peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/reshape
/test_pivot.py
from datetime import ( | |
date, | |
datetime, | |
timedelta, | |
) | |
from itertools import product | |
import re | |
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
from pandas.errors import PerformanceWarning | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
DataFrame, | |
Grouper, | |
Index, | |
MultiIndex, | |
Series, | |
concat, | |
date_range, | |
) | |
import pandas._testing as tm | |
from pandas.api.types import CategoricalDtype | |
from pandas.core.reshape import reshape as reshape_lib | |
from pandas.core.reshape.pivot import pivot_table | |
def dropna(request): | |
return request.param | |
def interval_values(request, closed): | |
left, right = request.param | |
return Categorical(pd.IntervalIndex.from_arrays(left, right, closed)) | |
class TestPivotTable: | |
def data(self): | |
return DataFrame( | |
{ | |
"A": [ | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"bar", | |
"bar", | |
"bar", | |
"bar", | |
"foo", | |
"foo", | |
"foo", | |
], | |
"B": [ | |
"one", | |
"one", | |
"one", | |
"two", | |
"one", | |
"one", | |
"one", | |
"two", | |
"two", | |
"two", | |
"one", | |
], | |
"C": [ | |
"dull", | |
"dull", | |
"shiny", | |
"dull", | |
"dull", | |
"shiny", | |
"shiny", | |
"dull", | |
"shiny", | |
"shiny", | |
"shiny", | |
], | |
"D": np.random.default_rng(2).standard_normal(11), | |
"E": np.random.default_rng(2).standard_normal(11), | |
"F": np.random.default_rng(2).standard_normal(11), | |
} | |
) | |
def test_pivot_table(self, observed, data): | |
index = ["A", "B"] | |
columns = "C" | |
table = pivot_table( | |
data, values="D", index=index, columns=columns, observed=observed | |
) | |
table2 = data.pivot_table( | |
values="D", index=index, columns=columns, observed=observed | |
) | |
tm.assert_frame_equal(table, table2) | |
# this works | |
pivot_table(data, values="D", index=index, observed=observed) | |
if len(index) > 1: | |
assert table.index.names == tuple(index) | |
else: | |
assert table.index.name == index[0] | |
if len(columns) > 1: | |
assert table.columns.names == columns | |
else: | |
assert table.columns.name == columns[0] | |
expected = data.groupby(index + [columns])["D"].agg("mean").unstack() | |
tm.assert_frame_equal(table, expected) | |
def test_pivot_table_categorical_observed_equal(self, observed): | |
# issue #24923 | |
df = DataFrame( | |
{"col1": list("abcde"), "col2": list("fghij"), "col3": [1, 2, 3, 4, 5]} | |
) | |
expected = df.pivot_table( | |
index="col1", values="col3", columns="col2", aggfunc="sum", fill_value=0 | |
) | |
expected.index = expected.index.astype("category") | |
expected.columns = expected.columns.astype("category") | |
df.col1 = df.col1.astype("category") | |
df.col2 = df.col2.astype("category") | |
result = df.pivot_table( | |
index="col1", | |
values="col3", | |
columns="col2", | |
aggfunc="sum", | |
fill_value=0, | |
observed=observed, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_nocols(self): | |
df = DataFrame( | |
{"rows": ["a", "b", "c"], "cols": ["x", "y", "z"], "values": [1, 2, 3]} | |
) | |
rs = df.pivot_table(columns="cols", aggfunc="sum") | |
xp = df.pivot_table(index="cols", aggfunc="sum").T | |
tm.assert_frame_equal(rs, xp) | |
rs = df.pivot_table(columns="cols", aggfunc={"values": "mean"}) | |
xp = df.pivot_table(index="cols", aggfunc={"values": "mean"}).T | |
tm.assert_frame_equal(rs, xp) | |
def test_pivot_table_dropna(self): | |
df = DataFrame( | |
{ | |
"amount": {0: 60000, 1: 100000, 2: 50000, 3: 30000}, | |
"customer": {0: "A", 1: "A", 2: "B", 3: "C"}, | |
"month": {0: 201307, 1: 201309, 2: 201308, 3: 201310}, | |
"product": {0: "a", 1: "b", 2: "c", 3: "d"}, | |
"quantity": {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}, | |
} | |
) | |
pv_col = df.pivot_table( | |
"quantity", "month", ["customer", "product"], dropna=False | |
) | |
pv_ind = df.pivot_table( | |
"quantity", ["customer", "product"], "month", dropna=False | |
) | |
m = MultiIndex.from_tuples( | |
[ | |
("A", "a"), | |
("A", "b"), | |
("A", "c"), | |
("A", "d"), | |
("B", "a"), | |
("B", "b"), | |
("B", "c"), | |
("B", "d"), | |
("C", "a"), | |
("C", "b"), | |
("C", "c"), | |
("C", "d"), | |
], | |
names=["customer", "product"], | |
) | |
tm.assert_index_equal(pv_col.columns, m) | |
tm.assert_index_equal(pv_ind.index, m) | |
def test_pivot_table_categorical(self): | |
cat1 = Categorical( | |
["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True | |
) | |
cat2 = Categorical( | |
["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True | |
) | |
df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = pivot_table(df, values="values", index=["A", "B"], dropna=True) | |
exp_index = MultiIndex.from_arrays([cat1, cat2], names=["A", "B"]) | |
expected = DataFrame({"values": [1.0, 2.0, 3.0, 4.0]}, index=exp_index) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_dropna_categoricals(self, dropna): | |
# GH 15193 | |
categories = ["a", "b", "c", "d"] | |
df = DataFrame( | |
{ | |
"A": ["a", "a", "a", "b", "b", "b", "c", "c", "c"], | |
"B": [1, 2, 3, 1, 2, 3, 1, 2, 3], | |
"C": range(9), | |
} | |
) | |
df["A"] = df["A"].astype(CategoricalDtype(categories, ordered=False)) | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.pivot_table(index="B", columns="A", values="C", dropna=dropna) | |
expected_columns = Series(["a", "b", "c"], name="A") | |
expected_columns = expected_columns.astype( | |
CategoricalDtype(categories, ordered=False) | |
) | |
expected_index = Series([1, 2, 3], name="B") | |
expected = DataFrame( | |
[[0.0, 3.0, 6.0], [1.0, 4.0, 7.0], [2.0, 5.0, 8.0]], | |
index=expected_index, | |
columns=expected_columns, | |
) | |
if not dropna: | |
# add back the non observed to compare | |
expected = expected.reindex(columns=Categorical(categories)).astype("float") | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_with_non_observable_dropna(self, dropna): | |
# gh-21133 | |
df = DataFrame( | |
{ | |
"A": Categorical( | |
[np.nan, "low", "high", "low", "high"], | |
categories=["low", "high"], | |
ordered=True, | |
), | |
"B": [0.0, 1.0, 2.0, 3.0, 4.0], | |
} | |
) | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.pivot_table(index="A", values="B", dropna=dropna) | |
if dropna: | |
values = [2.0, 3.0] | |
codes = [0, 1] | |
else: | |
# GH: 10772 | |
values = [2.0, 3.0, 0.0] | |
codes = [0, 1, -1] | |
expected = DataFrame( | |
{"B": values}, | |
index=Index( | |
Categorical.from_codes( | |
codes, categories=["low", "high"], ordered=dropna | |
), | |
name="A", | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_with_non_observable_dropna_multi_cat(self, dropna): | |
# gh-21378 | |
df = DataFrame( | |
{ | |
"A": Categorical( | |
["left", "low", "high", "low", "high"], | |
categories=["low", "high", "left"], | |
ordered=True, | |
), | |
"B": range(5), | |
} | |
) | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.pivot_table(index="A", values="B", dropna=dropna) | |
expected = DataFrame( | |
{"B": [2.0, 3.0, 0.0]}, | |
index=Index( | |
Categorical.from_codes( | |
[0, 1, 2], categories=["low", "high", "left"], ordered=True | |
), | |
name="A", | |
), | |
) | |
if not dropna: | |
expected["B"] = expected["B"].astype(float) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_with_interval_index(self, interval_values, dropna): | |
# GH 25814 | |
df = DataFrame({"A": interval_values, "B": 1}) | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.pivot_table(index="A", values="B", dropna=dropna) | |
expected = DataFrame( | |
{"B": 1.0}, index=Index(interval_values.unique(), name="A") | |
) | |
if not dropna: | |
