X"].isna() | |
def test_frame_subclassing_and_slicing(self): | |
# Subclass frame and ensure it returns the right class on slicing it | |
# In reference to PR 9632 | |
class CustomSeries(Series): | |
def _constructor(self): | |
return CustomSeries | |
def custom_series_function(self): | |
return "OK" | |
class CustomDataFrame(DataFrame): | |
""" | |
Subclasses pandas DF, fills DF with simulation results, adds some | |
custom plotting functions. | |
""" | |
def __init__(self, *args, **kw) -> None: | |
super().__init__(*args, **kw) | |
def _constructor(self): | |
return CustomDataFrame | |
_constructor_sliced = CustomSeries | |
def custom_frame_function(self): | |
return "OK" | |
data = {"col1": range(10), "col2": range(10)} | |
cdf = CustomDataFrame(data) | |
# Did we get back our own DF class? | |
assert isinstance(cdf, CustomDataFrame) | |
# Do we get back our own Series class after selecting a column? | |
cdf_series = cdf.col1 | |
assert isinstance(cdf_series, CustomSeries) | |
assert cdf_series.custom_series_function() == "OK" | |
# Do we get back our own DF class after slicing row-wise? | |
cdf_rows = cdf[1:5] | |
assert isinstance(cdf_rows, CustomDataFrame) | |
assert cdf_rows.custom_frame_function() == "OK" | |
# Make sure sliced part of multi-index frame is custom class | |
mcol = MultiIndex.from_tuples([("A", "A"), ("A", "B")]) | |
cdf_multi = CustomDataFrame([[0, 1], [2, 3]], columns=mcol) | |
assert isinstance(cdf_multi["A"], CustomDataFrame) | |
mcol = MultiIndex.from_tuples([("A", ""), ("B", "")]) | |
cdf_multi2 = CustomDataFrame([[0, 1], [2, 3]], columns=mcol) | |
assert isinstance(cdf_multi2["A"], CustomSeries) | |
def test_dataframe_metadata(self): | |
df = tm.SubclassedDataFrame( | |
{"X": [1, 2, 3], "Y": [1, 2, 3]}, index=["a", "b", "c"] | |
) | |
df.testattr = "XXX" | |
assert df.testattr == "XXX" | |
assert df[["X"]].testattr == "XXX" | |
assert df.loc[["a", "b"], :].testattr == "XXX" | |
assert df.iloc[[0, 1], :].testattr == "XXX" | |
# see gh-9776 | |
assert df.iloc[0:1, :].testattr == "XXX" | |
# see gh-10553 | |
unpickled = tm.round_trip_pickle(df) | |
tm.assert_frame_equal(df, unpickled) | |
assert df._metadata == unpickled._metadata | |
assert df.testattr == unpickled.testattr | |
def test_indexing_sliced(self): | |
# GH 11559 | |
df = tm.SubclassedDataFrame( | |
{"X": [1, 2, 3], "Y": [4, 5, 6], "Z": [7, 8, 9]}, index=["a", "b", "c"] | |
) | |
res = df.loc[:, "X"] | |
exp = tm.SubclassedSeries([1, 2, 3], index=list("abc"), name="X") | |
tm.assert_series_equal(res, exp) | |
assert isinstance(res, tm.SubclassedSeries) | |
res = df.iloc[:, 1] | |
exp = tm.SubclassedSeries([4, 5, 6], index=list("abc"), name="Y") | |
tm.assert_series_equal(res, exp) | |
assert isinstance(res, tm.SubclassedSeries) | |
res = df.loc[:, "Z"] | |
exp = tm.SubclassedSeries([7, 8, 9], index=list("abc"), name="Z") | |
tm.assert_series_equal(res, exp) | |
assert isinstance(res, tm.SubclassedSeries) | |
res = df.loc["a", :] | |
exp = tm.SubclassedSeries([1, 4, 7], index=list("XYZ"), name="a") | |
tm.assert_series_equal(res, exp) | |
assert isinstance(res, tm.SubclassedSeries) | |
res = df.iloc[1, :] | |
exp = tm.SubclassedSeries([2, 5, 8], index=list("XYZ"), name="b") | |
tm.assert_series_equal(res, exp) | |
assert isinstance(res, tm.SubclassedSeries) | |
res = df.loc["c", :] | |
exp = tm.SubclassedSeries([3, 6, 9], index=list("XYZ"), name="c") | |
tm.assert_series_equal(res, exp) | |
assert isinstance(res, tm.SubclassedSeries) | |
def test_subclass_attr_err_propagation(self): | |
# GH 11808 | |
class A(DataFrame): | |
def nonexistence(self): | |
return self.i_dont_exist | |
with pytest.raises(AttributeError, match=".*i_dont_exist.*"): | |
