peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/resample
/test_timedelta.py
from datetime import timedelta | |
import numpy as np | |
import pytest | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Series, | |
) | |
import pandas._testing as tm | |
from pandas.core.indexes.timedeltas import timedelta_range | |
def test_asfreq_bug(): | |
df = DataFrame(data=[1, 3], index=[timedelta(), timedelta(minutes=3)]) | |
result = df.resample("1min").asfreq() | |
expected = DataFrame( | |
data=[1, np.nan, np.nan, 3], | |
index=timedelta_range("0 day", periods=4, freq="1min"), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_resample_with_nat(): | |
# GH 13223 | |
index = pd.to_timedelta(["0s", pd.NaT, "2s"]) | |
result = DataFrame({"value": [2, 3, 5]}, index).resample("1s").mean() | |
expected = DataFrame( | |
{"value": [2.5, np.nan, 5.0]}, | |
index=timedelta_range("0 day", periods=3, freq="1s"), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_resample_as_freq_with_subperiod(): | |
# GH 13022 | |
index = timedelta_range("00:00:00", "00:10:00", freq="5min") | |
df = DataFrame(data={"value": [1, 5, 10]}, index=index) | |
result = df.resample("2min").asfreq() | |
expected_data = {"value": [1, np.nan, np.nan, np.nan, np.nan, 10]} | |
expected = DataFrame( | |
data=expected_data, index=timedelta_range("00:00:00", "00:10:00", freq="2min") | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_resample_with_timedeltas(): | |
expected = DataFrame({"A": np.arange(1480)}) | |
expected = expected.groupby(expected.index // 30).sum() | |
expected.index = timedelta_range("0 days", freq="30min", periods=50) | |
df = DataFrame( | |
{"A": np.arange(1480)}, index=pd.to_timedelta(np.arange(1480), unit="min") | |
) | |
result = df.resample("30min").sum() | |
tm.assert_frame_equal(result, expected) | |
s = df["A"] | |
result = s.resample("30min").sum() | |
tm.assert_series_equal(result, expected["A"]) | |
def test_resample_single_period_timedelta(): | |
s = Series(list(range(5)), index=timedelta_range("1 day", freq="s", periods=5)) | |
result = s.resample("2s").sum() | |
expected = Series([1, 5, 4], index=timedelta_range("1 day", freq="2s", periods=3)) | |
tm.assert_series_equal(result, expected) | |
def test_resample_timedelta_idempotency(): | |
# GH 12072 | |
index = timedelta_range("0", periods=9, freq="10ms") | |
series = Series(range(9), index=index) | |
result = series.resample("10ms").mean() | |
expected = series.astype(float) | |
tm.assert_series_equal(result, expected) | |
def test_resample_offset_with_timedeltaindex(): | |
# GH 10530 & 31809 | |
rng = timedelta_range(start="0s", periods=25, freq="s") | |
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) | |
with_base = ts.resample("2s", offset="5s").mean() | |
without_base = ts.resample("2s").mean() | |
exp_without_base = timedelta_range(start="0s", end="25s", freq="2s") | |
exp_with_base = timedelta_range(start="5s", end="29s", freq="2s") | |
tm.assert_index_equal(without_base.index, exp_without_base) | |
tm.assert_index_equal(with_base.index, exp_with_base) | |
def test_resample_categorical_data_with_timedeltaindex(): | |
# GH #12169 | |
df = DataFrame({"Group_obj": "A"}, index=pd.to_timedelta(list(range(20)), unit="s")) | |
df["Group"] = df["Group_obj"].astype("category") | |
result = df.resample("10s").agg(lambda x: (x.value_counts().index[0])) | |
exp_tdi = pd.TimedeltaIndex(np.array([0, 10], dtype="m8[s]"), freq="10s").as_unit( | |
"ns" | |
) | |
expected = DataFrame( | |
{"Group_obj": ["A", "A"], "Group": ["A", "A"]}, | |
index=exp_tdi, | |
) | |
expected = expected.reindex(["Group_obj", "Group"], axis=1) | |
expected["Group"] = expected["Group_obj"].astype("category") | |
tm.assert_frame_equal(result, expected) | |
def test_resample_timedelta_values(): | |
# GH 13119 | |
# check that timedelta dtype is preserved when NaT values are | |
# introduced by the resampling | |
times = timedelta_range("1 day", "6 day", freq="4D") | |
df = DataFrame({"time": times}, index=times) | |
times2 = timedelta_range("1 day", "6 day", freq="2D") | |
exp = Series(times2, index=times2, name="time") | |
exp.iloc[1] = pd.NaT | |
res = df.resample("2D").first()["time"] | |
tm.assert_series_equal(res, exp) | |
res = df["time"].resample("2D").first() | |
tm.assert_series_equal(res, exp) | |
def test_resample_timedelta_edge_case(start, end, freq, resample_freq): | |
# GH 33498 | |
# check that the timedelta bins does not contains an extra bin | |
idx = timedelta_range(start=start, end=end, freq=freq) | |
s = Series(np.arange(len(idx)), index=idx) | |
result = s.resample(resample_freq).min() | |
expected_index = timedelta_range(freq=resample_freq, start=start, end=end) | |
tm.assert_index_equal(result.index, expected_index) | |
assert result.index.freq == expected_index.freq | |
assert not np.isnan(result.iloc[-1]) | |
def test_resample_with_timedelta_yields_no_empty_groups(duplicates): | |
# GH 10603 | |
df = DataFrame( | |
np.random.default_rng(2).normal(size=(10000, 4)), | |
index=timedelta_range(start="0s", periods=10000, freq="3906250ns"), | |
) | |
if duplicates: | |
# case with non-unique columns | |
df.columns = ["A", "B", "A", "C"] | |
result = df.loc["1s":, :].resample("3s").apply(lambda x: len(x)) | |
expected = DataFrame( | |
[[768] * 4] * 12 + [[528] * 4], | |
index=timedelta_range(start="1s", periods=13, freq="3s"), | |
) | |
expected.columns = df.columns | |
tm.assert_frame_equal(result, expected) | |
def test_resample_quantile_timedelta(unit): | |
# GH: 29485 | |
dtype = np.dtype(f"m8[{unit}]") | |
df = DataFrame( | |
{"value": pd.to_timedelta(np.arange(4), unit="s").astype(dtype)}, | |
index=pd.date_range("20200101", periods=4, tz="UTC"), | |
) | |
result = df.resample("2D").quantile(0.99) | |
expected = DataFrame( | |
{ | |
"value": [ | |
pd.Timedelta("0 days 00:00:00.990000"), | |
pd.Timedelta("0 days 00:00:02.990000"), | |
] | |
}, | |
index=pd.date_range("20200101", periods=2, tz="UTC", freq="2D"), | |
).astype(dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_resample_closed_right(): | |
# GH#45414 | |
idx = pd.Index([pd.Timedelta(seconds=120 + i * 30) for i in range(10)]) | |
ser = Series(range(10), index=idx) | |
result = ser.resample("min", closed="right", label="right").sum() | |
expected = Series( | |
[0, 3, 7, 11, 15, 9], | |
index=pd.TimedeltaIndex( | |
[pd.Timedelta(seconds=120 + i * 60) for i in range(6)], freq="min" | |
), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_arrow_duration_resample(): | |
# GH 56371 | |
idx = pd.Index(timedelta_range("1 day", periods=5), dtype="duration[ns][pyarrow]") | |
expected = Series(np.arange(5, dtype=np.float64), index=idx) | |
result = expected.resample("1D").mean() | |
tm.assert_series_equal(result, expected) | |