expected = expected.astype(float) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_with_interval_index_margins(self): | |
# GH 25815 | |
ordered_cat = pd.IntervalIndex.from_arrays([0, 0, 1, 1], [1, 1, 2, 2]) | |
df = DataFrame( | |
{ | |
"A": np.arange(4, 0, -1, dtype=np.intp), | |
"B": ["a", "b", "a", "b"], | |
"C": Categorical(ordered_cat, ordered=True).sort_values( | |
ascending=False | |
), | |
} | |
) | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
pivot_tab = pivot_table( | |
df, index="C", columns="B", values="A", aggfunc="sum", margins=True | |
) | |
result = pivot_tab["All"] | |
expected = Series( | |
[3, 7, 10], | |
index=Index([pd.Interval(0, 1), pd.Interval(1, 2), "All"], name="C"), | |
name="All", | |
dtype=np.intp, | |
) | |
tm.assert_series_equal(result, expected) | |
def test_pass_array(self, data): | |
result = data.pivot_table("D", index=data.A, columns=data.C) | |
expected = data.pivot_table("D", index="A", columns="C") | |
tm.assert_frame_equal(result, expected) | |
def test_pass_function(self, data): | |
result = data.pivot_table("D", index=lambda x: x // 5, columns=data.C) | |
expected = data.pivot_table("D", index=data.index // 5, columns="C") | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_multiple(self, data): | |
index = ["A", "B"] | |
columns = "C" | |
table = pivot_table(data, index=index, columns=columns) | |
expected = data.groupby(index + [columns]).agg("mean").unstack() | |
tm.assert_frame_equal(table, expected) | |
def test_pivot_dtypes(self): | |
# can convert dtypes | |
f = DataFrame( | |
{ | |
"a": ["cat", "bat", "cat", "bat"], | |
"v": [1, 2, 3, 4], | |
"i": ["a", "b", "a", "b"], | |
} | |
) | |
assert f.dtypes["v"] == "int64" | |
z = pivot_table( | |
f, values="v", index=["a"], columns=["i"], fill_value=0, aggfunc="sum" | |
) | |
result = z.dtypes | |
expected = Series([np.dtype("int64")] * 2, index=Index(list("ab"), name="i")) | |
tm.assert_series_equal(result, expected) | |
# cannot convert dtypes | |
f = DataFrame( | |
{ | |
"a": ["cat", "bat", "cat", "bat"], | |
"v": [1.5, 2.5, 3.5, 4.5], | |
"i": ["a", "b", "a", "b"], | |
} | |
) | |
assert f.dtypes["v"] == "float64" | |
z = pivot_table( | |
f, values="v", index=["a"], columns=["i"], fill_value=0, aggfunc="mean" | |
) | |
result = z.dtypes | |
expected = Series([np.dtype("float64")] * 2, index=Index(list("ab"), name="i")) | |
tm.assert_series_equal(result, expected) | |
def test_pivot_preserve_dtypes(self, columns, values): | |
# GH 7142 regression test | |
v = np.arange(5, dtype=np.float64) | |
df = DataFrame( | |
{"float1": v, "float2": v + 2.0, "bool1": v <= 2, "bool2": v <= 3} | |
) | |
df_res = df.reset_index().pivot_table( | |
index="index", columns=columns, values=values | |
) | |
result = dict(df_res.dtypes) | |
expected = {col: np.dtype("float64") for col in df_res} | |
assert result == expected | |
def test_pivot_no_values(self): | |
# GH 14380 | |
idx = pd.DatetimeIndex( | |
["2011-01-01", "2011-02-01", "2011-01-02", "2011-01-01", "2011-01-02"] | |
) | |
df = DataFrame({"A": [1, 2, 3, 4, 5]}, index=idx) | |
res = df.pivot_table(index=df.index.month, columns=df.index.day) | |
exp_columns = MultiIndex.from_tuples([("A", 1), ("A", 2)]) | |
exp_columns = exp_columns.set_levels( | |
exp_columns.levels[1].astype(np.int32), level=1 | |
) | |
exp = DataFrame( | |
[[2.5, 4.0], [2.0, np.nan]], | |
index=Index([1, 2], dtype=np.int32), | |
columns=exp_columns, | |
) | |
tm.assert_frame_equal(res, exp) | |
df = DataFrame( | |
{ | |
"A": [1, 2, 3, 4, 5], | |
"dt": date_range("2011-01-01", freq="D", periods=5), | |
}, | |
index=idx, | |
) | |
res = df.pivot_table(index=df.index.month, columns=Grouper(key="dt", freq="ME")) | |
exp_columns = MultiIndex.from_arrays( | |
[["A"], pd.DatetimeIndex(["2011-01-31"], dtype="M8[ns]")], | |
names=[None, "dt"], | |
) | |
exp = DataFrame( | |
[3.25, 2.0], index=Index([1, 2], dtype=np.int32), columns=exp_columns | |
) | |
tm.assert_frame_equal(res, exp) | |
res = df.pivot_table( | |
index=Grouper(freq="YE"), columns=Grouper(key="dt", freq="ME") | |
) | |
exp = DataFrame( | |
[3.0], | |
index=pd.DatetimeIndex(["2011-12-31"], freq="YE"), | |
columns=exp_columns, | |
) | |
tm.assert_frame_equal(res, exp) | |
def test_pivot_multi_values(self, data): | |
result = pivot_table( | |
data, values=["D", "E"], index="A", columns=["B", "C"], fill_value=0 | |
) | |
expected = pivot_table( | |
data.drop(["F"], axis=1), index="A", columns=["B", "C"], fill_value=0 | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_multi_functions(self, data): | |
f = lambda func: pivot_table( | |
data, values=["D", "E"], index=["A", "B"], columns="C", aggfunc=func | |
) | |
result = f(["mean", "std"]) | |
means = f("mean") | |
stds = f("std") | |
expected = concat([means, stds], keys=["mean", "std"], axis=1) | |
tm.assert_frame_equal(result, expected) | |
# margins not supported?? | |
f = lambda func: pivot_table( | |
data, | |
values=["D", "E"], | |
index=["A", "B"], | |
columns="C", | |
aggfunc=func, | |
margins=True, | |
) | |
result = f(["mean", "std"]) | |
means = f("mean") | |
stds = f("std") | |
expected = concat([means, stds], keys=["mean", "std"], axis=1) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_index_with_nan(self, method): | |
# GH 3588 | |
nan = np.nan | |
df = DataFrame( | |
{ | |
"a": ["R1", "R2", nan, "R4"], | |
"b": ["C1", "C2", "C3", "C4"], | |
"c": [10, 15, 17, 20], | |
} | |
) | |
if method: | |
result = df.pivot(index="a", columns="b", values="c") | |
else: | |
result = pd.pivot(df, index="a", columns="b", values="c") | |
expected = DataFrame( | |
[ | |
[nan, nan, 17, nan], | |
[10, nan, nan, nan], | |
[nan, 15, nan, nan], | |
[nan, nan, nan, 20], | |
], | |
index=Index([nan, "R1", "R2", "R4"], name="a"), | |
columns=Index(["C1", "C2", "C3", "C4"], name="b"), | |
) | |
tm.assert_frame_equal(result, expected) | |
tm.assert_frame_equal(df.pivot(index="b", columns="a", values="c"), expected.T) | |
def test_pivot_index_with_nan_dates(self, method): | |
# GH9491 | |
df = DataFrame( | |
{ | |
"a": date_range("2014-02-01", periods=6, freq="D"), | |
"c": 100 + np.arange(6), | |
} | |
) | |
df["b"] = df["a"] - pd.Timestamp("2014-02-02") | |
df.loc[1, "a"] = df.loc[3, "a"] = np.nan | |
df.loc[1, "b"] = df.loc[4, "b"] = np.nan | |
if method: | |
pv = df.pivot(index="a", columns="b", values="c") | |
else: | |
pv = pd.pivot(df, index="a", columns="b", values="c") | |
assert pv.notna().values.sum() == len(df) | |
for _, row in df.iterrows(): | |
assert pv.loc[row["a"], row["b"]] == row["c"] | |
if method: | |
result = df.pivot(index="b", columns="a", values="c") | |
else: | |
result = pd.pivot(df, index="b", columns="a", values="c") | |
tm.assert_frame_equal(result, pv.T) | |
def test_pivot_with_tz(self, method, unit): | |
# GH 5878 | |
df = DataFrame( | |
{ | |
"dt1": pd.DatetimeIndex( | |
[ | |
datetime(2013, 1, 1, 9, 0), | |
datetime(2013, 1, 2, 9, 0), | |
datetime(2013, 1, 1, 9, 0), | |
datetime(2013, 1, 2, 9, 0), | |
], | |
dtype=f"M8[{unit}, US/Pacific]", | |
), | |
"dt2": pd.DatetimeIndex( | |
[ | |
datetime(2014, 1, 1, 9, 0), | |
datetime(2014, 1, 1, 9, 0), | |
datetime(2014, 1, 2, 9, 0), | |
datetime(2014, 1, 2, 9, 0), | |
], | |
dtype=f"M8[{unit}, Asia/Tokyo]", | |
), | |
"data1": np.arange(4, dtype="int64"), | |
"data2": np.arange(4, dtype="int64"), | |
} | |
) | |
exp_col1 = Index(["data1", "data1", "data2", "data2"]) | |
exp_col2 = pd.DatetimeIndex( | |
["2014/01/01 09:00", "2014/01/02 09:00"] * 2, | |
name="dt2", | |
dtype=f"M8[{unit}, Asia/Tokyo]", | |
) | |
exp_col = MultiIndex.from_arrays([exp_col1, exp_col2]) | |
exp_idx = pd.DatetimeIndex( | |
["2013/01/01 09:00", "2013/01/02 09:00"], | |