A().nonexistence | |
def test_subclass_align(self): | |
# GH 12983 | |
df1 = tm.SubclassedDataFrame( | |
{"a": [1, 3, 5], "b": [1, 3, 5]}, index=list("ACE") | |
) | |
df2 = tm.SubclassedDataFrame( | |
{"c": [1, 2, 4], "d": [1, 2, 4]}, index=list("ABD") | |
) | |
res1, res2 = df1.align(df2, axis=0) | |
exp1 = tm.SubclassedDataFrame( | |
{"a": [1, np.nan, 3, np.nan, 5], "b": [1, np.nan, 3, np.nan, 5]}, | |
index=list("ABCDE"), | |
) | |
exp2 = tm.SubclassedDataFrame( | |
{"c": [1, 2, np.nan, 4, np.nan], "d": [1, 2, np.nan, 4, np.nan]}, | |
index=list("ABCDE"), | |
) | |
assert isinstance(res1, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(res1, exp1) | |
assert isinstance(res2, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(res2, exp2) | |
res1, res2 = df1.a.align(df2.c) | |
assert isinstance(res1, tm.SubclassedSeries) | |
tm.assert_series_equal(res1, exp1.a) | |
assert isinstance(res2, tm.SubclassedSeries) | |
tm.assert_series_equal(res2, exp2.c) | |
def test_subclass_align_combinations(self): | |
# GH 12983 | |
df = tm.SubclassedDataFrame({"a": [1, 3, 5], "b": [1, 3, 5]}, index=list("ACE")) | |
s = tm.SubclassedSeries([1, 2, 4], index=list("ABD"), name="x") | |
# frame + series | |
res1, res2 = df.align(s, axis=0) | |
exp1 = tm.SubclassedDataFrame( | |
{"a": [1, np.nan, 3, np.nan, 5], "b": [1, np.nan, 3, np.nan, 5]}, | |
index=list("ABCDE"), | |
) | |
# name is lost when | |
exp2 = tm.SubclassedSeries( | |
[1, 2, np.nan, 4, np.nan], index=list("ABCDE"), name="x" | |
) | |
assert isinstance(res1, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(res1, exp1) | |
assert isinstance(res2, tm.SubclassedSeries) | |
tm.assert_series_equal(res2, exp2) | |
# series + frame | |
res1, res2 = s.align(df) | |
assert isinstance(res1, tm.SubclassedSeries) | |
tm.assert_series_equal(res1, exp2) | |
assert isinstance(res2, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(res2, exp1) | |
def test_subclass_iterrows(self): | |
# GH 13977 | |
df = tm.SubclassedDataFrame({"a": [1]}) | |
for i, row in df.iterrows(): | |
assert isinstance(row, tm.SubclassedSeries) | |
tm.assert_series_equal(row, df.loc[i]) | |
def test_subclass_stack(self): | |
# GH 15564 | |
df = tm.SubclassedDataFrame( | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], | |
index=["a", "b", "c"], | |
columns=["X", "Y", "Z"], | |
) | |
res = df.stack(future_stack=True) | |
exp = tm.SubclassedSeries( | |
[1, 2, 3, 4, 5, 6, 7, 8, 9], index=[list("aaabbbccc"), list("XYZXYZXYZ")] | |
) | |
tm.assert_series_equal(res, exp) | |
def test_subclass_stack_multi(self): | |
# GH 15564 | |
df = tm.SubclassedDataFrame( | |
[[10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"] | |
), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"] | |
), | |
) | |
exp = tm.SubclassedDataFrame( | |
[ | |
[10, 12], | |
[11, 13], | |
[20, 22], | |
[21, 23], | |
[30, 32], | |
[31, 33], | |
[40, 42], | |
[41, 43], | |
], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AAAABBBB"), list("ccddccdd"), list("yzyzyzyz"))), | |
names=["aaa", "ccc", "yyy"], | |
), | |
columns=Index(["W", "X"], name="www"), | |
) | |
res = df.stack(future_stack=True) | |
tm.assert_frame_equal(res, exp) | |
res = df.stack("yyy", future_stack=True) | |
tm.assert_frame_equal(res, exp) | |
exp = tm.SubclassedDataFrame( | |
[ | |
[10, 11], | |
[12, 13], | |
[20, 21], | |
[22, 23], | |
[30, 31], | |
[32, 33], | |
[40, 41], | |
[42, 43], | |
], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AAAABBBB"), list("ccddccdd"), list("WXWXWXWX"))), | |
names=["aaa", "ccc", "www"], | |
), | |
columns=Index(["y", "z"], name="yyy"), | |
) | |
res = df.stack("www", future_stack=True) | |
