peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/generic
/test_finalize.py
""" | |
An exhaustive list of pandas methods exercising NDFrame.__finalize__. | |
""" | |
import operator | |
import re | |
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
# TODO: | |
# * Binary methods (mul, div, etc.) | |
# * Binary outputs (align, etc.) | |
# * top-level methods (concat, merge, get_dummies, etc.) | |
# * window | |
# * cumulative reductions | |
not_implemented_mark = pytest.mark.xfail(reason="not implemented") | |
mi = pd.MultiIndex.from_product([["a", "b"], [0, 1]], names=["A", "B"]) | |
frame_data = ({"A": [1]},) | |
frame_mi_data = ({"A": [1, 2, 3, 4]}, mi) | |
# Tuple of | |
# - Callable: Constructor (Series, DataFrame) | |
# - Tuple: Constructor args | |
# - Callable: pass the constructed value with attrs set to this. | |
_all_methods = [ | |
(pd.Series, ([0],), operator.methodcaller("take", [])), | |
(pd.Series, ([0],), operator.methodcaller("__getitem__", [True])), | |
(pd.Series, ([0],), operator.methodcaller("repeat", 2)), | |
(pd.Series, ([0],), operator.methodcaller("reset_index")), | |
(pd.Series, ([0],), operator.methodcaller("reset_index", drop=True)), | |
(pd.Series, ([0],), operator.methodcaller("to_frame")), | |
(pd.Series, ([0, 0],), operator.methodcaller("drop_duplicates")), | |
(pd.Series, ([0, 0],), operator.methodcaller("duplicated")), | |
(pd.Series, ([0, 0],), operator.methodcaller("round")), | |
(pd.Series, ([0, 0],), operator.methodcaller("rename", lambda x: x + 1)), | |
(pd.Series, ([0, 0],), operator.methodcaller("rename", "name")), | |
(pd.Series, ([0, 0],), operator.methodcaller("set_axis", ["a", "b"])), | |
(pd.Series, ([0, 0],), operator.methodcaller("reindex", [1, 0])), | |
(pd.Series, ([0, 0],), operator.methodcaller("drop", [0])), | |
(pd.Series, (pd.array([0, pd.NA]),), operator.methodcaller("fillna", 0)), | |
(pd.Series, ([0, 0],), operator.methodcaller("replace", {0: 1})), | |
(pd.Series, ([0, 0],), operator.methodcaller("shift")), | |
(pd.Series, ([0, 0],), operator.methodcaller("isin", [0, 1])), | |
(pd.Series, ([0, 0],), operator.methodcaller("between", 0, 2)), | |
(pd.Series, ([0, 0],), operator.methodcaller("isna")), | |
(pd.Series, ([0, 0],), operator.methodcaller("isnull")), | |
(pd.Series, ([0, 0],), operator.methodcaller("notna")), | |
(pd.Series, ([0, 0],), operator.methodcaller("notnull")), | |
(pd.Series, ([1],), operator.methodcaller("add", pd.Series([1]))), | |
# TODO: mul, div, etc. | |
( | |
pd.Series, | |
([0], pd.period_range("2000", periods=1)), | |
operator.methodcaller("to_timestamp"), | |
), | |
( | |
pd.Series, | |
([0], pd.date_range("2000", periods=1)), | |
operator.methodcaller("to_period"), | |
), | |
pytest.param( | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("dot", pd.DataFrame(index=["A"])), | |
), | |
marks=pytest.mark.xfail(reason="Implement binary finalize"), | |
), | |
(pd.DataFrame, frame_data, operator.methodcaller("transpose")), | |
(pd.DataFrame, frame_data, operator.methodcaller("__getitem__", "A")), | |
(pd.DataFrame, frame_data, operator.methodcaller("__getitem__", ["A"])), | |
(pd.DataFrame, frame_data, operator.methodcaller("__getitem__", np.array([True]))), | |
(pd.DataFrame, ({("A", "a"): [1]},), operator.methodcaller("__getitem__", ["A"])), | |
(pd.DataFrame, frame_data, operator.methodcaller("query", "A == 1")), | |
(pd.DataFrame, frame_data, operator.methodcaller("eval", "A + 1", engine="python")), | |
(pd.DataFrame, frame_data, operator.methodcaller("select_dtypes", include="int")), | |