name="dt1", | |
dtype=f"M8[{unit}, US/Pacific]", | |
) | |
expected = DataFrame( | |
[[0, 2, 0, 2], [1, 3, 1, 3]], | |
index=exp_idx, | |
columns=exp_col, | |
) | |
if method: | |
pv = df.pivot(index="dt1", columns="dt2") | |
else: | |
pv = pd.pivot(df, index="dt1", columns="dt2") | |
tm.assert_frame_equal(pv, expected) | |
expected = DataFrame( | |
[[0, 2], [1, 3]], | |
index=exp_idx, | |
columns=exp_col2[:2], | |
) | |
if method: | |
pv = df.pivot(index="dt1", columns="dt2", values="data1") | |
else: | |
pv = pd.pivot(df, index="dt1", columns="dt2", values="data1") | |
tm.assert_frame_equal(pv, expected) | |
def test_pivot_tz_in_values(self): | |
# GH 14948 | |
df = DataFrame( | |
[ | |
{ | |
"uid": "aa", | |
"ts": pd.Timestamp("2016-08-12 13:00:00-0700", tz="US/Pacific"), | |
}, | |
{ | |
"uid": "aa", | |
"ts": pd.Timestamp("2016-08-12 08:00:00-0700", tz="US/Pacific"), | |
}, | |
{ | |
"uid": "aa", | |
"ts": pd.Timestamp("2016-08-12 14:00:00-0700", tz="US/Pacific"), | |
}, | |
{ | |
"uid": "aa", | |
"ts": pd.Timestamp("2016-08-25 11:00:00-0700", tz="US/Pacific"), | |
}, | |
{ | |
"uid": "aa", | |
"ts": pd.Timestamp("2016-08-25 13:00:00-0700", tz="US/Pacific"), | |
}, | |
] | |
) | |
df = df.set_index("ts").reset_index() | |
mins = df.ts.map(lambda x: x.replace(hour=0, minute=0, second=0, microsecond=0)) | |
result = pivot_table( | |
df.set_index("ts").reset_index(), | |
values="ts", | |
index=["uid"], | |
columns=[mins], | |
aggfunc="min", | |
) | |
expected = DataFrame( | |
[ | |
[ | |
pd.Timestamp("2016-08-12 08:00:00-0700", tz="US/Pacific"), | |
pd.Timestamp("2016-08-25 11:00:00-0700", tz="US/Pacific"), | |
] | |
], | |
index=Index(["aa"], name="uid"), | |
columns=pd.DatetimeIndex( | |
[ | |
pd.Timestamp("2016-08-12 00:00:00", tz="US/Pacific"), | |
pd.Timestamp("2016-08-25 00:00:00", tz="US/Pacific"), | |
], | |
name="ts", | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_periods(self, method): | |
df = DataFrame( | |
{ | |
"p1": [ | |
pd.Period("2013-01-01", "D"), | |
pd.Period("2013-01-02", "D"), | |
pd.Period("2013-01-01", "D"), | |
pd.Period("2013-01-02", "D"), | |
], | |
"p2": [ | |
pd.Period("2013-01", "M"), | |
pd.Period("2013-01", "M"), | |
pd.Period("2013-02", "M"), | |
pd.Period("2013-02", "M"), | |
], | |
"data1": np.arange(4, dtype="int64"), | |
"data2": np.arange(4, dtype="int64"), | |
} | |
) | |
exp_col1 = Index(["data1", "data1", "data2", "data2"]) | |
exp_col2 = pd.PeriodIndex(["2013-01", "2013-02"] * 2, name="p2", freq="M") | |
exp_col = MultiIndex.from_arrays([exp_col1, exp_col2]) | |
expected = DataFrame( | |
[[0, 2, 0, 2], [1, 3, 1, 3]], | |
index=pd.PeriodIndex(["2013-01-01", "2013-01-02"], name="p1", freq="D"), | |
columns=exp_col, | |
) | |
if method: | |
pv = df.pivot(index="p1", columns="p2") | |
else: | |
pv = pd.pivot(df, index="p1", columns="p2") | |
tm.assert_frame_equal(pv, expected) | |
expected = DataFrame( | |
[[0, 2], [1, 3]], | |
index=pd.PeriodIndex(["2013-01-01", "2013-01-02"], name="p1", freq="D"), | |
columns=pd.PeriodIndex(["2013-01", "2013-02"], name="p2", freq="M"), | |
) | |
if method: | |
pv = df.pivot(index="p1", columns="p2", values="data1") | |
else: | |
pv = pd.pivot(df, index="p1", columns="p2", values="data1") | |
tm.assert_frame_equal(pv, expected) | |
def test_pivot_periods_with_margins(self): | |
# GH 28323 | |
df = DataFrame( | |
{ | |
"a": [1, 1, 2, 2], | |
"b": [ | |
pd.Period("2019Q1"), | |
pd.Period("2019Q2"), | |
pd.Period("2019Q1"), | |
pd.Period("2019Q2"), | |
], | |
"x": 1.0, | |
} | |
) | |
expected = DataFrame( | |
data=1.0, | |
index=Index([1, 2, "All"], name="a"), | |
columns=Index([pd.Period("2019Q1"), pd.Period("2019Q2"), "All"], name="b"), | |
) | |
result = df.pivot_table(index="a", columns="b", values="x", margins=True) | |
tm.assert_frame_equal(expected, result) | |
def test_pivot_with_list_like_values(self, values, method): | |
# issue #17160 | |
df = DataFrame( | |
{ | |
"foo": ["one", "one", "one", "two", "two", "two"], | |
"bar": ["A", "B", "C", "A", "B", "C"], | |
"baz": [1, 2, 3, 4, 5, 6], | |
"zoo": ["x", "y", "z", "q", "w", "t"], | |
} | |
) | |
if method: | |
result = df.pivot(index="foo", columns="bar", values=values) | |
else: | |
result = pd.pivot(df, index="foo", columns="bar", values=values) | |
data = [[1, 2, 3, "x", "y", "z"], [4, 5, 6, "q", "w", "t"]] | |
index = Index(data=["one", "two"], name="foo") | |
columns = MultiIndex( | |
levels=[["baz", "zoo"], ["A", "B", "C"]], | |
codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], | |
names=[None, "bar"], | |
) | |
expected = DataFrame(data=data, index=index, columns=columns) | |
expected["baz"] = expected["baz"].astype(object) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_with_list_like_values_nans(self, values, method): | |
# issue #17160 | |
df = DataFrame( | |
{ | |
"foo": ["one", "one", "one", "two", "two", "two"], | |
"bar": ["A", "B", "C", "A", "B", "C"], | |
"baz": [1, 2, 3, 4, 5, 6], | |
"zoo": ["x", "y", "z", "q", "w", "t"], | |
} | |
) | |
if method: | |
result = df.pivot(index="zoo", columns="foo", values=values) | |
else: | |
result = pd.pivot(df, index="zoo", columns="foo", values=values) | |
data = [ | |
[np.nan, "A", np.nan, 4], | |
[np.nan, "C", np.nan, 6], | |
[np.nan, "B", np.nan, 5], | |
["A", np.nan, 1, np.nan], | |
["B", np.nan, 2, np.nan], | |
["C", np.nan, 3, np.nan], | |
] | |
index = Index(data=["q", "t", "w", "x", "y", "z"], name="zoo") | |
columns = MultiIndex( | |
levels=[["bar", "baz"], ["one", "two"]], | |
codes=[[0, 0, 1, 1], [0, 1, 0, 1]], | |
names=[None, "foo"], | |
) | |
expected = DataFrame(data=data, index=index, columns=columns) | |
expected["baz"] = expected["baz"].astype(object) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_columns_none_raise_error(self): | |
# GH 30924 | |
df = DataFrame({"col1": ["a", "b", "c"], "col2": [1, 2, 3], "col3": [1, 2, 3]}) | |
msg = r"pivot\(\) missing 1 required keyword-only argument: 'columns'" | |
with pytest.raises(TypeError, match=msg): | |
df.pivot(index="col1", values="col3") # pylint: disable=missing-kwoa | |
def test_pivot_with_multiindex(self, method): | |
# issue #17160 | |
index = Index(data=[0, 1, 2, 3, 4, 5]) | |
data = [ | |
["one", "A", 1, "x"], | |
["one", "B", 2, "y"], | |
["one", "C", 3, "z"], | |
["two", "A", 4, "q"], | |
["two", "B", 5, "w"], | |
["two", "C", 6, "t"], | |
] | |
columns = MultiIndex( | |
levels=[["bar", "baz"], ["first", "second"]], | |
codes=[[0, 0, 1, 1], [0, 1, 0, 1]], | |
) | |
df = DataFrame(data=data, index=index, columns=columns, dtype="object") | |
if method: | |
result = df.pivot( | |
index=("bar", "first"), | |
columns=("bar", "second"), | |
values=("baz", "first"), | |
) | |
else: | |
result = pd.pivot( | |
df, | |
index=("bar", "first"), | |
columns=("bar", "second"), | |
values=("baz", "first"), | |
) | |
data = { | |
"A": Series([1, 4], index=["one", "two"]), | |
"B": Series([2, 5], index=["one", "two"]), | |
"C": Series([3, 6], index=["one", "two"]), | |
} | |
expected = DataFrame(data) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_with_tuple_of_values(self, method): | |
# issue #17160 | |
df = DataFrame( | |
{ | |
"foo": ["one", "one", "one", "two", "two", "two"], | |
"bar": ["A", "B", "C", "A", "B", "C"], | |
"baz": [1, 2, 3, 4, 5, 6], | |
"zoo": ["x", "y", "z", "q", "w", "t"], | |
} | |
) | |
with pytest.raises(KeyError, match=r"^\('bar', 'baz'\)$"): | |
# tuple is seen as a single column name | |
if method: | |
df.pivot(index="zoo", columns="foo", values=("bar", "baz")) | |
else: | |
pd.pivot(df, index="zoo", columns="foo", values=("bar", "baz")) | |
def _check_output( | |
self, | |
result, | |
