peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/generic
/test_generic.py
from copy import ( | |
copy, | |
deepcopy, | |
) | |
import numpy as np | |
import pytest | |
from pandas.core.dtypes.common import is_scalar | |
from pandas import ( | |
DataFrame, | |
Index, | |
Series, | |
date_range, | |
) | |
import pandas._testing as tm | |
# ---------------------------------------------------------------------- | |
# Generic types test cases | |
def construct(box, shape, value=None, dtype=None, **kwargs): | |
""" | |
construct an object for the given shape | |
if value is specified use that if its a scalar | |
if value is an array, repeat it as needed | |
""" | |
if isinstance(shape, int): | |
shape = tuple([shape] * box._AXIS_LEN) | |
if value is not None: | |
if is_scalar(value): | |
if value == "empty": | |
arr = None | |
dtype = np.float64 | |
# remove the info axis | |
kwargs.pop(box._info_axis_name, None) | |
else: | |
arr = np.empty(shape, dtype=dtype) | |
arr.fill(value) | |
else: | |
fshape = np.prod(shape) | |
arr = value.ravel() | |
new_shape = fshape / arr.shape[0] | |
if fshape % arr.shape[0] != 0: | |
raise Exception("invalid value passed in construct") | |
arr = np.repeat(arr, new_shape).reshape(shape) | |
else: | |
arr = np.random.default_rng(2).standard_normal(shape) | |
return box(arr, dtype=dtype, **kwargs) | |
class TestGeneric: | |
def test_rename(self, frame_or_series, func): | |
# single axis | |
idx = list("ABCD") | |
for axis in frame_or_series._AXIS_ORDERS: | |
kwargs = {axis: idx} | |
obj = construct(frame_or_series, 4, **kwargs) | |
# rename a single axis | |
result = obj.rename(**{axis: func}) | |
expected = obj.copy() | |
setattr(expected, axis, list("abcd")) | |
tm.assert_equal(result, expected) | |
def test_get_numeric_data(self, frame_or_series): | |
n = 4 | |
kwargs = { | |
frame_or_series._get_axis_name(i): list(range(n)) | |
for i in range(frame_or_series._AXIS_LEN) | |
} | |
# get the numeric data | |
o = construct(frame_or_series, n, **kwargs) | |
result = o._get_numeric_data() | |
tm.assert_equal(result, o) | |
# non-inclusion | |
result = o._get_bool_data() | |
expected = construct(frame_or_series, n, value="empty", **kwargs) | |
if isinstance(o, DataFrame): | |
# preserve columns dtype | |
expected.columns = o.columns[:0] | |
# https://github.com/pandas-dev/pandas/issues/50862 | |
tm.assert_equal(result.reset_index(drop=True), expected) | |
# get the bool data | |
arr = np.array([True, True, False, True]) | |
o = construct(frame_or_series, n, value=arr, **kwargs) | |
result = o._get_numeric_data() | |
tm.assert_equal(result, o) | |
def test_nonzero(self, frame_or_series): | |
# GH 4633 | |
# look at the boolean/nonzero behavior for objects | |
obj = construct(frame_or_series, shape=4) | |
msg = f"The truth value of a {frame_or_series.__name__} is ambiguous" | |
with pytest.raises(ValueError, match=msg): | |
bool(obj == 0) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj == 1) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj) | |
obj = construct(frame_or_series, shape=4, value=1) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj == 0) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj == 1) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj) | |
obj = construct(frame_or_series, shape=4, value=np.nan) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj == 0) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj == 1) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj) | |
# empty | |
obj = construct(frame_or_series, shape=0) | |
with pytest.raises(ValueError, match=msg): | |
bool(obj) | |
# invalid behaviors | |
obj1 = construct(frame_or_series, shape=4, value=1) | |
obj2 = construct(frame_or_series, shape=4, value=1) | |
with pytest.raises(ValueError, match=msg): | |
if obj1: | |
pass | |
with pytest.raises(ValueError, match=msg): | |
obj1 and obj2 | |
with pytest.raises(ValueError, match=msg): | |
obj1 or obj2 | |
with pytest.raises(ValueError, match=msg): | |
not obj1 | |
def test_frame_or_series_compound_dtypes(self, frame_or_series): | |
# see gh-5191 | |
# Compound dtypes should raise NotImplementedError. | |
def f(dtype): | |
return construct(frame_or_series, shape=3, value=1, dtype=dtype) | |
msg = ( | |
"compound dtypes are not implemented " | |
f"in the {frame_or_series.__name__} constructor" | |
) | |
with pytest.raises(NotImplementedError, match=msg): | |
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")]) | |
# these work (though results may be unexpected) | |
f("int64") | |
f("float64") | |
f("M8[ns]") | |