(pd.DataFrame, frame_data, operator.methodcaller("assign", b=1)), | |
(pd.DataFrame, frame_data, operator.methodcaller("set_axis", ["A"])), | |
(pd.DataFrame, frame_data, operator.methodcaller("reindex", [0, 1])), | |
(pd.DataFrame, frame_data, operator.methodcaller("drop", columns=["A"])), | |
(pd.DataFrame, frame_data, operator.methodcaller("drop", index=[0])), | |
(pd.DataFrame, frame_data, operator.methodcaller("rename", columns={"A": "a"})), | |
(pd.DataFrame, frame_data, operator.methodcaller("rename", index=lambda x: x)), | |
(pd.DataFrame, frame_data, operator.methodcaller("fillna", "A")), | |
(pd.DataFrame, frame_data, operator.methodcaller("fillna", method="ffill")), | |
(pd.DataFrame, frame_data, operator.methodcaller("set_index", "A")), | |
(pd.DataFrame, frame_data, operator.methodcaller("reset_index")), | |
(pd.DataFrame, frame_data, operator.methodcaller("isna")), | |
(pd.DataFrame, frame_data, operator.methodcaller("isnull")), | |
(pd.DataFrame, frame_data, operator.methodcaller("notna")), | |
(pd.DataFrame, frame_data, operator.methodcaller("notnull")), | |
(pd.DataFrame, frame_data, operator.methodcaller("dropna")), | |
(pd.DataFrame, frame_data, operator.methodcaller("drop_duplicates")), | |
(pd.DataFrame, frame_data, operator.methodcaller("duplicated")), | |
(pd.DataFrame, frame_data, operator.methodcaller("sort_values", by="A")), | |
(pd.DataFrame, frame_data, operator.methodcaller("sort_index")), | |
(pd.DataFrame, frame_data, operator.methodcaller("nlargest", 1, "A")), | |
(pd.DataFrame, frame_data, operator.methodcaller("nsmallest", 1, "A")), | |
(pd.DataFrame, frame_mi_data, operator.methodcaller("swaplevel")), | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("add", pd.DataFrame(*frame_data)), | |
), | |
# TODO: div, mul, etc. | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("combine", pd.DataFrame(*frame_data), operator.add), | |
), | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("combine_first", pd.DataFrame(*frame_data)), | |
), | |
pytest.param( | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("update", pd.DataFrame(*frame_data)), | |
), | |
marks=not_implemented_mark, | |
), | |
(pd.DataFrame, frame_data, operator.methodcaller("pivot", columns="A")), | |
( | |
pd.DataFrame, | |
({"A": [1], "B": [1]},), | |
operator.methodcaller("pivot_table", columns="A"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1], "B": [1]},), | |
operator.methodcaller("pivot_table", columns="A", aggfunc=["mean", "sum"]), | |
), | |
(pd.DataFrame, frame_data, operator.methodcaller("stack")), | |
(pd.DataFrame, frame_data, operator.methodcaller("explode", "A")), | |
(pd.DataFrame, frame_mi_data, operator.methodcaller("unstack")), | |
( | |
pd.DataFrame, | |
({"A": ["a", "b", "c"], "B": [1, 3, 5], "C": [2, 4, 6]},), | |
operator.methodcaller("melt", id_vars=["A"], value_vars=["B"]), | |
), | |
(pd.DataFrame, frame_data, operator.methodcaller("map", lambda x: x)), | |
pytest.param( | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("merge", pd.DataFrame({"A": [1]})), | |
), | |
marks=not_implemented_mark, | |
), | |
(pd.DataFrame, frame_data, operator.methodcaller("round", 2)), | |
(pd.DataFrame, frame_data, operator.methodcaller("corr")), | |
pytest.param( | |
(pd.DataFrame, frame_data, operator.methodcaller("cov")), | |
marks=[ | |
pytest.mark.filterwarnings("ignore::RuntimeWarning"), | |
], | |
), | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("corrwith", pd.DataFrame(*frame_data)), | |
), | |
(pd.DataFrame, frame_data, operator.methodcaller("count")), | |
(pd.DataFrame, frame_data, operator.methodcaller("nunique")), | |