values_col, | |
data, | |
index=["A", "B"], | |
columns=["C"], | |
margins_col="All", | |
): | |
col_margins = result.loc[result.index[:-1], margins_col] | |
expected_col_margins = data.groupby(index)[values_col].mean() | |
tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) | |
assert col_margins.name == margins_col | |
result = result.sort_index() | |
index_margins = result.loc[(margins_col, "")].iloc[:-1] | |
expected_ix_margins = data.groupby(columns)[values_col].mean() | |
tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) | |
assert index_margins.name == (margins_col, "") | |
grand_total_margins = result.loc[(margins_col, ""), margins_col] | |
expected_total_margins = data[values_col].mean() | |
assert grand_total_margins == expected_total_margins | |
def test_margins(self, data): | |
# column specified | |
result = data.pivot_table( | |
values="D", index=["A", "B"], columns="C", margins=True, aggfunc="mean" | |
) | |
self._check_output(result, "D", data) | |
# Set a different margins_name (not 'All') | |
result = data.pivot_table( | |
values="D", | |
index=["A", "B"], | |
columns="C", | |
margins=True, | |
aggfunc="mean", | |
margins_name="Totals", | |
) | |
self._check_output(result, "D", data, margins_col="Totals") | |
# no column specified | |
table = data.pivot_table( | |
index=["A", "B"], columns="C", margins=True, aggfunc="mean" | |
) | |
for value_col in table.columns.levels[0]: | |
self._check_output(table[value_col], value_col, data) | |
def test_no_col(self, data): | |
# no col | |
# to help with a buglet | |
data.columns = [k * 2 for k in data.columns] | |
msg = re.escape("agg function failed [how->mean,dtype->") | |
with pytest.raises(TypeError, match=msg): | |
data.pivot_table(index=["AA", "BB"], margins=True, aggfunc="mean") | |
table = data.drop(columns="CC").pivot_table( | |
index=["AA", "BB"], margins=True, aggfunc="mean" | |
) | |
for value_col in table.columns: | |
totals = table.loc[("All", ""), value_col] | |
assert totals == data[value_col].mean() | |
with pytest.raises(TypeError, match=msg): | |
data.pivot_table(index=["AA", "BB"], margins=True, aggfunc="mean") | |
table = data.drop(columns="CC").pivot_table( | |
index=["AA", "BB"], margins=True, aggfunc="mean" | |
) | |
for item in ["DD", "EE", "FF"]: | |
totals = table.loc[("All", ""), item] | |
assert totals == data[item].mean() | |
def test_margin_with_only_columns_defined( | |
self, columns, aggfunc, values, expected_columns | |
): | |
# GH 31016 | |
df = DataFrame( | |
{ | |
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], | |
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], | |
"C": [ | |
"small", | |
"large", | |
"large", | |
"small", | |
"small", | |
"large", | |
"small", | |
"small", | |
"large", | |
], | |
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7], | |
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9], | |
} | |
) | |
if aggfunc != "sum": | |
msg = re.escape("agg function failed [how->mean,dtype->") | |
with pytest.raises(TypeError, match=msg): | |
df.pivot_table(columns=columns, margins=True, aggfunc=aggfunc) | |
if "B" not in columns: | |
df = df.drop(columns="B") | |
result = df.drop(columns="C").pivot_table( | |
columns=columns, margins=True, aggfunc=aggfunc | |
) | |
expected = DataFrame(values, index=Index(["D", "E"]), columns=expected_columns) | |
tm.assert_frame_equal(result, expected) | |
def test_margins_dtype(self, data): | |
# GH 17013 | |
df = data.copy() | |
df[["D", "E", "F"]] = np.arange(len(df) * 3).reshape(len(df), 3).astype("i8") | |
mi_val = list(product(["bar", "foo"], ["one", "two"])) + [("All", "")] | |
mi = MultiIndex.from_tuples(mi_val, names=("A", "B")) | |
expected = DataFrame( | |
{"dull": [12, 21, 3, 9, 45], "shiny": [33, 0, 36, 51, 120]}, index=mi | |
).rename_axis("C", axis=1) | |
expected["All"] = expected["dull"] + expected["shiny"] | |
result = df.pivot_table( | |
values="D", | |
index=["A", "B"], | |
columns="C", | |
margins=True, | |
aggfunc="sum", | |
fill_value=0, | |
) | |
tm.assert_frame_equal(expected, result) | |
def test_margins_dtype_len(self, data): | |
mi_val = list(product(["bar", "foo"], ["one", "two"])) + [("All", "")] | |
mi = MultiIndex.from_tuples(mi_val, names=("A", "B")) | |
expected = DataFrame( | |
{"dull": [1, 1, 2, 1, 5], "shiny": [2, 0, 2, 2, 6]}, index=mi | |
).rename_axis("C", axis=1) | |
expected["All"] = expected["dull"] + expected["shiny"] | |
result = data.pivot_table( | |
values="D", | |
index=["A", "B"], | |
columns="C", | |
margins=True, | |
aggfunc=len, | |
fill_value=0, | |
) | |
tm.assert_frame_equal(expected, result) | |
def test_pivot_table_multiindex_only(self, cols): | |
# GH 17038 | |
df2 = DataFrame({cols[0]: [1, 2, 3], cols[1]: [1, 2, 3], "v": [4, 5, 6]}) | |
result = df2.pivot_table(values="v", columns=cols) | |
expected = DataFrame( | |
[[4.0, 5.0, 6.0]], | |
columns=MultiIndex.from_tuples([(1, 1), (2, 2), (3, 3)], names=cols), | |
index=Index(["v"], dtype=object), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_retains_tz(self): | |
dti = date_range("2016-01-01", periods=3, tz="Europe/Amsterdam") | |
df = DataFrame( | |
{ | |
"A": np.random.default_rng(2).standard_normal(3), | |
"B": np.random.default_rng(2).standard_normal(3), | |
"C": dti, | |
} | |
) | |
result = df.pivot_table(index=["B", "C"], dropna=False) | |
# check tz retention | |
assert result.index.levels[1].equals(dti) | |
def test_pivot_integer_columns(self): | |
# caused by upstream bug in unstack | |
d = date.min | |
data = list( | |
product( | |
["foo", "bar"], | |
["A", "B", "C"], | |
["x1", "x2"], | |
[d + timedelta(i) for i in range(20)], | |
[1.0], | |
) | |
) | |
df = DataFrame(data) | |
table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) | |
df2 = df.rename(columns=str) | |
table2 = df2.pivot_table(values="4", index=["0", "1", "3"], columns=["2"]) | |
tm.assert_frame_equal(table, table2, check_names=False) | |
def test_pivot_no_level_overlap(self): | |
# GH #1181 | |
data = DataFrame( | |
{ | |
"a": ["a", "a", "a", "a", "b", "b", "b", "b"] * 2, | |
"b": [0, 0, 0, 0, 1, 1, 1, 1] * 2, | |
"c": (["foo"] * 4 + ["bar"] * 4) * 2, | |
"value": np.random.default_rng(2).standard_normal(16), | |
} | |
) | |
table = data.pivot_table("value", index="a", columns=["b", "c"]) | |
grouped = data.groupby(["a", "b", "c"])["value"].mean() | |
expected = grouped.unstack("b").unstack("c").dropna(axis=1, how="all") | |
tm.assert_frame_equal(table, expected) | |
def test_pivot_columns_lexsorted(self): | |
n = 10000 | |
dtype = np.dtype( | |
[ | |
("Index", object), | |
("Symbol", object), | |
("Year", int), | |
("Month", int), | |
("Day", int), | |
("Quantity", int), | |
("Price", float), | |
] | |
) | |
products = np.array( | |
[ | |
("SP500", "ADBE"), | |
("SP500", "NVDA"), | |
("SP500", "ORCL"), | |
("NDQ100", "AAPL"), | |
("NDQ100", "MSFT"), | |
("NDQ100", "GOOG"), | |
("FTSE", "DGE.L"), | |
("FTSE", "TSCO.L"), | |
("FTSE", "GSK.L"), | |
], | |
dtype=[("Index", object), ("Symbol", object)], | |
) | |
items = np.empty(n, dtype=dtype) | |
iproduct = np.random.default_rng(2).integers(0, len(products), n) | |
items["Index"] = products["Index"][iproduct] | |
items["Symbol"] = products["Symbol"][iproduct] | |
dr = date_range(date(2000, 1, 1), date(2010, 12, 31)) | |
dates = dr[np.random.default_rng(2).integers(0, len(dr), n)] | |
items["Year"] = dates.year | |
items["Month"] = dates.month | |
items["Day"] = dates.day | |
items["Price"] = np.random.default_rng(2).lognormal(4.0, 2.0, n) | |
df = DataFrame(items) | |
pivoted = df.pivot_table( | |
"Price", | |
index=["Month", "Day"], | |
columns=["Index", "Symbol", "Year"], | |