tm.assert_frame_equal(res, exp) | |
def test_subclass_stack_multi_mixed(self): | |
# GH 15564 | |
df = tm.SubclassedDataFrame( | |
[ | |
[10, 11, 12.0, 13.0], | |
[20, 21, 22.0, 23.0], | |
[30, 31, 32.0, 33.0], | |
[40, 41, 42.0, 43.0], | |
], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"] | |
), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"] | |
), | |
) | |
exp = tm.SubclassedDataFrame( | |
[ | |
[10, 12.0], | |
[11, 13.0], | |
[20, 22.0], | |
[21, 23.0], | |
[30, 32.0], | |
[31, 33.0], | |
[40, 42.0], | |
[41, 43.0], | |
], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AAAABBBB"), list("ccddccdd"), list("yzyzyzyz"))), | |
names=["aaa", "ccc", "yyy"], | |
), | |
columns=Index(["W", "X"], name="www"), | |
) | |
res = df.stack(future_stack=True) | |
tm.assert_frame_equal(res, exp) | |
res = df.stack("yyy", future_stack=True) | |
tm.assert_frame_equal(res, exp) | |
exp = tm.SubclassedDataFrame( | |
[ | |
[10.0, 11.0], | |
[12.0, 13.0], | |
[20.0, 21.0], | |
[22.0, 23.0], | |
[30.0, 31.0], | |
[32.0, 33.0], | |
[40.0, 41.0], | |
[42.0, 43.0], | |
], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AAAABBBB"), list("ccddccdd"), list("WXWXWXWX"))), | |
names=["aaa", "ccc", "www"], | |
), | |
columns=Index(["y", "z"], name="yyy"), | |
) | |
res = df.stack("www", future_stack=True) | |
tm.assert_frame_equal(res, exp) | |
def test_subclass_unstack(self): | |
# GH 15564 | |
df = tm.SubclassedDataFrame( | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], | |
index=["a", "b", "c"], | |
columns=["X", "Y", "Z"], | |
) | |
res = df.unstack() | |
exp = tm.SubclassedSeries( | |
[1, 4, 7, 2, 5, 8, 3, 6, 9], index=[list("XXXYYYZZZ"), list("abcabcabc")] | |
) | |
tm.assert_series_equal(res, exp) | |
def test_subclass_unstack_multi(self): | |
# GH 15564 | |
df = tm.SubclassedDataFrame( | |
[[10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"] | |
), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"] | |
), | |
) | |
exp = tm.SubclassedDataFrame( | |
[[10, 20, 11, 21, 12, 22, 13, 23], [30, 40, 31, 41, 32, 42, 33, 43]], | |
index=Index(["A", "B"], name="aaa"), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("cdcdcdcd"))), | |
names=["www", "yyy", "ccc"], | |
), | |
) | |
res = df.unstack() | |
tm.assert_frame_equal(res, exp) | |
res = df.unstack("ccc") | |
tm.assert_frame_equal(res, exp) | |
exp = tm.SubclassedDataFrame( | |
[[10, 30, 11, 31, 12, 32, 13, 33], [20, 40, 21, 41, 22, 42, 23, 43]], | |
index=Index(["c", "d"], name="ccc"), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("ABABABAB"))), | |
names=["www", "yyy", "aaa"], | |
), | |
) | |
res = df.unstack("aaa") | |
tm.assert_frame_equal(res, exp) | |
def test_subclass_unstack_multi_mixed(self): | |
# GH 15564 | |
df = tm.SubclassedDataFrame( | |
[ | |
[10, 11, 12.0, 13.0], | |
[20, 21, 22.0, 23.0], | |
[30, 31, 32.0, 33.0], | |
[40, 41, 42.0, 43.0], | |
], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"] | |
), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"] | |
), | |
) | |
exp = tm.SubclassedDataFrame( | |
[ | |
[10, 20, 11, 21, 12.0, 22.0, 13.0, 23.0], | |
[30, 40, 31, 41, 32.0, 42.0, 33.0, 43.0], | |
], | |
index=Index(["A", "B"], name="aaa"), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("cdcdcdcd"))), | |
names=["www", "yyy", "ccc"], | |
), | |
) | |
res = df.unstack() | |
tm.assert_frame_equal(res, exp) | |
res = df.unstack("ccc") | |
tm.assert_frame_equal(res, exp) | |
exp = tm.SubclassedDataFrame( | |
[ | |
[10, 30, 11, 31, 12.0, 32.0, 13.0, 33.0], | |
[20, 40, 21, 41, 22.0, 42.0, 23.0, 43.0], | |
], | |