(pd.DataFrame, frame_data, operator.methodcaller("idxmin")), | |
(pd.DataFrame, frame_data, operator.methodcaller("idxmax")), | |
(pd.DataFrame, frame_data, operator.methodcaller("mode")), | |
(pd.Series, [0], operator.methodcaller("mode")), | |
(pd.DataFrame, frame_data, operator.methodcaller("median")), | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("quantile", numeric_only=True), | |
), | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("quantile", q=[0.25, 0.75], numeric_only=True), | |
), | |
( | |
pd.DataFrame, | |
({"A": [pd.Timedelta(days=1), pd.Timedelta(days=2)]},), | |
operator.methodcaller("quantile", numeric_only=False), | |
), | |
( | |
pd.DataFrame, | |
({"A": [np.datetime64("2022-01-01"), np.datetime64("2022-01-02")]},), | |
operator.methodcaller("quantile", numeric_only=True), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1]}, [pd.Period("2000", "D")]), | |
operator.methodcaller("to_timestamp"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1]}, [pd.Timestamp("2000")]), | |
operator.methodcaller("to_period", freq="D"), | |
), | |
(pd.DataFrame, frame_mi_data, operator.methodcaller("isin", [1])), | |
(pd.DataFrame, frame_mi_data, operator.methodcaller("isin", pd.Series([1]))), | |
( | |
pd.DataFrame, | |
frame_mi_data, | |
operator.methodcaller("isin", pd.DataFrame({"A": [1]})), | |
), | |
(pd.DataFrame, frame_mi_data, operator.methodcaller("droplevel", "A")), | |
(pd.DataFrame, frame_data, operator.methodcaller("pop", "A")), | |
# Squeeze on columns, otherwise we'll end up with a scalar | |
(pd.DataFrame, frame_data, operator.methodcaller("squeeze", axis="columns")), | |
(pd.Series, ([1, 2],), operator.methodcaller("squeeze")), | |
(pd.Series, ([1, 2],), operator.methodcaller("rename_axis", index="a")), | |
(pd.DataFrame, frame_data, operator.methodcaller("rename_axis", columns="a")), | |
# Unary ops | |
(pd.DataFrame, frame_data, operator.neg), | |
(pd.Series, [1], operator.neg), | |
(pd.DataFrame, frame_data, operator.pos), | |
(pd.Series, [1], operator.pos), | |
(pd.DataFrame, frame_data, operator.inv), | |
(pd.Series, [1], operator.inv), | |
(pd.DataFrame, frame_data, abs), | |
(pd.Series, [1], abs), | |
(pd.DataFrame, frame_data, round), | |
(pd.Series, [1], round), | |
(pd.DataFrame, frame_data, operator.methodcaller("take", [0, 0])), | |
(pd.DataFrame, frame_mi_data, operator.methodcaller("xs", "a")), | |
(pd.Series, (1, mi), operator.methodcaller("xs", "a")), | |
(pd.DataFrame, frame_data, operator.methodcaller("get", "A")), | |
( | |
pd.DataFrame, | |
frame_data, | |
operator.methodcaller("reindex_like", pd.DataFrame({"A": [1, 2, 3]})), | |
), | |
( | |
pd.Series, | |
frame_data, | |
operator.methodcaller("reindex_like", pd.Series([0, 1, 2])), | |
), | |
(pd.DataFrame, frame_data, operator.methodcaller("add_prefix", "_")), | |
(pd.DataFrame, frame_data, operator.methodcaller("add_suffix", "_")), | |
(pd.Series, (1, ["a", "b"]), operator.methodcaller("add_prefix", "_")), | |
(pd.Series, (1, ["a", "b"]), operator.methodcaller("add_suffix", "_")), | |
(pd.Series, ([3, 2],), operator.methodcaller("sort_values")), | |
(pd.Series, ([1] * 10,), operator.methodcaller("head")), | |
(pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("head")), | |
(pd.Series, ([1] * 10,), operator.methodcaller("tail")), | |
(pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("tail")), | |
(pd.Series, ([1, 2],), operator.methodcaller("sample", n=2, replace=True)), | |
(pd.DataFrame, (frame_data,), operator.methodcaller("sample", n=2, replace=True)), | |