aggfunc="mean", | |
) | |
assert pivoted.columns.is_monotonic_increasing | |
def test_pivot_complex_aggfunc(self, data): | |
f = {"D": ["std"], "E": ["sum"]} | |
expected = data.groupby(["A", "B"]).agg(f).unstack("B") | |
result = data.pivot_table(index="A", columns="B", aggfunc=f) | |
tm.assert_frame_equal(result, expected) | |
def test_margins_no_values_no_cols(self, data): | |
# Regression test on pivot table: no values or cols passed. | |
result = data[["A", "B"]].pivot_table( | |
index=["A", "B"], aggfunc=len, margins=True | |
) | |
result_list = result.tolist() | |
assert sum(result_list[:-1]) == result_list[-1] | |
def test_margins_no_values_two_rows(self, data): | |
# Regression test on pivot table: no values passed but rows are a | |
# multi-index | |
result = data[["A", "B", "C"]].pivot_table( | |
index=["A", "B"], columns="C", aggfunc=len, margins=True | |
) | |
assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] | |
def test_margins_no_values_one_row_one_col(self, data): | |
# Regression test on pivot table: no values passed but row and col | |
# defined | |
result = data[["A", "B"]].pivot_table( | |
index="A", columns="B", aggfunc=len, margins=True | |
) | |
assert result.All.tolist() == [4.0, 7.0, 11.0] | |
def test_margins_no_values_two_row_two_cols(self, data): | |
# Regression test on pivot table: no values passed but rows and cols | |
# are multi-indexed | |
data["D"] = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"] | |
result = data[["A", "B", "C", "D"]].pivot_table( | |
index=["A", "B"], columns=["C", "D"], aggfunc=len, margins=True | |
) | |
assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] | |
def test_pivot_table_with_margins_set_margin_name(self, margin_name, data): | |
# see gh-3335 | |
msg = ( | |
f'Conflicting name "{margin_name}" in margins|' | |
"margins_name argument must be a string" | |
) | |
with pytest.raises(ValueError, match=msg): | |
# multi-index index | |
pivot_table( | |
data, | |
values="D", | |
index=["A", "B"], | |
columns=["C"], | |
margins=True, | |
margins_name=margin_name, | |
) | |
with pytest.raises(ValueError, match=msg): | |
# multi-index column | |
pivot_table( | |
data, | |
values="D", | |
index=["C"], | |
columns=["A", "B"], | |
margins=True, | |
margins_name=margin_name, | |
) | |
with pytest.raises(ValueError, match=msg): | |
# non-multi-index index/column | |
pivot_table( | |
data, | |
values="D", | |
index=["A"], | |
columns=["B"], | |
margins=True, | |
margins_name=margin_name, | |
) | |
def test_pivot_timegrouper(self, using_array_manager): | |
df = DataFrame( | |
{ | |
"Branch": "A A A A A A A B".split(), | |
"Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(), | |
"Quantity": [1, 3, 5, 1, 8, 1, 9, 3], | |
"Date": [ | |
datetime(2013, 1, 1), | |
datetime(2013, 1, 1), | |
datetime(2013, 10, 1), | |
datetime(2013, 10, 2), | |
datetime(2013, 10, 1), | |
datetime(2013, 10, 2), | |
datetime(2013, 12, 2), | |
datetime(2013, 12, 2), | |
], | |
} | |
).set_index("Date") | |
expected = DataFrame( | |
np.array([10, 18, 3], dtype="int64").reshape(1, 3), | |
index=pd.DatetimeIndex([datetime(2013, 12, 31)], freq="YE"), | |
columns="Carl Joe Mark".split(), | |
) | |
expected.index.name = "Date" | |
expected.columns.name = "Buyer" | |
result = pivot_table( | |
df, | |
index=Grouper(freq="YE"), | |
columns="Buyer", | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index="Buyer", | |
columns=Grouper(freq="YE"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected.T) | |
expected = DataFrame( | |
np.array([1, np.nan, 3, 9, 18, np.nan]).reshape(2, 3), | |
index=pd.DatetimeIndex( | |
[datetime(2013, 1, 1), datetime(2013, 7, 1)], freq="6MS" | |
), | |
columns="Carl Joe Mark".split(), | |
) | |
expected.index.name = "Date" | |
expected.columns.name = "Buyer" | |
if using_array_manager: | |
# INFO(ArrayManager) column without NaNs can preserve int dtype | |
expected["Carl"] = expected["Carl"].astype("int64") | |
result = pivot_table( | |
df, | |
index=Grouper(freq="6MS"), | |
columns="Buyer", | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index="Buyer", | |
columns=Grouper(freq="6MS"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected.T) | |
# passing the name | |
df = df.reset_index() | |
result = pivot_table( | |
df, | |
index=Grouper(freq="6MS", key="Date"), | |
columns="Buyer", | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index="Buyer", | |
columns=Grouper(freq="6MS", key="Date"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected.T) | |
msg = "'The grouper name foo is not found'" | |
with pytest.raises(KeyError, match=msg): | |
pivot_table( | |
df, | |
index=Grouper(freq="6MS", key="foo"), | |
columns="Buyer", | |
values="Quantity", | |
aggfunc="sum", | |
) | |
with pytest.raises(KeyError, match=msg): | |
pivot_table( | |
df, | |
index="Buyer", | |
columns=Grouper(freq="6MS", key="foo"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
# passing the level | |
df = df.set_index("Date") | |
result = pivot_table( | |
df, | |
index=Grouper(freq="6MS", level="Date"), | |
columns="Buyer", | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index="Buyer", | |
columns=Grouper(freq="6MS", level="Date"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected.T) | |
msg = "The level foo is not valid" | |
with pytest.raises(ValueError, match=msg): | |
pivot_table( | |
df, | |
index=Grouper(freq="6MS", level="foo"), | |
columns="Buyer", | |
values="Quantity", | |
aggfunc="sum", | |
) | |
with pytest.raises(ValueError, match=msg): | |
pivot_table( | |
df, | |
index="Buyer", | |
columns=Grouper(freq="6MS", level="foo"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
def test_pivot_timegrouper_double(self): | |
# double grouper | |
df = DataFrame( | |
{ | |
"Branch": "A A A A A A A B".split(), | |
"Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(), | |
"Quantity": [1, 3, 5, 1, 8, 1, 9, 3], | |
"Date": [ | |
datetime(2013, 11, 1, 13, 0), | |
datetime(2013, 9, 1, 13, 5), | |
datetime(2013, 10, 1, 20, 0), | |
datetime(2013, 10, 2, 10, 0), | |
datetime(2013, 11, 1, 20, 0), | |
datetime(2013, 10, 2, 10, 0), | |
datetime(2013, 10, 2, 12, 0), | |
datetime(2013, 12, 5, 14, 0), | |
], | |
"PayDay": [ | |
datetime(2013, 10, 4, 0, 0), | |
datetime(2013, 10, 15, 13, 5), | |
datetime(2013, 9, 5, 20, 0), | |
datetime(2013, 11, 2, 10, 0), | |
datetime(2013, 10, 7, 20, 0), | |
datetime(2013, 9, 5, 10, 0), | |
datetime(2013, 12, 30, 12, 0), | |
datetime(2013, 11, 20, 14, 0), | |
], | |
} | |
) | |
result = pivot_table( | |
df, | |
index=Grouper(freq="ME", key="Date"), | |
columns=Grouper(freq="ME", key="PayDay"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
expected = DataFrame( | |
np.array( | |
[ | |
np.nan, | |
3, | |
np.nan, | |
np.nan, | |
6, | |
np.nan, | |
1, | |
9, | |
np.nan, | |
9, | |
np.nan, | |
np.nan, | |
np.nan, | |
np.nan, | |
3, | |
np.nan, | |
] | |
).reshape(4, 4), | |
index=pd.DatetimeIndex( | |
[ | |
datetime(2013, 9, 30), | |
datetime(2013, 10, 31), | |
datetime(2013, 11, 30), | |
datetime(2013, 12, 31), | |
], | |
freq="ME", | |
), | |
columns=pd.DatetimeIndex( | |
[ | |
datetime(2013, 9, 30), | |
datetime(2013, 10, 31), | |
datetime(2013, 11, 30), | |
datetime(2013, 12, 31), | |
], | |
freq="ME", | |
), | |
) | |
expected.index.name = "Date" | |
expected.columns.name = "PayDay" | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index=Grouper(freq="ME", key="PayDay"), | |
columns=Grouper(freq="ME", key="Date"), | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected.T) | |
tuples = [ | |
(datetime(2013, 9, 30), datetime(2013, 10, 31)), | |
(datetime(2013, 10, 31), datetime(2013, 9, 30)), | |