index=Index(["c", "d"], name="ccc"), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWWWXXXX"), list("yyzzyyzz"), list("ABABABAB"))), | |
names=["www", "yyy", "aaa"], | |
), | |
) | |
res = df.unstack("aaa") | |
tm.assert_frame_equal(res, exp) | |
def test_subclass_pivot(self): | |
# GH 15564 | |
df = tm.SubclassedDataFrame( | |
{ | |
"index": ["A", "B", "C", "C", "B", "A"], | |
"columns": ["One", "One", "One", "Two", "Two", "Two"], | |
"values": [1.0, 2.0, 3.0, 3.0, 2.0, 1.0], | |
} | |
) | |
pivoted = df.pivot(index="index", columns="columns", values="values") | |
expected = tm.SubclassedDataFrame( | |
{ | |
"One": {"A": 1.0, "B": 2.0, "C": 3.0}, | |
"Two": {"A": 1.0, "B": 2.0, "C": 3.0}, | |
} | |
) | |
expected.index.name, expected.columns.name = "index", "columns" | |
tm.assert_frame_equal(pivoted, expected) | |
def test_subclassed_melt(self): | |
# GH 15564 | |
cheese = tm.SubclassedDataFrame( | |
{ | |
"first": ["John", "Mary"], | |
"last": ["Doe", "Bo"], | |
"height": [5.5, 6.0], | |
"weight": [130, 150], | |
} | |
) | |
melted = pd.melt(cheese, id_vars=["first", "last"]) | |
expected = tm.SubclassedDataFrame( | |
[ | |
["John", "Doe", "height", 5.5], | |
["Mary", "Bo", "height", 6.0], | |
["John", "Doe", "weight", 130], | |
["Mary", "Bo", "weight", 150], | |
], | |
columns=["first", "last", "variable", "value"], | |
) | |
tm.assert_frame_equal(melted, expected) | |
def test_subclassed_wide_to_long(self): | |
# GH 9762 | |
x = np.random.default_rng(2).standard_normal(3) | |
df = tm.SubclassedDataFrame( | |
{ | |
"A1970": {0: "a", 1: "b", 2: "c"}, | |
"A1980": {0: "d", 1: "e", 2: "f"}, | |
"B1970": {0: 2.5, 1: 1.2, 2: 0.7}, | |
"B1980": {0: 3.2, 1: 1.3, 2: 0.1}, | |
"X": dict(zip(range(3), x)), | |
} | |
) | |
df["id"] = df.index | |
exp_data = { | |
"X": x.tolist() + x.tolist(), | |
"A": ["a", "b", "c", "d", "e", "f"], | |
"B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1], | |
"year": [1970, 1970, 1970, 1980, 1980, 1980], | |
"id": [0, 1, 2, 0, 1, 2], | |
} | |
expected = tm.SubclassedDataFrame(exp_data) | |
expected = expected.set_index(["id", "year"])[["X", "A", "B"]] | |
long_frame = pd.wide_to_long(df, ["A", "B"], i="id", j="year") | |
tm.assert_frame_equal(long_frame, expected) | |
def test_subclassed_apply(self): | |
# GH 19822 | |
def check_row_subclass(row): | |
assert isinstance(row, tm.SubclassedSeries) | |
def stretch(row): | |
if row["variable"] == "height": | |
row["value"] += 0.5 | |
return row | |
df = tm.SubclassedDataFrame( | |
[ | |
["John", "Doe", "height", 5.5], | |
["Mary", "Bo", "height", 6.0], | |
["John", "Doe", "weight", 130], | |
["Mary", "Bo", "weight", 150], | |
], | |
columns=["first", "last", "variable", "value"], | |
) | |
df.apply(lambda x: check_row_subclass(x)) | |
df.apply(lambda x: check_row_subclass(x), axis=1) | |
expected = tm.SubclassedDataFrame( | |
[ | |
["John", "Doe", "height", 6.0], | |
["Mary", "Bo", "height", 6.5], | |
["John", "Doe", "weight", 130], | |
["Mary", "Bo", "weight", 150], | |
], | |
columns=["first", "last", "variable", "value"], | |
) | |
result = df.apply(lambda x: stretch(x), axis=1) | |
assert isinstance(result, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(result, expected) | |
expected = tm.SubclassedDataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]) | |
result = df.apply(lambda x: tm.SubclassedSeries([1, 2, 3]), axis=1) | |
assert isinstance(result, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(result, expected) | |
result = df.apply(lambda x: [1, 2, 3], axis=1, result_type="expand") | |
assert isinstance(result, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(result, expected) | |
expected = tm.SubclassedSeries([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]) | |