(pd.Series, ([1, 2],), operator.methodcaller("astype", float)), | |
(pd.DataFrame, frame_data, operator.methodcaller("astype", float)), | |
(pd.Series, ([1, 2],), operator.methodcaller("copy")), | |
(pd.DataFrame, frame_data, operator.methodcaller("copy")), | |
(pd.Series, ([1, 2], None, object), operator.methodcaller("infer_objects")), | |
( | |
pd.DataFrame, | |
({"A": np.array([1, 2], dtype=object)},), | |
operator.methodcaller("infer_objects"), | |
), | |
(pd.Series, ([1, 2],), operator.methodcaller("convert_dtypes")), | |
(pd.DataFrame, frame_data, operator.methodcaller("convert_dtypes")), | |
(pd.Series, ([1, None, 3],), operator.methodcaller("interpolate")), | |
(pd.DataFrame, ({"A": [1, None, 3]},), operator.methodcaller("interpolate")), | |
(pd.Series, ([1, 2],), operator.methodcaller("clip", lower=1)), | |
(pd.DataFrame, frame_data, operator.methodcaller("clip", lower=1)), | |
( | |
pd.Series, | |
(1, pd.date_range("2000", periods=4)), | |
operator.methodcaller("asfreq", "h"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), | |
operator.methodcaller("asfreq", "h"), | |
), | |
( | |
pd.Series, | |
(1, pd.date_range("2000", periods=4)), | |
operator.methodcaller("at_time", "12:00"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), | |
operator.methodcaller("at_time", "12:00"), | |
), | |
( | |
pd.Series, | |
(1, pd.date_range("2000", periods=4)), | |
operator.methodcaller("between_time", "12:00", "13:00"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), | |
operator.methodcaller("between_time", "12:00", "13:00"), | |
), | |
( | |
pd.Series, | |
(1, pd.date_range("2000", periods=4)), | |
operator.methodcaller("last", "3D"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), | |
operator.methodcaller("last", "3D"), | |
), | |
(pd.Series, ([1, 2],), operator.methodcaller("rank")), | |
(pd.DataFrame, frame_data, operator.methodcaller("rank")), | |
(pd.Series, ([1, 2],), operator.methodcaller("where", np.array([True, False]))), | |
(pd.DataFrame, frame_data, operator.methodcaller("where", np.array([[True]]))), | |
(pd.Series, ([1, 2],), operator.methodcaller("mask", np.array([True, False]))), | |
(pd.DataFrame, frame_data, operator.methodcaller("mask", np.array([[True]]))), | |
(pd.Series, ([1, 2],), operator.methodcaller("truncate", before=0)), | |
(pd.DataFrame, frame_data, operator.methodcaller("truncate", before=0)), | |
( | |
pd.Series, | |
(1, pd.date_range("2000", periods=4, tz="UTC")), | |
operator.methodcaller("tz_convert", "CET"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4, tz="UTC")), | |
operator.methodcaller("tz_convert", "CET"), | |
), | |
( | |
pd.Series, | |
(1, pd.date_range("2000", periods=4)), | |
operator.methodcaller("tz_localize", "CET"), | |
), | |
( | |
pd.DataFrame, | |
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), | |
operator.methodcaller("tz_localize", "CET"), | |
), | |
(pd.Series, ([1, 2],), operator.methodcaller("describe")), | |
(pd.DataFrame, frame_data, operator.methodcaller("describe")), | |
(pd.Series, ([1, 2],), operator.methodcaller("pct_change")), | |
(pd.DataFrame, frame_data, operator.methodcaller("pct_change")), | |
(pd.Series, ([1],), operator.methodcaller("transform", lambda x: x - x.min())), | |
( | |
pd.DataFrame, | |
frame_mi_data, | |
operator.methodcaller("transform", lambda x: x - x.min()), | |
), | |
(pd.Series, ([1],), operator.methodcaller("apply", lambda x: x)), | |
(pd.DataFrame, frame_mi_data, operator.methodcaller("apply", lambda x: x)), | |
# Cumulative reductions | |
(pd.Series, ([1],), operator.methodcaller("cumsum")), | |