(datetime(2013, 10, 31), datetime(2013, 11, 30)), | |
(datetime(2013, 10, 31), datetime(2013, 12, 31)), | |
(datetime(2013, 11, 30), datetime(2013, 10, 31)), | |
(datetime(2013, 12, 31), datetime(2013, 11, 30)), | |
] | |
idx = MultiIndex.from_tuples(tuples, names=["Date", "PayDay"]) | |
expected = DataFrame( | |
np.array( | |
[3, np.nan, 6, np.nan, 1, np.nan, 9, np.nan, 9, np.nan, np.nan, 3] | |
).reshape(6, 2), | |
index=idx, | |
columns=["A", "B"], | |
) | |
expected.columns.name = "Branch" | |
result = pivot_table( | |
df, | |
index=[Grouper(freq="ME", key="Date"), Grouper(freq="ME", key="PayDay")], | |
columns=["Branch"], | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index=["Branch"], | |
columns=[Grouper(freq="ME", key="Date"), Grouper(freq="ME", key="PayDay")], | |
values="Quantity", | |
aggfunc="sum", | |
) | |
tm.assert_frame_equal(result, expected.T) | |
def test_pivot_datetime_tz(self): | |
dates1 = pd.DatetimeIndex( | |
[ | |
"2011-07-19 07:00:00", | |
"2011-07-19 08:00:00", | |
"2011-07-19 09:00:00", | |
"2011-07-19 07:00:00", | |
"2011-07-19 08:00:00", | |
"2011-07-19 09:00:00", | |
], | |
dtype="M8[ns, US/Pacific]", | |
name="dt1", | |
) | |
dates2 = pd.DatetimeIndex( | |
[ | |
"2013-01-01 15:00:00", | |
"2013-01-01 15:00:00", | |
"2013-01-01 15:00:00", | |
"2013-02-01 15:00:00", | |
"2013-02-01 15:00:00", | |
"2013-02-01 15:00:00", | |
], | |
dtype="M8[ns, Asia/Tokyo]", | |
) | |
df = DataFrame( | |
{ | |
"label": ["a", "a", "a", "b", "b", "b"], | |
"dt1": dates1, | |
"dt2": dates2, | |
"value1": np.arange(6, dtype="int64"), | |
"value2": [1, 2] * 3, | |
} | |
) | |
exp_idx = dates1[:3] | |
exp_col1 = Index(["value1", "value1"]) | |
exp_col2 = Index(["a", "b"], name="label") | |
exp_col = MultiIndex.from_arrays([exp_col1, exp_col2]) | |
expected = DataFrame( | |
[[0.0, 3.0], [1.0, 4.0], [2.0, 5.0]], index=exp_idx, columns=exp_col | |
) | |
result = pivot_table(df, index=["dt1"], columns=["label"], values=["value1"]) | |
tm.assert_frame_equal(result, expected) | |
exp_col1 = Index(["sum", "sum", "sum", "sum", "mean", "mean", "mean", "mean"]) | |
exp_col2 = Index(["value1", "value1", "value2", "value2"] * 2) | |
exp_col3 = pd.DatetimeIndex( | |
["2013-01-01 15:00:00", "2013-02-01 15:00:00"] * 4, | |
dtype="M8[ns, Asia/Tokyo]", | |
name="dt2", | |
) | |
exp_col = MultiIndex.from_arrays([exp_col1, exp_col2, exp_col3]) | |
expected1 = DataFrame( | |
np.array( | |
[ | |
[ | |
0, | |
3, | |
1, | |
2, | |
], | |
[1, 4, 2, 1], | |
[2, 5, 1, 2], | |
], | |
dtype="int64", | |
), | |
index=exp_idx, | |
columns=exp_col[:4], | |
) | |
expected2 = DataFrame( | |
np.array( | |
[ | |
[0.0, 3.0, 1.0, 2.0], | |
[1.0, 4.0, 2.0, 1.0], | |
[2.0, 5.0, 1.0, 2.0], | |
], | |
), | |
index=exp_idx, | |
columns=exp_col[4:], | |
) | |
expected = concat([expected1, expected2], axis=1) | |
result = pivot_table( | |
df, | |
index=["dt1"], | |
columns=["dt2"], | |
values=["value1", "value2"], | |
aggfunc=["sum", "mean"], | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_dtaccessor(self): | |
# GH 8103 | |
dates1 = pd.DatetimeIndex( | |
[ | |
"2011-07-19 07:00:00", | |
"2011-07-19 08:00:00", | |
"2011-07-19 09:00:00", | |
"2011-07-19 07:00:00", | |
"2011-07-19 08:00:00", | |
"2011-07-19 09:00:00", | |
] | |
) | |
dates2 = pd.DatetimeIndex( | |
[ | |
"2013-01-01 15:00:00", | |
"2013-01-01 15:00:00", | |
"2013-01-01 15:00:00", | |
"2013-02-01 15:00:00", | |
"2013-02-01 15:00:00", | |
"2013-02-01 15:00:00", | |
] | |
) | |
df = DataFrame( | |
{ | |
"label": ["a", "a", "a", "b", "b", "b"], | |
"dt1": dates1, | |
"dt2": dates2, | |
"value1": np.arange(6, dtype="int64"), | |
"value2": [1, 2] * 3, | |
} | |
) | |
result = pivot_table( | |
df, index="label", columns=df["dt1"].dt.hour, values="value1" | |
) | |
exp_idx = Index(["a", "b"], name="label") | |
expected = DataFrame( | |
{7: [0.0, 3.0], 8: [1.0, 4.0], 9: [2.0, 5.0]}, | |
index=exp_idx, | |
columns=Index([7, 8, 9], dtype=np.int32, name="dt1"), | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, index=df["dt2"].dt.month, columns=df["dt1"].dt.hour, values="value1" | |
) | |
expected = DataFrame( | |
{7: [0.0, 3.0], 8: [1.0, 4.0], 9: [2.0, 5.0]}, | |
index=Index([1, 2], dtype=np.int32, name="dt2"), | |
columns=Index([7, 8, 9], dtype=np.int32, name="dt1"), | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index=df["dt2"].dt.year.values, | |
columns=[df["dt1"].dt.hour, df["dt2"].dt.month], | |
values="value1", | |
) | |
exp_col = MultiIndex.from_arrays( | |
[ | |
np.array([7, 7, 8, 8, 9, 9], dtype=np.int32), | |
np.array([1, 2] * 3, dtype=np.int32), | |
], | |
names=["dt1", "dt2"], | |
) | |
expected = DataFrame( | |
np.array([[0.0, 3.0, 1.0, 4.0, 2.0, 5.0]]), | |
index=Index([2013], dtype=np.int32), | |
columns=exp_col, | |
) | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table( | |
df, | |
index=np.array(["X", "X", "X", "X", "Y", "Y"]), | |
columns=[df["dt1"].dt.hour, df["dt2"].dt.month], | |
values="value1", | |
) | |
expected = DataFrame( | |
np.array( | |
[[0, 3, 1, np.nan, 2, np.nan], [np.nan, np.nan, np.nan, 4, np.nan, 5]] | |
), | |
index=["X", "Y"], | |
columns=exp_col, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_daily(self): | |
rng = date_range("1/1/2000", "12/31/2004", freq="D") | |
ts = Series(np.arange(len(rng)), index=rng) | |
result = pivot_table( | |
DataFrame(ts), index=ts.index.year, columns=ts.index.dayofyear | |
) | |
result.columns = result.columns.droplevel(0) | |
doy = np.asarray(ts.index.dayofyear) | |
expected = {} | |
for y in ts.index.year.unique().values: | |
mask = ts.index.year == y | |
expected[y] = Series(ts.values[mask], index=doy[mask]) | |
expected = DataFrame(expected, dtype=float).T | |
tm.assert_frame_equal(result, expected) | |
def test_monthly(self): | |
rng = date_range("1/1/2000", "12/31/2004", freq="ME") | |
ts = Series(np.arange(len(rng)), index=rng) | |
result = pivot_table(DataFrame(ts), index=ts.index.year, columns=ts.index.month) | |
result.columns = result.columns.droplevel(0) | |
month = np.asarray(ts.index.month) | |
expected = {} | |
for y in ts.index.year.unique().values: | |
mask = ts.index.year == y | |
expected[y] = Series(ts.values[mask], index=month[mask]) | |
expected = DataFrame(expected, dtype=float).T | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_with_iterator_values(self, data): | |
# GH 12017 | |
aggs = {"D": "sum", "E": "mean"} | |
pivot_values_list = pivot_table( | |
data, index=["A"], values=list(aggs.keys()), aggfunc=aggs | |
) | |
pivot_values_keys = pivot_table( | |
data, index=["A"], values=aggs.keys(), aggfunc=aggs | |
) | |
tm.assert_frame_equal(pivot_values_keys, pivot_values_list) | |
agg_values_gen = (value for value in aggs) | |
pivot_values_gen = pivot_table( | |
data, index=["A"], values=agg_values_gen, aggfunc=aggs | |
) | |
tm.assert_frame_equal(pivot_values_gen, pivot_values_list) | |
def test_pivot_table_margins_name_with_aggfunc_list(self): | |
# GH 13354 | |
margins_name = "Weekly" | |
costs = DataFrame( | |
{ | |
"item": ["bacon", "cheese", "bacon", "cheese"], | |
"cost": [2.5, 4.5, 3.2, 3.3], | |
"day": ["ME", "ME", "T", "T"], | |
} | |
) | |
table = costs.pivot_table( | |
index="item", | |
columns="day", | |
margins=True, | |
margins_name=margins_name, | |
aggfunc=["mean", "max"], | |
) | |
ix = Index(["bacon", "cheese", margins_name], name="item") | |
tups = [ | |
("mean", "cost", "ME"), | |
("mean", "cost", "T"), | |
("mean", "cost", margins_name), | |
("max", "cost", "ME"), | |
("max", "cost", "T"), | |
("max", "cost", margins_name), | |
] | |
cols = MultiIndex.from_tuples(tups, names=[None, None, "day"]) | |
expected = DataFrame(table.values, index=ix, columns=cols) | |
