peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/plotting
/test_misc.py
""" Test cases for misc plot functions """ | |
import os | |
import numpy as np | |
import pytest | |
import pandas.util._test_decorators as td | |
from pandas import ( | |
DataFrame, | |
Index, | |
Series, | |
Timestamp, | |
date_range, | |
interval_range, | |
period_range, | |
plotting, | |
read_csv, | |
) | |
import pandas._testing as tm | |
from pandas.tests.plotting.common import ( | |
_check_colors, | |
_check_legend_labels, | |
_check_plot_works, | |
_check_text_labels, | |
_check_ticks_props, | |
) | |
mpl = pytest.importorskip("matplotlib") | |
plt = pytest.importorskip("matplotlib.pyplot") | |
cm = pytest.importorskip("matplotlib.cm") | |
def iris(datapath) -> DataFrame: | |
""" | |
The iris dataset as a DataFrame. | |
""" | |
return read_csv(datapath("io", "data", "csv", "iris.csv")) | |
def test_import_error_message(): | |
# GH-19810 | |
df = DataFrame({"A": [1, 2]}) | |
with pytest.raises(ImportError, match="matplotlib is required for plotting"): | |
df.plot() | |
def test_get_accessor_args(): | |
func = plotting._core.PlotAccessor._get_call_args | |
msg = "Called plot accessor for type list, expected Series or DataFrame" | |
with pytest.raises(TypeError, match=msg): | |
func(backend_name="", data=[], args=[], kwargs={}) | |
msg = "should not be called with positional arguments" | |
with pytest.raises(TypeError, match=msg): | |
func(backend_name="", data=Series(dtype=object), args=["line", None], kwargs={}) | |
x, y, kind, kwargs = func( | |
backend_name="", | |
data=DataFrame(), | |
args=["x"], | |
kwargs={"y": "y", "kind": "bar", "grid": False}, | |
) | |
assert x == "x" | |
assert y == "y" | |
assert kind == "bar" | |
assert kwargs == {"grid": False} | |
x, y, kind, kwargs = func( | |
backend_name="pandas.plotting._matplotlib", | |
data=Series(dtype=object), | |
args=[], | |
kwargs={}, | |
) | |
assert x is None | |
assert y is None | |
assert kind == "line" | |
assert len(kwargs) == 24 | |
def test_savefig(kind, data, index): | |
fig, ax = plt.subplots() | |
data.index = index | |
kwargs = {} | |
if kind in ["hexbin", "scatter", "pie"]: | |
if isinstance(data, Series): | |
pytest.skip(f"{kind} not supported with Series") | |
kwargs = {"x": 0, "y": 1} | |
data.plot(kind=kind, ax=ax, **kwargs) | |
fig.savefig(os.devnull) | |
class TestSeriesPlots: | |
def test_autocorrelation_plot(self): | |
from pandas.plotting import autocorrelation_plot | |
ser = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
# Ensure no UserWarning when making plot | |
with tm.assert_produces_warning(None): | |
_check_plot_works(autocorrelation_plot, series=ser) | |
_check_plot_works(autocorrelation_plot, series=ser.values) | |
ax = autocorrelation_plot(ser, label="Test") | |
_check_legend_labels(ax, labels=["Test"]) | |
def test_lag_plot(self, kwargs): | |
from pandas.plotting import lag_plot | |
ser = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
_check_plot_works(lag_plot, series=ser, **kwargs) | |
def test_bootstrap_plot(self): | |
from pandas.plotting import bootstrap_plot | |
ser = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
_check_plot_works(bootstrap_plot, series=ser, size=10) | |
class TestDataFramePlots: | |
def test_scatter_matrix_axis(self, pass_axis): | |
pytest.importorskip("scipy") | |
scatter_matrix = plotting.scatter_matrix | |
ax = None | |
if pass_axis: | |
_, ax = mpl.pyplot.subplots(3, 3) | |
df = DataFrame(np.random.default_rng(2).standard_normal((100, 3))) | |
# we are plotting multiples on a sub-plot | |
with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | |
axes = _check_plot_works( | |
scatter_matrix, | |
frame=df, | |
range_padding=0.1, | |
ax=ax, | |
) | |
axes0_labels = axes[0][0].yaxis.get_majorticklabels() | |
# GH 5662 | |
expected = ["-2", "0", "2"] | |
_check_text_labels(axes0_labels, expected) | |
_check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) | |
def test_scatter_matrix_axis_smaller(self, pass_axis): | |
pytest.importorskip("scipy") | |
scatter_matrix = plotting.scatter_matrix | |