(pd.DataFrame, frame_data, operator.methodcaller("cumsum")), | |
(pd.Series, ([1],), operator.methodcaller("cummin")), | |
(pd.DataFrame, frame_data, operator.methodcaller("cummin")), | |
(pd.Series, ([1],), operator.methodcaller("cummax")), | |
(pd.DataFrame, frame_data, operator.methodcaller("cummax")), | |
(pd.Series, ([1],), operator.methodcaller("cumprod")), | |
(pd.DataFrame, frame_data, operator.methodcaller("cumprod")), | |
# Reductions | |
(pd.DataFrame, frame_data, operator.methodcaller("any")), | |
(pd.DataFrame, frame_data, operator.methodcaller("all")), | |
(pd.DataFrame, frame_data, operator.methodcaller("min")), | |
(pd.DataFrame, frame_data, operator.methodcaller("max")), | |
(pd.DataFrame, frame_data, operator.methodcaller("sum")), | |
(pd.DataFrame, frame_data, operator.methodcaller("std")), | |
(pd.DataFrame, frame_data, operator.methodcaller("mean")), | |
(pd.DataFrame, frame_data, operator.methodcaller("prod")), | |
(pd.DataFrame, frame_data, operator.methodcaller("sem")), | |
(pd.DataFrame, frame_data, operator.methodcaller("skew")), | |
(pd.DataFrame, frame_data, operator.methodcaller("kurt")), | |
] | |
def idfn(x): | |
xpr = re.compile(r"'(.*)?'") | |
m = xpr.search(str(x)) | |
if m: | |
return m.group(1) | |
else: | |
return str(x) | |
def ndframe_method(request): | |
""" | |
An NDFrame method returning an NDFrame. | |
""" | |
return request.param | |
def test_finalize_called(ndframe_method): | |
cls, init_args, method = ndframe_method | |
ndframe = cls(*init_args) | |
ndframe.attrs = {"a": 1} | |
result = method(ndframe) | |
assert result.attrs == {"a": 1} | |
def test_finalize_first(data): | |
deprecated_msg = "first is deprecated" | |
data.attrs = {"a": 1} | |
with tm.assert_produces_warning(FutureWarning, match=deprecated_msg): | |
result = data.first("3D") | |
assert result.attrs == {"a": 1} | |
def test_finalize_last(data): | |
# GH 53710 | |
deprecated_msg = "last is deprecated" | |
data.attrs = {"a": 1} | |
with tm.assert_produces_warning(FutureWarning, match=deprecated_msg): | |
result = data.last("3D") | |
assert result.attrs == {"a": 1} | |
def test_finalize_called_eval_numexpr(): | |
pytest.importorskip("numexpr") | |
df = pd.DataFrame({"A": [1, 2]}) | |
df.attrs["A"] = 1 | |
result = df.eval("A + 1", engine="numexpr") | |
assert result.attrs == {"A": 1} | |
# ---------------------------------------------------------------------------- | |
# Binary operations | |
def test_binops(request, args, annotate, all_binary_operators): | |
# This generates 624 tests... Is that needed? | |
left, right = args | |
if isinstance(left, (pd.DataFrame, pd.Series)): | |
left.attrs = {} | |
if isinstance(right, (pd.DataFrame, pd.Series)): | |
right.attrs = {} | |
if annotate == "left" and isinstance(left, int): | |
pytest.skip("left is an int and doesn't support .attrs") | |
if annotate == "right" and isinstance(right, int): | |
pytest.skip("right is an int and doesn't support .attrs") | |
if not (isinstance(left, int) or isinstance(right, int)) and annotate != "both": | |
if not all_binary_operators.__name__.startswith("r"): | |
if annotate == "right" and isinstance(left, type(right)): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"{all_binary_operators} doesn't work when right has " | |
f"attrs and both are {type(left)}" | |
) | |
) | |
if not isinstance(left, type(right)): | |
if annotate == "left" and isinstance(left, pd.Series): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"{all_binary_operators} doesn't work when the " | |
"objects are different Series has attrs" | |