tm.assert_frame_equal(table, expected) | |
def test_categorical_margins(self, observed): | |
# GH 10989 | |
df = DataFrame( | |
{"x": np.arange(8), "y": np.arange(8) // 4, "z": np.arange(8) % 2} | |
) | |
expected = DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) | |
expected.index = Index([0, 1, "All"], name="y") | |
expected.columns = Index([0, 1, "All"], name="z") | |
table = df.pivot_table("x", "y", "z", dropna=observed, margins=True) | |
tm.assert_frame_equal(table, expected) | |
def test_categorical_margins_category(self, observed): | |
df = DataFrame( | |
{"x": np.arange(8), "y": np.arange(8) // 4, "z": np.arange(8) % 2} | |
) | |
expected = DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) | |
expected.index = Index([0, 1, "All"], name="y") | |
expected.columns = Index([0, 1, "All"], name="z") | |
df.y = df.y.astype("category") | |
df.z = df.z.astype("category") | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
table = df.pivot_table("x", "y", "z", dropna=observed, margins=True) | |
tm.assert_frame_equal(table, expected) | |
def test_margins_casted_to_float(self): | |
# GH 24893 | |
df = DataFrame( | |
{ | |
"A": [2, 4, 6, 8], | |
"B": [1, 4, 5, 8], | |
"C": [1, 3, 4, 6], | |
"D": ["X", "X", "Y", "Y"], | |
} | |
) | |
result = pivot_table(df, index="D", margins=True) | |
expected = DataFrame( | |
{"A": [3.0, 7.0, 5], "B": [2.5, 6.5, 4.5], "C": [2.0, 5.0, 3.5]}, | |
index=Index(["X", "Y", "All"], name="D"), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_with_categorical(self, observed, ordered): | |
# gh-21370 | |
idx = [np.nan, "low", "high", "low", np.nan] | |
col = [np.nan, "A", "B", np.nan, "A"] | |
df = DataFrame( | |
{ | |
"In": Categorical(idx, categories=["low", "high"], ordered=ordered), | |
"Col": Categorical(col, categories=["A", "B"], ordered=ordered), | |
"Val": range(1, 6), | |
} | |
) | |
# case with index/columns/value | |
result = df.pivot_table( | |
index="In", columns="Col", values="Val", observed=observed | |
) | |
expected_cols = pd.CategoricalIndex(["A", "B"], ordered=ordered, name="Col") | |
expected = DataFrame(data=[[2.0, np.nan], [np.nan, 3.0]], columns=expected_cols) | |
expected.index = Index( | |
Categorical(["low", "high"], categories=["low", "high"], ordered=ordered), | |
name="In", | |
) | |
tm.assert_frame_equal(result, expected) | |
# case with columns/value | |
result = df.pivot_table(columns="Col", values="Val", observed=observed) | |
expected = DataFrame( | |
data=[[3.5, 3.0]], columns=expected_cols, index=Index(["Val"]) | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_categorical_aggfunc(self, observed): | |
# GH 9534 | |
df = DataFrame( | |
{"C1": ["A", "B", "C", "C"], "C2": ["a", "a", "b", "b"], "V": [1, 2, 3, 4]} | |
) | |
df["C1"] = df["C1"].astype("category") | |
msg = "The default value of observed=False is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.pivot_table( | |
"V", index="C1", columns="C2", dropna=observed, aggfunc="count" | |
) | |
expected_index = pd.CategoricalIndex( | |
["A", "B", "C"], categories=["A", "B", "C"], ordered=False, name="C1" | |
) | |
expected_columns = Index(["a", "b"], name="C2") | |
expected_data = np.array([[1, 0], [1, 0], [0, 2]], dtype=np.int64) | |
expected = DataFrame( | |
expected_data, index=expected_index, columns=expected_columns | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_categorical_pivot_index_ordering(self, observed): | |
# GH 8731 | |
df = DataFrame( | |
{ | |
"Sales": [100, 120, 220], | |
"Month": ["January", "January", "January"], | |
"Year": [2013, 2014, 2013], | |
} | |
) | |
months = [ | |
"January", | |
"February", | |
"March", | |
"April", | |
"May", | |
"June", | |
"July", | |
"August", | |
"September", | |
"October", | |
"November", | |
"December", | |
] | |
df["Month"] = df["Month"].astype("category").cat.set_categories(months) | |
result = df.pivot_table( | |
values="Sales", | |
index="Month", | |
columns="Year", | |
observed=observed, | |
aggfunc="sum", | |
) | |
expected_columns = Index([2013, 2014], name="Year", dtype="int64") | |
expected_index = pd.CategoricalIndex( | |
months, categories=months, ordered=False, name="Month" | |
) | |
expected_data = [[320, 120]] + [[0, 0]] * 11 | |
expected = DataFrame( | |
expected_data, index=expected_index, columns=expected_columns | |
) | |
if observed: | |
expected = expected.loc[["January"]] | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_not_series(self): | |
# GH 4386 | |
# pivot_table always returns a DataFrame | |
# when values is not list like and columns is None | |
# and aggfunc is not instance of list | |
df = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"], "col3": [1, 3, 9]}) | |
result = df.pivot_table("col1", index=["col3", "col2"], aggfunc="sum") | |
m = MultiIndex.from_arrays([[1, 3, 9], ["C", "D", "E"]], names=["col3", "col2"]) | |
expected = DataFrame([3, 4, 5], index=m, columns=["col1"]) | |
tm.assert_frame_equal(result, expected) | |
result = df.pivot_table("col1", index="col3", columns="col2", aggfunc="sum") | |
expected = DataFrame( | |
[[3, np.nan, np.nan], [np.nan, 4, np.nan], [np.nan, np.nan, 5]], | |
index=Index([1, 3, 9], name="col3"), | |
columns=Index(["C", "D", "E"], name="col2"), | |
) | |
tm.assert_frame_equal(result, expected) | |
result = df.pivot_table("col1", index="col3", aggfunc=["sum"]) | |
m = MultiIndex.from_arrays([["sum"], ["col1"]]) | |
expected = DataFrame([3, 4, 5], index=Index([1, 3, 9], name="col3"), columns=m) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_margins_name_unicode(self): | |
# issue #13292 | |
greek = "\u0394\u03bf\u03ba\u03b9\u03bc\u03ae" | |
frame = DataFrame({"foo": [1, 2, 3]}, columns=Index(["foo"], dtype=object)) | |
table = pivot_table( | |
frame, index=["foo"], aggfunc=len, margins=True, margins_name=greek | |
) | |
index = Index([1, 2, 3, greek], dtype="object", name="foo") | |
expected = DataFrame(index=index, columns=[]) | |
tm.assert_frame_equal(table, expected) | |
def test_pivot_string_as_func(self): | |
# GH #18713 | |
# for correctness purposes | |
data = DataFrame( | |
{ | |
"A": [ | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"bar", | |
"bar", | |
"bar", | |
"bar", | |
"foo", | |
"foo", | |
"foo", | |
], | |
"B": [ | |
"one", | |
"one", | |
"one", | |
"two", | |
"one", | |
"one", | |
"one", | |
"two", | |
"two", | |
"two", | |
"one", | |
], | |
"C": range(11), | |
} | |
) | |
result = pivot_table(data, index="A", columns="B", aggfunc="sum") | |
mi = MultiIndex( | |
levels=[["C"], ["one", "two"]], codes=[[0, 0], [0, 1]], names=[None, "B"] | |
) | |
expected = DataFrame( | |
{("C", "one"): {"bar": 15, "foo": 13}, ("C", "two"): {"bar": 7, "foo": 20}}, | |
columns=mi, | |
).rename_axis("A") | |
tm.assert_frame_equal(result, expected) | |
result = pivot_table(data, index="A", columns="B", aggfunc=["sum", "mean"]) | |
mi = MultiIndex( | |
levels=[["sum", "mean"], ["C"], ["one", "two"]], | |
codes=[[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 1]], | |
names=[None, None, "B"], | |
) | |
expected = DataFrame( | |
{ | |
("mean", "C", "one"): {"bar": 5.0, "foo": 3.25}, | |
("mean", "C", "two"): {"bar": 7.0, "foo": 6.666666666666667}, | |
("sum", "C", "one"): {"bar": 15, "foo": 13}, | |
("sum", "C", "two"): {"bar": 7, "foo": 20}, | |
}, | |
columns=mi, | |
).rename_axis("A") | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_string_func_vs_func(self, f, f_numpy, data): | |
# GH #18713 | |
# for consistency purposes | |
data = data.drop(columns="C") | |
result = pivot_table(data, index="A", columns="B", aggfunc=f) | |
ops = "|".join(f) if isinstance(f, list) else f | |