result = df.apply(lambda x: [1, 2, 3], axis=1) | |
assert not isinstance(result, tm.SubclassedDataFrame) | |
tm.assert_series_equal(result, expected) | |
def test_subclassed_reductions(self, all_reductions): | |
# GH 25596 | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = getattr(df, all_reductions)() | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_subclassed_count(self): | |
df = tm.SubclassedDataFrame( | |
{ | |
"Person": ["John", "Myla", "Lewis", "John", "Myla"], | |
"Age": [24.0, np.nan, 21.0, 33, 26], | |
"Single": [False, True, True, True, False], | |
} | |
) | |
result = df.count() | |
assert isinstance(result, tm.SubclassedSeries) | |
df = tm.SubclassedDataFrame({"A": [1, 0, 3], "B": [0, 5, 6], "C": [7, 8, 0]}) | |
result = df.count() | |
assert isinstance(result, tm.SubclassedSeries) | |
df = tm.SubclassedDataFrame( | |
[[10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]], | |
index=MultiIndex.from_tuples( | |
list(zip(list("AABB"), list("cdcd"))), names=["aaa", "ccc"] | |
), | |
columns=MultiIndex.from_tuples( | |
list(zip(list("WWXX"), list("yzyz"))), names=["www", "yyy"] | |
), | |
) | |
result = df.count() | |
assert isinstance(result, tm.SubclassedSeries) | |
df = tm.SubclassedDataFrame() | |
result = df.count() | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_isin(self): | |
df = tm.SubclassedDataFrame( | |
{"num_legs": [2, 4], "num_wings": [2, 0]}, index=["falcon", "dog"] | |
) | |
result = df.isin([0, 2]) | |
assert isinstance(result, tm.SubclassedDataFrame) | |
def test_duplicated(self): | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = df.duplicated() | |
assert isinstance(result, tm.SubclassedSeries) | |
df = tm.SubclassedDataFrame() | |
result = df.duplicated() | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_idx(self, idx_method): | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = getattr(df, idx_method)() | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_dot(self): | |
df = tm.SubclassedDataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) | |
s = tm.SubclassedSeries([1, 1, 2, 1]) | |
result = df.dot(s) | |
assert isinstance(result, tm.SubclassedSeries) | |
df = tm.SubclassedDataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) | |
s = tm.SubclassedDataFrame([1, 1, 2, 1]) | |
result = df.dot(s) | |
assert isinstance(result, tm.SubclassedDataFrame) | |
def test_memory_usage(self): | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = df.memory_usage() | |
assert isinstance(result, tm.SubclassedSeries) | |
result = df.memory_usage(index=False) | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_corrwith(self): | |
pytest.importorskip("scipy") | |
index = ["a", "b", "c", "d", "e"] | |
columns = ["one", "two", "three", "four"] | |
df1 = tm.SubclassedDataFrame( | |
np.random.default_rng(2).standard_normal((5, 4)), | |
index=index, | |
columns=columns, | |
) | |
df2 = tm.SubclassedDataFrame( | |
np.random.default_rng(2).standard_normal((4, 4)), | |
index=index[:4], | |
columns=columns, | |
) | |
correls = df1.corrwith(df2, axis=1, drop=True, method="kendall") | |
assert isinstance(correls, (tm.SubclassedSeries)) | |
def test_asof(self): | |
N = 3 | |
rng = pd.date_range("1/1/1990", periods=N, freq="53s") | |
df = tm.SubclassedDataFrame( | |
{ | |
"A": [np.nan, np.nan, np.nan], | |
"B": [np.nan, np.nan, np.nan], | |
"C": [np.nan, np.nan, np.nan], | |
}, | |
index=rng, | |
) | |
result = df.asof(rng[-2:]) | |
assert isinstance(result, tm.SubclassedDataFrame) | |
result = df.asof(rng[-2]) | |
assert isinstance(result, tm.SubclassedSeries) | |
result = df.asof("1989-12-31") | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_idxmin_preserves_subclass(self): | |