) | |
) | |
elif annotate == "right" and isinstance(right, pd.Series): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"{all_binary_operators} doesn't work when the " | |
"objects are different Series has attrs" | |
) | |
) | |
else: | |
if annotate == "left" and isinstance(left, type(right)): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"{all_binary_operators} doesn't work when left has " | |
f"attrs and both are {type(left)}" | |
) | |
) | |
if not isinstance(left, type(right)): | |
if annotate == "right" and isinstance(right, pd.Series): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"{all_binary_operators} doesn't work when the " | |
"objects are different Series has attrs" | |
) | |
) | |
elif annotate == "left" and isinstance(left, pd.Series): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"{all_binary_operators} doesn't work when the " | |
"objects are different Series has attrs" | |
) | |
) | |
if annotate in {"left", "both"} and not isinstance(left, int): | |
left.attrs = {"a": 1} | |
if annotate in {"right", "both"} and not isinstance(right, int): | |
right.attrs = {"a": 1} | |
is_cmp = all_binary_operators in [ | |
operator.eq, | |
operator.ne, | |
operator.gt, | |
operator.ge, | |
operator.lt, | |
operator.le, | |
] | |
if is_cmp and isinstance(left, pd.DataFrame) and isinstance(right, pd.Series): | |
# in 2.0 silent alignment on comparisons was removed xref GH#28759 | |
left, right = left.align(right, axis=1, copy=False) | |
elif is_cmp and isinstance(left, pd.Series) and isinstance(right, pd.DataFrame): | |
right, left = right.align(left, axis=1, copy=False) | |
result = all_binary_operators(left, right) | |
assert result.attrs == {"a": 1} | |
# ---------------------------------------------------------------------------- | |
# Accessors | |
def test_string_method(method): | |
s = pd.Series(["a1"]) | |
s.attrs = {"a": 1} | |
result = method(s.str) | |
assert result.attrs == {"a": 1} | |
def test_datetime_method(method): | |
s = pd.Series(pd.date_range("2000", periods=4)) | |
s.attrs = {"a": 1} | |
result = method(s.dt) | |
assert result.attrs == {"a": 1} | |
def test_datetime_property(attr): | |
s = pd.Series(pd.date_range("2000", periods=4)) | |
s.attrs = {"a": 1} | |
result = getattr(s.dt, attr) | |
assert result.attrs == {"a": 1} | |
def test_timedelta_property(attr): | |
s = pd.Series(pd.timedelta_range("2000", periods=4)) | |
s.attrs = {"a": 1} | |
result = getattr(s.dt, attr) | |
assert result.attrs == {"a": 1} | |
def test_timedelta_methods(method): | |
s = pd.Series(pd.timedelta_range("2000", periods=4)) | |
s.attrs = {"a": 1} | |
result = method(s.dt) | |
assert result.attrs == {"a": 1} | |
def test_categorical_accessor(method): | |
s = pd.Series(["a", "b"], dtype="category") | |
s.attrs = {"a": 1} | |
result = method(s.cat) | |
assert result.attrs == {"a": 1} | |
# ---------------------------------------------------------------------------- | |
# Groupby | |
def test_groupby_finalize(obj, method): | |
obj.attrs = {"a": 1} | |
result = method(obj.groupby([0, 0], group_keys=False)) | |
assert result.attrs == {"a": 1} | |
def test_groupby_finalize_not_implemented(obj, method): | |
obj.attrs = {"a": 1} | |
result = method(obj.groupby([0, 0])) | |
assert result.attrs == {"a": 1} | |
def test_finalize_frame_series_name(): | |
# https://github.com/pandas-dev/pandas/pull/37186/files#r506978889 | |
# ensure we don't copy the column `name` to the Series. | |
df = pd.DataFrame({"name": [1, 2]}) | |
result = pd.Series([1, 2]).__finalize__(df) | |
assert result.name is None | |