ax = None | |
if pass_axis: | |
_, ax = mpl.pyplot.subplots(3, 3) | |
df = DataFrame(np.random.default_rng(11).standard_normal((100, 3))) | |
df[0] = (df[0] - 2) / 3 | |
# we are plotting multiples on a sub-plot | |
with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | |
axes = _check_plot_works( | |
scatter_matrix, | |
frame=df, | |
range_padding=0.1, | |
ax=ax, | |
) | |
axes0_labels = axes[0][0].yaxis.get_majorticklabels() | |
expected = ["-1.0", "-0.5", "0.0"] | |
_check_text_labels(axes0_labels, expected) | |
_check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) | |
def test_andrews_curves_no_warning(self, iris): | |
from pandas.plotting import andrews_curves | |
df = iris | |
# Ensure no UserWarning when making plot | |
with tm.assert_produces_warning(None): | |
_check_plot_works(andrews_curves, frame=df, class_column="Name") | |
def test_andrews_curves_linecolors(self, request, df, linecolors): | |
from pandas.plotting import andrews_curves | |
if isinstance(df, str): | |
df = request.getfixturevalue(df) | |
ax = _check_plot_works( | |
andrews_curves, frame=df, class_column="Name", color=linecolors | |
) | |
_check_colors( | |
ax.get_lines()[:10], linecolors=linecolors, mapping=df["Name"][:10] | |
) | |
def test_andrews_curves_cmap(self, request, df): | |
from pandas.plotting import andrews_curves | |
if isinstance(df, str): | |
df = request.getfixturevalue(df) | |
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())] | |
ax = _check_plot_works( | |
andrews_curves, frame=df, class_column="Name", color=cmaps | |
) | |
_check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]) | |
def test_andrews_curves_handle(self): | |
from pandas.plotting import andrews_curves | |
colors = ["b", "g", "r"] | |
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors}) | |
ax = andrews_curves(df, "Name", color=colors) | |
handles, _ = ax.get_legend_handles_labels() | |
_check_colors(handles, linecolors=colors) | |
def test_parallel_coordinates_colors(self, iris, color): | |
from pandas.plotting import parallel_coordinates | |
df = iris | |
ax = _check_plot_works( | |
parallel_coordinates, frame=df, class_column="Name", color=color | |
) | |
_check_colors(ax.get_lines()[:10], linecolors=color, mapping=df["Name"][:10]) | |
def test_parallel_coordinates_cmap(self, iris): | |
from matplotlib import cm | |
from pandas.plotting import parallel_coordinates | |
df = iris | |
ax = _check_plot_works( | |
parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet | |
) | |
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())] | |
_check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]) | |
def test_parallel_coordinates_line_diff(self, iris): | |
from pandas.plotting import parallel_coordinates | |
df = iris | |
ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name") | |
nlines = len(ax.get_lines()) | |
nxticks = len(ax.xaxis.get_ticklabels()) | |
ax = _check_plot_works( | |
parallel_coordinates, frame=df, class_column="Name", axvlines=False | |
) | |
assert len(ax.get_lines()) == (nlines - nxticks) | |
def test_parallel_coordinates_handles(self, iris): | |
from pandas.plotting import parallel_coordinates | |
df = iris | |
colors = ["b", "g", "r"] | |
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors}) | |
ax = parallel_coordinates(df, "Name", color=colors) | |
handles, _ = ax.get_legend_handles_labels() | |
_check_colors(handles, linecolors=colors) | |
# not sure if this is indicative of a problem | |
def test_parallel_coordinates_with_sorted_labels(self): | |
"""For #15908""" | |
from pandas.plotting import parallel_coordinates | |
df = DataFrame( | |
{ | |
"feat": list(range(30)), | |
"class": [2 for _ in range(10)] | |
+ [3 for _ in range(10)] | |
+ [1 for _ in range(10)], | |
} | |
) | |
ax = parallel_coordinates(df, "class", sort_labels=True) | |
polylines, labels = ax.get_legend_handles_labels() | |
color_label_tuples = zip( | |
[polyline.get_color() for polyline in polylines], labels | |
) | |
ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1]) | |
prev_next_tupels = zip( | |
