peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/reshape
/test_cut.py
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
DataFrame, | |
DatetimeIndex, | |
Index, | |
Interval, | |
IntervalIndex, | |
Series, | |
TimedeltaIndex, | |
Timestamp, | |
cut, | |
date_range, | |
interval_range, | |
isna, | |
qcut, | |
timedelta_range, | |
to_datetime, | |
) | |
import pandas._testing as tm | |
from pandas.api.types import CategoricalDtype | |
import pandas.core.reshape.tile as tmod | |
def test_simple(): | |
data = np.ones(5, dtype="int64") | |
result = cut(data, 4, labels=False) | |
expected = np.array([1, 1, 1, 1, 1]) | |
tm.assert_numpy_array_equal(result, expected, check_dtype=False) | |
def test_bins(func): | |
data = func([0.2, 1.4, 2.5, 6.2, 9.7, 2.1]) | |
result, bins = cut(data, 3, retbins=True) | |
intervals = IntervalIndex.from_breaks(bins.round(3)) | |
intervals = intervals.take([0, 0, 0, 1, 2, 0]) | |
expected = Categorical(intervals, ordered=True) | |
tm.assert_categorical_equal(result, expected) | |
tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7])) | |
def test_right(): | |
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) | |
result, bins = cut(data, 4, right=True, retbins=True) | |
intervals = IntervalIndex.from_breaks(bins.round(3)) | |
expected = Categorical(intervals, ordered=True) | |
expected = expected.take([0, 0, 0, 2, 3, 0, 0]) | |
tm.assert_categorical_equal(result, expected) | |
tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7])) | |
def test_no_right(): | |
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) | |
result, bins = cut(data, 4, right=False, retbins=True) | |
intervals = IntervalIndex.from_breaks(bins.round(3), closed="left") | |
intervals = intervals.take([0, 0, 0, 2, 3, 0, 1]) | |
expected = Categorical(intervals, ordered=True) | |
tm.assert_categorical_equal(result, expected) | |
tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095])) | |
def test_bins_from_interval_index(): | |
c = cut(range(5), 3) | |
expected = c | |
result = cut(range(5), bins=expected.categories) | |
tm.assert_categorical_equal(result, expected) | |
expected = Categorical.from_codes( | |
np.append(c.codes, -1), categories=c.categories, ordered=True | |
) | |
result = cut(range(6), bins=expected.categories) | |
tm.assert_categorical_equal(result, expected) | |
def test_bins_from_interval_index_doc_example(): | |
# Make sure we preserve the bins. | |
ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60]) | |
c = cut(ages, bins=[0, 18, 35, 70]) | |
expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)]) | |
tm.assert_index_equal(c.categories, expected) | |
result = cut([25, 20, 50], bins=c.categories) | |
tm.assert_index_equal(result.categories, expected) | |
tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8")) | |
def test_bins_not_overlapping_from_interval_index(): | |
# see gh-23980 | |
msg = "Overlapping IntervalIndex is not accepted" | |
ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)]) | |
with pytest.raises(ValueError, match=msg): | |
cut([5, 6], bins=ii) | |
def test_bins_not_monotonic(): | |
msg = "bins must increase monotonically" | |
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] | |
with pytest.raises(ValueError, match=msg): | |
cut(data, [0.1, 1.5, 1, 10]) | |
def test_bins_monotonic_not_overflowing(x, bins, expected): | |
# GH 26045 | |
result = cut(x, bins) | |
tm.assert_index_equal(result.categories, expected) | |
def test_wrong_num_labels(): | |
msg = "Bin labels must be one fewer than the number of bin edges" | |
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] | |
with pytest.raises(ValueError, match=msg): | |