# GH 28330 | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = df.idxmin() | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_idxmax_preserves_subclass(self): | |
# GH 28330 | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = df.idxmax() | |
assert isinstance(result, tm.SubclassedSeries) | |
def test_convert_dtypes_preserves_subclass(self, gpd_style_subclass_df): | |
# GH 43668 | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = df.convert_dtypes() | |
assert isinstance(result, tm.SubclassedDataFrame) | |
result = gpd_style_subclass_df.convert_dtypes() | |
assert isinstance(result, type(gpd_style_subclass_df)) | |
def test_astype_preserves_subclass(self): | |
# GH#40810 | |
df = tm.SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) | |
result = df.astype({"A": np.int64, "B": np.int32, "C": np.float64}) | |
assert isinstance(result, tm.SubclassedDataFrame) | |
def test_equals_subclass(self): | |
# https://github.com/pandas-dev/pandas/pull/34402 | |
# allow subclass in both directions | |
df1 = DataFrame({"a": [1, 2, 3]}) | |
df2 = tm.SubclassedDataFrame({"a": [1, 2, 3]}) | |
assert df1.equals(df2) | |
assert df2.equals(df1) | |
def test_replace_list_method(self): | |
# https://github.com/pandas-dev/pandas/pull/46018 | |
df = tm.SubclassedDataFrame({"A": [0, 1, 2]}) | |
msg = "The 'method' keyword in SubclassedDataFrame.replace is deprecated" | |
with tm.assert_produces_warning( | |
FutureWarning, match=msg, raise_on_extra_warnings=False | |
): | |
result = df.replace([1, 2], method="ffill") | |
expected = tm.SubclassedDataFrame({"A": [0, 0, 0]}) | |
assert isinstance(result, tm.SubclassedDataFrame) | |
tm.assert_frame_equal(result, expected) | |
class MySubclassWithMetadata(DataFrame): | |
_metadata = ["my_metadata"] | |
def __init__(self, *args, **kwargs) -> None: | |
super().__init__(*args, **kwargs) | |
my_metadata = kwargs.pop("my_metadata", None) | |
if args and isinstance(args[0], MySubclassWithMetadata): | |
my_metadata = args[0].my_metadata # type: ignore[has-type] | |
self.my_metadata = my_metadata | |
def _constructor(self): | |
return MySubclassWithMetadata | |
def test_constructor_with_metadata(): | |
# https://github.com/pandas-dev/pandas/pull/54922 | |
# https://github.com/pandas-dev/pandas/issues/55120 | |
df = MySubclassWithMetadata( | |
np.random.default_rng(2).random((5, 3)), columns=["A", "B", "C"] | |
) | |
subset = df[["A", "B"]] | |
assert isinstance(subset, MySubclassWithMetadata) | |
class SimpleDataFrameSubClass(DataFrame): | |
"""A subclass of DataFrame that does not define a constructor.""" | |
class SimpleSeriesSubClass(Series): | |
"""A subclass of Series that does not define a constructor.""" | |
class TestSubclassWithoutConstructor: | |
def test_copy_df(self): | |
expected = DataFrame({"a": [1, 2, 3]}) | |
result = SimpleDataFrameSubClass(expected).copy() | |
assert ( | |
type(result) is DataFrame | |
) # assert_frame_equal only checks isinstance(lhs, type(rhs)) | |
tm.assert_frame_equal(result, expected) | |
def test_copy_series(self): | |
expected = Series([1, 2, 3]) | |
result = SimpleSeriesSubClass(expected).copy() | |
tm.assert_series_equal(result, expected) | |
def test_series_to_frame(self): | |
orig = Series([1, 2, 3]) | |
expected = orig.to_frame() | |
result = SimpleSeriesSubClass(orig).to_frame() | |
assert ( | |
type(result) is DataFrame | |
) # assert_frame_equal only checks isinstance(lhs, type(rhs)) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby(self): | |
df = SimpleDataFrameSubClass(DataFrame({"a": [1, 2, 3]})) | |
for _, v in df.groupby("a"): | |
assert type(v) is DataFrame | |