list(ordered_color_label_tuples[0:-1]), list(ordered_color_label_tuples[1:]) | |
) | |
for prev, nxt in prev_next_tupels: | |
# labels and colors are ordered strictly increasing | |
assert prev[1] < nxt[1] and prev[0] < nxt[0] | |
def test_radviz_no_warning(self, iris): | |
from pandas.plotting import radviz | |
df = iris | |
# Ensure no UserWarning when making plot | |
with tm.assert_produces_warning(None): | |
_check_plot_works(radviz, frame=df, class_column="Name") | |
def test_radviz_color(self, iris, color): | |
from pandas.plotting import radviz | |
df = iris | |
ax = _check_plot_works(radviz, frame=df, class_column="Name", color=color) | |
# skip Circle drawn as ticks | |
patches = [p for p in ax.patches[:20] if p.get_label() != ""] | |
_check_colors(patches[:10], facecolors=color, mapping=df["Name"][:10]) | |
def test_radviz_color_cmap(self, iris): | |
from matplotlib import cm | |
from pandas.plotting import radviz | |
df = iris | |
ax = _check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet) | |
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())] | |
patches = [p for p in ax.patches[:20] if p.get_label() != ""] | |
_check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10]) | |
def test_radviz_colors_handles(self): | |
from pandas.plotting import radviz | |
colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]] | |
df = DataFrame( | |
{"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]} | |
) | |
ax = radviz(df, "Name", color=colors) | |
handles, _ = ax.get_legend_handles_labels() | |
_check_colors(handles, facecolors=colors) | |
def test_subplot_titles(self, iris): | |
df = iris.drop("Name", axis=1).head() | |
# Use the column names as the subplot titles | |
title = list(df.columns) | |
# Case len(title) == len(df) | |
plot = df.plot(subplots=True, title=title) | |
assert [p.get_title() for p in plot] == title | |
def test_subplot_titles_too_much(self, iris): | |
df = iris.drop("Name", axis=1).head() | |
# Use the column names as the subplot titles | |
title = list(df.columns) | |
# Case len(title) > len(df) | |
msg = ( | |
"The length of `title` must equal the number of columns if " | |
"using `title` of type `list` and `subplots=True`" | |
) | |
with pytest.raises(ValueError, match=msg): | |
df.plot(subplots=True, title=title + ["kittens > puppies"]) | |
def test_subplot_titles_too_little(self, iris): | |
df = iris.drop("Name", axis=1).head() | |
# Use the column names as the subplot titles | |
title = list(df.columns) | |
msg = ( | |
"The length of `title` must equal the number of columns if " | |
"using `title` of type `list` and `subplots=True`" | |
) | |
# Case len(title) < len(df) | |
with pytest.raises(ValueError, match=msg): | |
df.plot(subplots=True, title=title[:2]) | |
def test_subplot_titles_subplots_false(self, iris): | |
df = iris.drop("Name", axis=1).head() | |
# Use the column names as the subplot titles | |
title = list(df.columns) | |
# Case subplots=False and title is of type list | |
msg = ( | |
"Using `title` of type `list` is not supported unless " | |
"`subplots=True` is passed" | |
) | |
with pytest.raises(ValueError, match=msg): | |
df.plot(subplots=False, title=title) | |
def test_subplot_titles_numeric_square_layout(self, iris): | |
df = iris.drop("Name", axis=1).head() | |
# Use the column names as the subplot titles | |
title = list(df.columns) | |
# Case df with 3 numeric columns but layout of (2,2) | |
plot = df.drop("SepalWidth", axis=1).plot( | |
subplots=True, layout=(2, 2), title=title[:-1] | |
) | |
title_list = [ax.get_title() for sublist in plot for ax in sublist] | |
assert title_list == title[:3] + [""] | |
def test_get_standard_colors_random_seed(self): | |
# GH17525 | |
df = DataFrame(np.zeros((10, 10))) | |
# Make sure that the random seed isn't reset by get_standard_colors | |
plotting.parallel_coordinates(df, 0) | |
rand1 = np.random.default_rng(None).random() | |
plotting.parallel_coordinates(df, 0) | |
rand2 = np.random.default_rng(None).random() | |
assert rand1 != rand2 | |
def test_get_standard_colors_consistency(self): | |