cut(data, [0, 1, 10], labels=["foo", "bar", "baz"]) | |
def test_cut_corner(x, bins, msg): | |
with pytest.raises(ValueError, match=msg): | |
cut(x, bins) | |
def test_cut_not_1d_arg(arg, cut_func): | |
msg = "Input array must be 1 dimensional" | |
with pytest.raises(ValueError, match=msg): | |
cut_func(arg, 2) | |
def test_int_bins_with_inf(data): | |
# GH 24314 | |
msg = "cannot specify integer `bins` when input data contains infinity" | |
with pytest.raises(ValueError, match=msg): | |
cut(data, bins=3) | |
def test_cut_out_of_range_more(): | |
# see gh-1511 | |
name = "x" | |
ser = Series([0, -1, 0, 1, -3], name=name) | |
ind = cut(ser, [0, 1], labels=False) | |
exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name) | |
tm.assert_series_equal(ind, exp) | |
def test_labels(right, breaks, closed): | |
arr = np.tile(np.arange(0, 1.01, 0.1), 4) | |
result, bins = cut(arr, 4, retbins=True, right=right) | |
ex_levels = IntervalIndex.from_breaks(breaks, closed=closed) | |
tm.assert_index_equal(result.categories, ex_levels) | |
def test_cut_pass_series_name_to_factor(): | |
name = "foo" | |
ser = Series(np.random.default_rng(2).standard_normal(100), name=name) | |
factor = cut(ser, 4) | |
assert factor.name == name | |
def test_label_precision(): | |
arr = np.arange(0, 0.73, 0.01) | |
result = cut(arr, 4, precision=2) | |
ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72]) | |
tm.assert_index_equal(result.categories, ex_levels) | |
def test_na_handling(labels): | |
arr = np.arange(0, 0.75, 0.01) | |
arr[::3] = np.nan | |
result = cut(arr, 4, labels=labels) | |
result = np.asarray(result) | |
expected = np.where(isna(arr), np.nan, result) | |
tm.assert_almost_equal(result, expected) | |
def test_inf_handling(): | |
data = np.arange(6) | |
data_ser = Series(data, dtype="int64") | |
bins = [-np.inf, 2, 4, np.inf] | |
result = cut(data, bins) | |
result_ser = cut(data_ser, bins) | |
ex_uniques = IntervalIndex.from_breaks(bins) | |
tm.assert_index_equal(result.categories, ex_uniques) | |
assert result[5] == Interval(4, np.inf) | |
assert result[0] == Interval(-np.inf, 2) | |
assert result_ser[5] == Interval(4, np.inf) | |
assert result_ser[0] == Interval(-np.inf, 2) | |
def test_cut_out_of_bounds(): | |
arr = np.random.default_rng(2).standard_normal(100) | |
result = cut(arr, [-1, 0, 1]) | |
mask = isna(result) | |
ex_mask = (arr < -1) | (arr > 1) | |
tm.assert_numpy_array_equal(mask, ex_mask) | |
def test_cut_pass_labels(get_labels, get_expected): | |
bins = [0, 25, 50, 100] | |
arr = [50, 5, 10, 15, 20, 30, 70] | |
labels = ["Small", "Medium", "Large"] | |
result = cut(arr, bins, labels=get_labels(labels)) | |
tm.assert_categorical_equal(result, get_expected(labels)) | |
def test_cut_pass_labels_compat(): | |
# see gh-16459 | |
arr = [50, 5, 10, 15, 20, 30, 70] | |
labels = ["Good", "Medium", "Bad"] | |
result = cut(arr, 3, labels=labels) | |
exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True)) | |
tm.assert_categorical_equal(result, exp) | |
def test_round_frac_just_works(x): | |
# It works. | |
cut(x, 2) | |
def test_round_frac(val, precision, expected): | |
# see gh-1979 | |
result = tmod._round_frac(val, precision=precision) | |
assert result == expected | |
def test_cut_return_intervals(): | |
ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8]) | |
result = cut(ser, 3) | |
exp_bins = np.linspace(0, 8, num=4).round(3) | |
exp_bins[0] -= 0.008 | |
expected = Series( | |
IntervalIndex.from_breaks(exp_bins, closed="right").take( | |
[0, 0, 0, 1, 1, 1, 2, 2, 2] | |
) | |
).astype(CategoricalDtype(ordered=True)) | |
tm.assert_series_equal(result, expected) | |
def test_series_ret_bins(): | |