def test_metadata_propagation(self, frame_or_series): | |
# check that the metadata matches up on the resulting ops | |
o = construct(frame_or_series, shape=3) | |
o.name = "foo" | |
o2 = construct(frame_or_series, shape=3) | |
o2.name = "bar" | |
# ---------- | |
# preserving | |
# ---------- | |
# simple ops with scalars | |
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]: | |
result = getattr(o, op)(1) | |
tm.assert_metadata_equivalent(o, result) | |
# ops with like | |
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]: | |
result = getattr(o, op)(o) | |
tm.assert_metadata_equivalent(o, result) | |
# simple boolean | |
for op in ["__eq__", "__le__", "__ge__"]: | |
v1 = getattr(o, op)(o) | |
tm.assert_metadata_equivalent(o, v1) | |
tm.assert_metadata_equivalent(o, v1 & v1) | |
tm.assert_metadata_equivalent(o, v1 | v1) | |
# combine_first | |
result = o.combine_first(o2) | |
tm.assert_metadata_equivalent(o, result) | |
# --------------------------- | |
# non-preserving (by default) | |
# --------------------------- | |
# add non-like | |
result = o + o2 | |
tm.assert_metadata_equivalent(result) | |
# simple boolean | |
for op in ["__eq__", "__le__", "__ge__"]: | |
# this is a name matching op | |
v1 = getattr(o, op)(o) | |
v2 = getattr(o, op)(o2) | |
tm.assert_metadata_equivalent(v2) | |
tm.assert_metadata_equivalent(v1 & v2) | |
tm.assert_metadata_equivalent(v1 | v2) | |
def test_size_compat(self, frame_or_series): | |
# GH8846 | |
# size property should be defined | |
o = construct(frame_or_series, shape=10) | |
assert o.size == np.prod(o.shape) | |
assert o.size == 10 ** len(o.axes) | |
def test_split_compat(self, frame_or_series): | |
# xref GH8846 | |
o = construct(frame_or_series, shape=10) | |
with tm.assert_produces_warning( | |
FutureWarning, match=".swapaxes' is deprecated", check_stacklevel=False | |
): | |
assert len(np.array_split(o, 5)) == 5 | |
assert len(np.array_split(o, 2)) == 2 | |
# See gh-12301 | |
def test_stat_unexpected_keyword(self, frame_or_series): | |
obj = construct(frame_or_series, 5) | |
starwars = "Star Wars" | |
errmsg = "unexpected keyword" | |
with pytest.raises(TypeError, match=errmsg): | |
obj.max(epic=starwars) # stat_function | |
with pytest.raises(TypeError, match=errmsg): | |
obj.var(epic=starwars) # stat_function_ddof | |
with pytest.raises(TypeError, match=errmsg): | |
obj.sum(epic=starwars) # cum_function | |
with pytest.raises(TypeError, match=errmsg): | |
obj.any(epic=starwars) # logical_function | |
def test_api_compat(self, func, frame_or_series): | |
# GH 12021 | |
# compat for __name__, __qualname__ | |
obj = construct(frame_or_series, 5) | |
f = getattr(obj, func) | |
assert f.__name__ == func | |
assert f.__qualname__.endswith(func) | |
def test_stat_non_defaults_args(self, frame_or_series): | |
obj = construct(frame_or_series, 5) | |
out = np.array([0]) | |
errmsg = "the 'out' parameter is not supported" | |
with pytest.raises(ValueError, match=errmsg): | |
obj.max(out=out) # stat_function | |
with pytest.raises(ValueError, match=errmsg): | |
obj.var(out=out) # stat_function_ddof | |
with pytest.raises(ValueError, match=errmsg): | |
obj.sum(out=out) # cum_function | |
with pytest.raises(ValueError, match=errmsg): | |
obj.any(out=out) # logical_function | |
def test_truncate_out_of_bounds(self, frame_or_series): | |
# GH11382 | |
# small | |
shape = [2000] + ([1] * (frame_or_series._AXIS_LEN - 1)) | |
small = construct(frame_or_series, shape, dtype="int8", value=1) | |
tm.assert_equal(small.truncate(), small) | |
tm.assert_equal(small.truncate(before=0, after=3e3), small) | |
tm.assert_equal(small.truncate(before=-1, after=2e3), small) | |
# big | |
shape = [2_000_000] + ([1] * (frame_or_series._AXIS_LEN - 1)) | |
big = construct(frame_or_series, shape, dtype="int8", value=1) | |
tm.assert_equal(big.truncate(), big) | |
tm.assert_equal(big.truncate(before=0, after=3e6), big) | |
tm.assert_equal(big.truncate(before=-1, after=2e6), big) | |
def test_copy_and_deepcopy(self, frame_or_series, shape, func): | |
# GH 15444 | |
obj = construct(frame_or_series, shape) | |
obj_copy = func(obj) | |
assert obj_copy is not obj | |
tm.assert_equal(obj_copy, obj) | |
def test_data_deprecated(self, frame_or_series): | |
obj = frame_or_series() | |
msg = "(Series|DataFrame)._data is deprecated" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
mgr = obj._data | |
assert mgr is obj._mgr | |
class TestNDFrame: | |
# tests that don't fit elsewhere | |
def test_squeeze_series_noop(self, ser): | |
# noop | |
tm.assert_series_equal(ser.squeeze(), ser) | |
def test_squeeze_frame_noop(self): | |