# GH17525 | |
# Make sure it produces the same colors every time it's called | |
from pandas.plotting._matplotlib.style import get_standard_colors | |
color1 = get_standard_colors(1, color_type="random") | |
color2 = get_standard_colors(1, color_type="random") | |
assert color1 == color2 | |
def test_get_standard_colors_default_num_colors(self): | |
from pandas.plotting._matplotlib.style import get_standard_colors | |
# Make sure the default color_types returns the specified amount | |
color1 = get_standard_colors(1, color_type="default") | |
color2 = get_standard_colors(9, color_type="default") | |
color3 = get_standard_colors(20, color_type="default") | |
assert len(color1) == 1 | |
assert len(color2) == 9 | |
assert len(color3) == 20 | |
def test_plot_single_color(self): | |
# Example from #20585. All 3 bars should have the same color | |
df = DataFrame( | |
{ | |
"account-start": ["2017-02-03", "2017-03-03", "2017-01-01"], | |
"client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"], | |
"balance": [-1432.32, 10.43, 30000.00], | |
"db-id": [1234, 2424, 251], | |
"proxy-id": [525, 1525, 2542], | |
"rank": [52, 525, 32], | |
} | |
) | |
ax = df.client.value_counts().plot.bar() | |
colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]] | |
assert all(color == colors[0] for color in colors) | |
def test_get_standard_colors_no_appending(self): | |
# GH20726 | |
# Make sure not to add more colors so that matplotlib can cycle | |
# correctly. | |
from matplotlib import cm | |
from pandas.plotting._matplotlib.style import get_standard_colors | |
color_before = cm.gnuplot(range(5)) | |
color_after = get_standard_colors(1, color=color_before) | |
assert len(color_after) == len(color_before) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((48, 4)), columns=list("ABCD") | |
) | |
color_list = cm.gnuplot(np.linspace(0, 1, 16)) | |
p = df.A.plot.bar(figsize=(16, 7), color=color_list) | |
assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor() | |
def test_dictionary_color(self, kind): | |
# issue-8193 | |
# Test plot color dictionary format | |
data_files = ["a", "b"] | |
expected = [(0.5, 0.24, 0.6), (0.3, 0.7, 0.7)] | |
df1 = DataFrame(np.random.default_rng(2).random((2, 2)), columns=data_files) | |
dic_color = {"b": (0.3, 0.7, 0.7), "a": (0.5, 0.24, 0.6)} | |
ax = df1.plot(kind=kind, color=dic_color) | |
if kind == "bar": | |
colors = [rect.get_facecolor()[0:-1] for rect in ax.get_children()[0:3:2]] | |
else: | |
colors = [rect.get_color() for rect in ax.get_lines()[0:2]] | |
assert all(color == expected[index] for index, color in enumerate(colors)) | |
def test_bar_plot(self): | |
# GH38947 | |
# Test bar plot with string and int index | |
from matplotlib.text import Text | |
expected = [Text(0, 0, "0"), Text(1, 0, "Total")] | |
df = DataFrame( | |
{ | |
"a": [1, 2], | |
}, | |
index=Index([0, "Total"]), | |
) | |
plot_bar = df.plot.bar() | |
assert all( | |
(a.get_text() == b.get_text()) | |
for a, b in zip(plot_bar.get_xticklabels(), expected) | |
) | |
def test_barh_plot_labels_mixed_integer_string(self): | |
# GH39126 | |
# Test barh plot with string and integer at the same column | |
from matplotlib.text import Text | |
df = DataFrame([{"word": 1, "value": 0}, {"word": "knowledge", "value": 2}]) | |
plot_barh = df.plot.barh(x="word", legend=None) | |
expected_yticklabels = [Text(0, 0, "1"), Text(0, 1, "knowledge")] | |
assert all( | |
actual.get_text() == expected.get_text() | |
for actual, expected in zip( | |
plot_barh.get_yticklabels(), expected_yticklabels | |
) | |
) | |
def test_has_externally_shared_axis_x_axis(self): | |
# GH33819 | |
# Test _has_externally_shared_axis() works for x-axis | |
func = plotting._matplotlib.tools._has_externally_shared_axis | |
fig = mpl.pyplot.figure() | |
plots = fig.subplots(2, 4) | |
# Create *externally* shared axes for first and third columns | |
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0]) | |
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2]) | |
# Create *internally* shared axes for second and third columns | |
plots[0][1].twinx() | |