# see gh-8589 | |
ser = Series(np.arange(4)) | |
result, bins = cut(ser, 2, retbins=True) | |
expected = Series( | |
IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2) | |
).astype(CategoricalDtype(ordered=True)) | |
tm.assert_series_equal(result, expected) | |
def test_cut_duplicates_bin(kwargs, msg): | |
# see gh-20947 | |
bins = [0, 2, 4, 6, 10, 10] | |
values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"]) | |
if msg is not None: | |
with pytest.raises(ValueError, match=msg): | |
cut(values, bins, **kwargs) | |
else: | |
result = cut(values, bins, **kwargs) | |
expected = cut(values, pd.unique(np.asarray(bins))) | |
tm.assert_series_equal(result, expected) | |
def test_single_bin(data, length): | |
# see gh-14652, gh-15428 | |
ser = Series([data] * length) | |
result = cut(ser, 1, labels=False) | |
expected = Series([0] * length, dtype=np.intp) | |
tm.assert_series_equal(result, expected) | |
def test_cut_read_only(array_1_writeable, array_2_writeable): | |
# issue 18773 | |
array_1 = np.arange(0, 100, 10) | |
array_1.flags.writeable = array_1_writeable | |
array_2 = np.arange(0, 100, 10) | |
array_2.flags.writeable = array_2_writeable | |
hundred_elements = np.arange(100) | |
tm.assert_categorical_equal( | |
cut(hundred_elements, array_1), cut(hundred_elements, array_2) | |
) | |
def test_datetime_bin(conv): | |
data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")] | |
bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"] | |
expected = Series( | |
IntervalIndex( | |
[ | |
Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])), | |
Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])), | |
] | |
) | |
).astype(CategoricalDtype(ordered=True)) | |
bins = [conv(v) for v in bin_data] | |
result = Series(cut(data, bins=bins)) | |
tm.assert_series_equal(result, expected) | |
def test_datetime_cut(unit, box): | |
# see gh-14714 | |
# | |
# Testing time data when it comes in various collection types. | |
data = to_datetime(["2013-01-01", "2013-01-02", "2013-01-03"]).astype(f"M8[{unit}]") | |
data = box(data) | |
result, _ = cut(data, 3, retbins=True) | |
if box is list: | |
# We don't (yet) do inference on these, so get nanos | |
unit = "ns" | |
if unit == "s": | |
# See https://github.com/pandas-dev/pandas/pull/56101#discussion_r1405325425 | |
# for why we round to 8 seconds instead of 7 | |
left = DatetimeIndex( | |
["2012-12-31 23:57:08", "2013-01-01 16:00:00", "2013-01-02 08:00:00"], | |
dtype=f"M8[{unit}]", | |
) | |
else: | |
left = DatetimeIndex( | |
[ | |
"2012-12-31 23:57:07.200000", | |
"2013-01-01 16:00:00", | |
"2013-01-02 08:00:00", | |
], | |
dtype=f"M8[{unit}]", | |
) | |
right = DatetimeIndex( | |
["2013-01-01 16:00:00", "2013-01-02 08:00:00", "2013-01-03 00:00:00"], | |
dtype=f"M8[{unit}]", | |
) | |
exp_intervals = IntervalIndex.from_arrays(left, right) | |
expected = Series(exp_intervals).astype(CategoricalDtype(ordered=True)) | |
tm.assert_series_equal(Series(result), expected) | |
def test_datetime_tz_cut_mismatched_tzawareness(box): | |
# GH#54964 | |
bins = box( | |
[ | |
Timestamp("2013-01-01 04:57:07.200000"), | |
Timestamp("2013-01-01 21:00:00"), | |
Timestamp("2013-01-02 13:00:00"), | |
Timestamp("2013-01-03 05:00:00"), | |
] | |
) | |
ser = Series(date_range("20130101", periods=3, tz="US/Eastern")) | |
msg = "Cannot use timezone-naive bins with timezone-aware values" | |
with pytest.raises(ValueError, match=msg): | |
cut(ser, bins) | |
def test_datetime_tz_cut(bins, box): | |
# see gh-19872 | |
tz = "US/Eastern" | |
ser = Series(date_range("20130101", periods=3, tz=tz)) | |
if not isinstance(bins, int): | |
bins = box(bins) | |
result = cut(ser, bins) | |