# noop | |
df = DataFrame(np.eye(2)) | |
tm.assert_frame_equal(df.squeeze(), df) | |
def test_squeeze_frame_reindex(self): | |
# squeezing | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
).reindex(columns=["A"]) | |
tm.assert_series_equal(df.squeeze(), df["A"]) | |
def test_squeeze_0_len_dim(self): | |
# don't fail with 0 length dimensions GH11229 & GH8999 | |
empty_series = Series([], name="five", dtype=np.float64) | |
empty_frame = DataFrame([empty_series]) | |
tm.assert_series_equal(empty_series, empty_series.squeeze()) | |
tm.assert_series_equal(empty_series, empty_frame.squeeze()) | |
def test_squeeze_axis(self): | |
# axis argument | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((1, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=1, freq="B"), | |
).iloc[:, :1] | |
assert df.shape == (1, 1) | |
tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0]) | |
tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0]) | |
tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0]) | |
tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0]) | |
assert df.squeeze() == df.iloc[0, 0] | |
msg = "No axis named 2 for object type DataFrame" | |
with pytest.raises(ValueError, match=msg): | |
df.squeeze(axis=2) | |
msg = "No axis named x for object type DataFrame" | |
with pytest.raises(ValueError, match=msg): | |
df.squeeze(axis="x") | |
def test_squeeze_axis_len_3(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((3, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=3, freq="B"), | |
) | |
tm.assert_frame_equal(df.squeeze(axis=0), df) | |
def test_numpy_squeeze(self): | |
s = Series(range(2), dtype=np.float64) | |
tm.assert_series_equal(np.squeeze(s), s) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
).reindex(columns=["A"]) | |
tm.assert_series_equal(np.squeeze(df), df["A"]) | |
def test_transpose_series(self, ser): | |
# calls implementation in pandas/core/base.py | |
tm.assert_series_equal(ser.transpose(), ser) | |
def test_transpose_frame(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
tm.assert_frame_equal(df.transpose().transpose(), df) | |
def test_numpy_transpose(self, frame_or_series): | |
obj = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
obj = tm.get_obj(obj, frame_or_series) | |
if frame_or_series is Series: | |
# 1D -> np.transpose is no-op | |
tm.assert_series_equal(np.transpose(obj), obj) | |
# round-trip preserved | |
tm.assert_equal(np.transpose(np.transpose(obj)), obj) | |
msg = "the 'axes' parameter is not supported" | |
with pytest.raises(ValueError, match=msg): | |
np.transpose(obj, axes=1) | |
def test_take_series(self, ser): | |
indices = [1, 5, -2, 6, 3, -1] | |
out = ser.take(indices) | |
expected = Series( | |
data=ser.values.take(indices), | |
index=ser.index.take(indices), | |
dtype=ser.dtype, | |
) | |
tm.assert_series_equal(out, expected) | |
def test_take_frame(self): | |
indices = [1, 5, -2, 6, 3, -1] | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
out = df.take(indices) | |
expected = DataFrame( | |
data=df.values.take(indices, axis=0), | |
index=df.index.take(indices), | |
columns=df.columns, | |
) | |
tm.assert_frame_equal(out, expected) | |
def test_take_invalid_kwargs(self, frame_or_series): | |
indices = [-3, 2, 0, 1] | |
obj = DataFrame(range(5)) | |
obj = tm.get_obj(obj, frame_or_series) | |
msg = r"take\(\) got an unexpected keyword argument 'foo'" | |
with pytest.raises(TypeError, match=msg): | |
obj.take(indices, foo=2) | |
msg = "the 'out' parameter is not supported" | |
with pytest.raises(ValueError, match=msg): | |
obj.take(indices, out=indices) | |
msg = "the 'mode' parameter is not supported" | |
with pytest.raises(ValueError, match=msg): | |
obj.take(indices, mode="clip") | |
def test_axis_classmethods(self, frame_or_series): | |
box = frame_or_series | |
obj = box(dtype=object) | |
values = box._AXIS_TO_AXIS_NUMBER.keys() | |
for v in values: | |
assert obj._get_axis_number(v) == box._get_axis_number(v) | |
assert obj._get_axis_name(v) == box._get_axis_name(v) | |
assert obj._get_block_manager_axis(v) == box._get_block_manager_axis(v) | |
def test_flags_identity(self, frame_or_series): | |
obj = Series([1, 2]) | |
if frame_or_series is DataFrame: | |
obj = obj.to_frame() | |
assert obj.flags is obj.flags | |
obj2 = obj.copy() | |
assert obj2.flags is not obj.flags | |
def test_bool_dep(self) -> None: | |
# GH-51749 | |
msg_warn = ( | |
"DataFrame.bool is now deprecated and will be removed " | |
"in future version of pandas" | |
) | |
with tm.assert_produces_warning(FutureWarning, match=msg_warn): | |
DataFrame({"col": [False]}).bool() | |