plots[0][2].twinx() | |
# First column is only externally shared | |
# Second column is only internally shared | |
# Third column is both | |
# Fourth column is neither | |
assert func(plots[0][0], "x") | |
assert not func(plots[0][1], "x") | |
assert func(plots[0][2], "x") | |
assert not func(plots[0][3], "x") | |
def test_has_externally_shared_axis_y_axis(self): | |
# GH33819 | |
# Test _has_externally_shared_axis() works for y-axis | |
func = plotting._matplotlib.tools._has_externally_shared_axis | |
fig = mpl.pyplot.figure() | |
plots = fig.subplots(4, 2) | |
# Create *externally* shared axes for first and third rows | |
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1]) | |
plots[2][0] = fig.add_subplot(325, sharey=plots[2][1]) | |
# Create *internally* shared axes for second and third rows | |
plots[1][0].twiny() | |
plots[2][0].twiny() | |
# First row is only externally shared | |
# Second row is only internally shared | |
# Third row is both | |
# Fourth row is neither | |
assert func(plots[0][0], "y") | |
assert not func(plots[1][0], "y") | |
assert func(plots[2][0], "y") | |
assert not func(plots[3][0], "y") | |
def test_has_externally_shared_axis_invalid_compare_axis(self): | |
# GH33819 | |
# Test _has_externally_shared_axis() raises an exception when | |
# passed an invalid value as compare_axis parameter | |
func = plotting._matplotlib.tools._has_externally_shared_axis | |
fig = mpl.pyplot.figure() | |
plots = fig.subplots(4, 2) | |
# Create arbitrary axes | |
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1]) | |
# Check that an invalid compare_axis value triggers the expected exception | |
msg = "needs 'x' or 'y' as a second parameter" | |
with pytest.raises(ValueError, match=msg): | |
func(plots[0][0], "z") | |
def test_externally_shared_axes(self): | |
# Example from GH33819 | |
# Create data | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).standard_normal(1000), | |
"b": np.random.default_rng(2).standard_normal(1000), | |
} | |
) | |
# Create figure | |
fig = mpl.pyplot.figure() | |
plots = fig.subplots(2, 3) | |
# Create *externally* shared axes | |
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0]) | |
# note: no plots[0][1] that's the twin only case | |
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2]) | |
# Create *internally* shared axes | |
# note: no plots[0][0] that's the external only case | |
twin_ax1 = plots[0][1].twinx() | |
twin_ax2 = plots[0][2].twinx() | |
# Plot data to primary axes | |
df["a"].plot(ax=plots[0][0], title="External share only").set_xlabel( | |
"this label should never be visible" | |
) | |
df["a"].plot(ax=plots[1][0]) | |
df["a"].plot(ax=plots[0][1], title="Internal share (twin) only").set_xlabel( | |
"this label should always be visible" | |
) | |
df["a"].plot(ax=plots[1][1]) | |
df["a"].plot(ax=plots[0][2], title="Both").set_xlabel( | |
"this label should never be visible" | |
) | |
df["a"].plot(ax=plots[1][2]) | |
# Plot data to twinned axes | |
df["b"].plot(ax=twin_ax1, color="green") | |
df["b"].plot(ax=twin_ax2, color="yellow") | |
assert not plots[0][0].xaxis.get_label().get_visible() | |
assert plots[0][1].xaxis.get_label().get_visible() | |
assert not plots[0][2].xaxis.get_label().get_visible() | |
def test_plot_bar_axis_units_timestamp_conversion(self): | |
# GH 38736 | |
# Ensure string x-axis from the second plot will not be converted to datetime | |
# due to axis data from first plot | |
df = DataFrame( | |
[1.0], | |
index=[Timestamp("2022-02-22 22:22:22")], | |
) | |
_check_plot_works(df.plot) | |
s = Series({"A": 1.0}) | |
_check_plot_works(s.plot.bar) | |
def test_bar_plt_xaxis_intervalrange(self): | |
# GH 38969 | |
# Ensure IntervalIndex x-axis produces a bar plot as expected | |
from matplotlib.text import Text | |
expected = [Text(0, 0, "([0, 1],)"), Text(1, 0, "([1, 2],)")] | |
s = Series( | |
[1, 2], | |
index=[interval_range(0, 2, closed="both")], | |
) | |
_check_plot_works(s.plot.bar) | |
assert all( | |
(a.get_text() == b.get_text()) | |
for a, b in zip(s.plot.bar().get_xticklabels(), expected) | |
) | |