expected = Series( | |
IntervalIndex( | |
[ | |
Interval( | |
Timestamp("2012-12-31 23:57:07.200000", tz=tz), | |
Timestamp("2013-01-01 16:00:00", tz=tz), | |
), | |
Interval( | |
Timestamp("2013-01-01 16:00:00", tz=tz), | |
Timestamp("2013-01-02 08:00:00", tz=tz), | |
), | |
Interval( | |
Timestamp("2013-01-02 08:00:00", tz=tz), | |
Timestamp("2013-01-03 00:00:00", tz=tz), | |
), | |
] | |
) | |
).astype(CategoricalDtype(ordered=True)) | |
tm.assert_series_equal(result, expected) | |
def test_datetime_nan_error(): | |
msg = "bins must be of datetime64 dtype" | |
with pytest.raises(ValueError, match=msg): | |
cut(date_range("20130101", periods=3), bins=[0, 2, 4]) | |
def test_datetime_nan_mask(): | |
result = cut( | |
date_range("20130102", periods=5), bins=date_range("20130101", periods=2) | |
) | |
mask = result.categories.isna() | |
tm.assert_numpy_array_equal(mask, np.array([False])) | |
mask = result.isna() | |
tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True])) | |
def test_datetime_cut_roundtrip(tz, unit): | |
# see gh-19891 | |
ser = Series(date_range("20180101", periods=3, tz=tz, unit=unit)) | |
result, result_bins = cut(ser, 2, retbins=True) | |
expected = cut(ser, result_bins) | |
tm.assert_series_equal(result, expected) | |
if unit == "s": | |
# TODO: constructing DatetimeIndex with dtype="M8[s]" without truncating | |
# the first entry here raises in array_to_datetime. Should truncate | |
# instead of raising? | |
# See https://github.com/pandas-dev/pandas/pull/56101#discussion_r1405325425 | |
# for why we round to 8 seconds instead of 7 | |
expected_bins = DatetimeIndex( | |
["2017-12-31 23:57:08", "2018-01-02 00:00:00", "2018-01-03 00:00:00"], | |
dtype=f"M8[{unit}]", | |
) | |
else: | |
expected_bins = DatetimeIndex( | |
[ | |
"2017-12-31 23:57:07.200000", | |
"2018-01-02 00:00:00", | |
"2018-01-03 00:00:00", | |
], | |
dtype=f"M8[{unit}]", | |
) | |
expected_bins = expected_bins.tz_localize(tz) | |
tm.assert_index_equal(result_bins, expected_bins) | |
def test_timedelta_cut_roundtrip(): | |
# see gh-19891 | |
ser = Series(timedelta_range("1day", periods=3)) | |
result, result_bins = cut(ser, 2, retbins=True) | |
expected = cut(ser, result_bins) | |
tm.assert_series_equal(result, expected) | |
expected_bins = TimedeltaIndex( | |
["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"] | |
) | |
tm.assert_index_equal(result_bins, expected_bins) | |
def test_cut_bool_coercion_to_int(bins, box, compare): | |
# issue 20303 | |
data_expected = box([0, 1, 1, 0, 1] * 10) | |
data_result = box([False, True, True, False, True] * 10) | |
expected = cut(data_expected, bins, duplicates="drop") | |
result = cut(data_result, bins, duplicates="drop") | |
compare(result, expected) | |
def test_cut_incorrect_labels(labels): | |
# GH 13318 | |
values = range(5) | |
msg = "Bin labels must either be False, None or passed in as a list-like argument" | |
with pytest.raises(ValueError, match=msg): | |
cut(values, 4, labels=labels) | |
def test_cut_nullable_integer(bins, right, include_lowest): | |
a = np.random.default_rng(2).integers(0, 10, size=50).astype(float) | |
a[::2] = np.nan | |
result = cut( | |
pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest | |
) | |
expected = cut(a, bins, right=right, include_lowest=include_lowest) | |
tm.assert_categorical_equal(result, expected) | |
def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels): | |
# GH 33141 | |
result = cut(data, bins=bins, labels=labels, ordered=False) | |
expected = Categorical.from_codes( | |
expected_codes, categories=expected_labels, ordered=False | |
) | |
tm.assert_categorical_equal(result, expected) | |
def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels): | |
# GH 33141 | |
result = cut(data, bins=bins, labels=labels, ordered=False) | |
expected = Categorical.from_codes( | |
expected_codes, categories=expected_labels, ordered=False | |
) | |
tm.assert_categorical_equal(result, expected) | |
def test_cut_unordered_with_missing_labels_raises_error(): | |
# GH 33141 | |
msg = "'labels' must be provided if 'ordered = False'" | |
with pytest.raises(ValueError, match=msg): | |
cut([0.5, 3], bins=[0, 1, 2], ordered=False) | |
def test_cut_unordered_with_series_labels(): | |
# https://github.com/pandas-dev/pandas/issues/36603 | |
ser = Series([1, 2, 3, 4, 5]) | |
bins = Series([0, 2, 4, 6]) | |
labels = Series(["a", "b", "c"]) | |
result = cut(ser, bins=bins, labels=labels, ordered=False) | |
expected = Series(["a", "a", "b", "b", "c"], dtype="category") | |
tm.assert_series_equal(result, expected) | |
def test_cut_no_warnings(): | |
df = DataFrame({"value": np.random.default_rng(2).integers(0, 100, 20)}) | |
labels = [f"{i} - {i + 9}" for i in range(0, 100, 10)] | |
with tm.assert_produces_warning(False): | |
df["group"] = cut(df.value, range(0, 105, 10), right=False, labels=labels) | |
def test_cut_with_duplicated_index_lowest_included(): | |
# GH 42185 | |
expected = Series( | |
[Interval(-0.001, 2, closed="right")] * 3 | |
+ [Interval(2, 4, closed="right"), Interval(-0.001, 2, closed="right")], | |
index=[0, 1, 2, 3, 0], | |
dtype="category", | |
).cat.as_ordered() | |
ser = Series([0, 1, 2, 3, 0], index=[0, 1, 2, 3, 0]) | |
result = cut(ser, bins=[0, 2, 4], include_lowest=True) | |
tm.assert_series_equal(result, expected) | |
def test_cut_with_nonexact_categorical_indices(): | |
# GH 42424 | |
ser = Series(range(100)) | |
ser1 = cut(ser, 10).value_counts().head(5) | |
ser2 = cut(ser, 10).value_counts().tail(5) | |
result = DataFrame({"1": ser1, "2": ser2}) | |
index = pd.CategoricalIndex( | |
[ | |
Interval(-0.099, 9.9, closed="right"), | |
Interval(9.9, 19.8, closed="right"), | |
Interval(19.8, 29.7, closed="right"), | |
Interval(29.7, 39.6, closed="right"), | |
Interval(39.6, 49.5, closed="right"), | |
Interval(49.5, 59.4, closed="right"), | |
Interval(59.4, 69.3, closed="right"), | |
Interval(69.3, 79.2, closed="right"), | |
Interval(79.2, 89.1, closed="right"), | |
Interval(89.1, 99, closed="right"), | |
], | |
ordered=True, | |
) | |
expected = DataFrame( | |
{"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index | |
) | |
tm.assert_frame_equal(expected, result) | |
def test_cut_with_timestamp_tuple_labels(): | |
# GH 40661 | |
labels = [(Timestamp(10),), (Timestamp(20),), (Timestamp(30),)] | |
result = cut([2, 4, 6], bins=[1, 3, 5, 7], labels=labels) | |
expected = Categorical.from_codes([0, 1, 2], labels, ordered=True) | |
tm.assert_categorical_equal(result, expected) | |
def test_cut_bins_datetime_intervalindex(): | |
# https://github.com/pandas-dev/pandas/issues/46218 | |
bins = interval_range(Timestamp("2022-02-25"), Timestamp("2022-02-27"), freq="1D") | |
# passing Series instead of list is important to trigger bug | |
result = cut(Series([Timestamp("2022-02-26")]).astype("M8[ns]"), bins=bins) | |
expected = Categorical.from_codes([0], bins, ordered=True) | |
tm.assert_categorical_equal(result.array, expected) | |
def test_cut_with_nullable_int64(): | |
# GH 30787 | |
series = Series([0, 1, 2, 3, 4, pd.NA, 6, 7], dtype="Int64") | |
bins = [0, 2, 4, 6, 8] | |
intervals = IntervalIndex.from_breaks(bins) | |
expected = Series( | |
Categorical.from_codes([-1, 0, 0, 1, 1, -1, 2, 3], intervals, ordered=True) | |
) | |
result = cut(series, bins=bins) | |
tm.assert_series_equal(result, expected) | |