msg = f"using DataFrameGroupBy.[{ops}]" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected = pivot_table(data, index="A", columns="B", aggfunc=f_numpy) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_number_of_levels_larger_than_int32(self, monkeypatch): | |
# GH 20601 | |
# GH 26314: Change ValueError to PerformanceWarning | |
class MockUnstacker(reshape_lib._Unstacker): | |
def __init__(self, *args, **kwargs) -> None: | |
# __init__ will raise the warning | |
super().__init__(*args, **kwargs) | |
raise Exception("Don't compute final result.") | |
with monkeypatch.context() as m: | |
m.setattr(reshape_lib, "_Unstacker", MockUnstacker) | |
df = DataFrame( | |
{"ind1": np.arange(2**16), "ind2": np.arange(2**16), "count": 0} | |
) | |
msg = "The following operation may generate" | |
with tm.assert_produces_warning(PerformanceWarning, match=msg): | |
with pytest.raises(Exception, match="Don't compute final result."): | |
df.pivot_table( | |
index="ind1", columns="ind2", values="count", aggfunc="count" | |
) | |
def test_pivot_table_aggfunc_dropna(self, dropna): | |
# GH 22159 | |
df = DataFrame( | |
{ | |
"fruit": ["apple", "peach", "apple"], | |
"size": [1, 1, 2], | |
"taste": [7, 6, 6], | |
} | |
) | |
def ret_one(x): | |
return 1 | |
def ret_sum(x): | |
return sum(x) | |
def ret_none(x): | |
return np.nan | |
result = pivot_table( | |
df, columns="fruit", aggfunc=[ret_sum, ret_none, ret_one], dropna=dropna | |
) | |
data = [[3, 1, np.nan, np.nan, 1, 1], [13, 6, np.nan, np.nan, 1, 1]] | |
col = MultiIndex.from_product( | |
[["ret_sum", "ret_none", "ret_one"], ["apple", "peach"]], | |
names=[None, "fruit"], | |
) | |
expected = DataFrame(data, index=["size", "taste"], columns=col) | |
if dropna: | |
expected = expected.dropna(axis="columns") | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_aggfunc_scalar_dropna(self, dropna): | |
# GH 22159 | |
df = DataFrame( | |
{"A": ["one", "two", "one"], "x": [3, np.nan, 2], "y": [1, np.nan, np.nan]} | |
) | |
result = pivot_table(df, columns="A", aggfunc="mean", dropna=dropna) | |
data = [[2.5, np.nan], [1, np.nan]] | |
col = Index(["one", "two"], name="A") | |
expected = DataFrame(data, index=["x", "y"], columns=col) | |
if dropna: | |
expected = expected.dropna(axis="columns") | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_empty_aggfunc(self, margins): | |
# GH 9186 & GH 13483 & GH 49240 | |
df = DataFrame( | |
{ | |
"A": [2, 2, 3, 3, 2], | |
"id": [5, 6, 7, 8, 9], | |
"C": ["p", "q", "q", "p", "q"], | |
"D": [None, None, None, None, None], | |
} | |
) | |
result = df.pivot_table( | |
index="A", columns="D", values="id", aggfunc=np.size, margins=margins | |
) | |
exp_cols = Index([], name="D") | |
expected = DataFrame(index=Index([], dtype="int64", name="A"), columns=exp_cols) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_no_column_raises(self): | |
# GH 10326 | |
def agg(arr): | |
return np.mean(arr) | |
df = DataFrame({"X": [0, 0, 1, 1], "Y": [0, 1, 0, 1], "Z": [10, 20, 30, 40]}) | |
with pytest.raises(KeyError, match="notpresent"): | |
df.pivot_table("notpresent", "X", "Y", aggfunc=agg) | |
def test_pivot_table_multiindex_columns_doctest_case(self): | |
# The relevant characteristic is that the call | |
# to maybe_downcast_to_dtype(agged[v], data[v].dtype) in | |
# __internal_pivot_table has `agged[v]` a DataFrame instead of Series, | |
# In this case this is because agged.columns is a MultiIndex and 'v' | |
# is only indexing on its first level. | |
df = DataFrame( | |
{ | |
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], | |
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], | |
"C": [ | |
"small", | |
"large", | |
"large", | |
"small", | |
"small", | |
"large", | |
"small", | |
"small", | |
"large", | |
], | |
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7], | |
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9], | |
} | |
) | |
table = pivot_table( | |
df, | |
values=["D", "E"], | |
index=["A", "C"], | |
aggfunc={"D": "mean", "E": ["min", "max", "mean"]}, | |
) | |
cols = MultiIndex.from_tuples( | |
[("D", "mean"), ("E", "max"), ("E", "mean"), ("E", "min")] | |
) | |
index = MultiIndex.from_tuples( | |
[("bar", "large"), ("bar", "small"), ("foo", "large"), ("foo", "small")], | |
names=["A", "C"], | |
) | |
vals = np.array( | |
[ | |
[5.5, 9.0, 7.5, 6.0], | |
[5.5, 9.0, 8.5, 8.0], | |
[2.0, 5.0, 4.5, 4.0], | |
[2.33333333, 6.0, 4.33333333, 2.0], | |
] | |
) | |
expected = DataFrame(vals, columns=cols, index=index) | |
expected[("E", "min")] = expected[("E", "min")].astype(np.int64) | |
expected[("E", "max")] = expected[("E", "max")].astype(np.int64) | |
tm.assert_frame_equal(table, expected) | |
def test_pivot_table_sort_false(self): | |
# GH#39143 | |
df = DataFrame( | |
{ | |
"a": ["d1", "d4", "d3"], | |
"col": ["a", "b", "c"], | |
"num": [23, 21, 34], | |
"year": ["2018", "2018", "2019"], | |
} | |
) | |
result = df.pivot_table( | |
index=["a", "col"], columns="year", values="num", aggfunc="sum", sort=False | |
) | |
expected = DataFrame( | |
[[23, np.nan], [21, np.nan], [np.nan, 34]], | |
columns=Index(["2018", "2019"], name="year"), | |
index=MultiIndex.from_arrays( | |
[["d1", "d4", "d3"], ["a", "b", "c"]], names=["a", "col"] | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_nullable_margins(self): | |
# GH#48681 | |
df = DataFrame( | |
{"a": "A", "b": [1, 2], "sales": Series([10, 11], dtype="Int64")} | |
) | |
result = df.pivot_table(index="b", columns="a", margins=True, aggfunc="sum") | |
expected = DataFrame( | |
[[10, 10], [11, 11], [21, 21]], | |
index=Index([1, 2, "All"], name="b"), | |
columns=MultiIndex.from_tuples( | |
[("sales", "A"), ("sales", "All")], names=[None, "a"] | |
), | |
dtype="Int64", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_sort_false_with_multiple_values(self): | |
df = DataFrame( | |
{ | |
"firstname": ["John", "Michael"], | |
"lastname": ["Foo", "Bar"], | |
"height": [173, 182], | |
"age": [47, 33], | |
} | |
) | |
result = df.pivot_table( | |
index=["lastname", "firstname"], values=["height", "age"], sort=False | |
) | |
expected = DataFrame( | |
[[173.0, 47.0], [182.0, 33.0]], | |
columns=["height", "age"], | |
index=MultiIndex.from_tuples( | |
[("Foo", "John"), ("Bar", "Michael")], | |
names=["lastname", "firstname"], | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_with_margins_and_numeric_columns(self): | |
# GH 26568 | |
df = DataFrame([["a", "x", 1], ["a", "y", 2], ["b", "y", 3], ["b", "z", 4]]) | |
df.columns = [10, 20, 30] | |
result = df.pivot_table( | |
index=10, columns=20, values=30, aggfunc="sum", fill_value=0, margins=True | |
) | |
expected = DataFrame([[1, 2, 0, 3], [0, 3, 4, 7], [1, 5, 4, 10]]) | |
expected.columns = ["x", "y", "z", "All"] | |
expected.index = ["a", "b", "All"] | |
expected.columns.name = 20 | |
expected.index.name = 10 | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_ea_dtype_dropna(self, dropna): | |
# GH#47477 | |
df = DataFrame({"x": "a", "y": "b", "age": Series([20, 40], dtype="Int64")}) | |
result = df.pivot_table( | |
index="x", columns="y", values="age", aggfunc="mean", dropna=dropna | |
) | |
expected = DataFrame( | |
[[30]], | |
index=Index(["a"], name="x"), | |
columns=Index(["b"], name="y"), | |
dtype="Float64", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_datetime_warning(self): | |
# GH#48683 | |
df = DataFrame( | |
{ | |
"a": "A", | |
"b": [1, 2], | |
"date": pd.Timestamp("2019-12-31"), | |
"sales": [10.0, 11], | |
} | |
) | |
with tm.assert_produces_warning(None): | |
result = df.pivot_table( | |
index=["b", "date"], columns="a", margins=True, aggfunc="sum" | |
) | |
expected = DataFrame( | |
[[10.0, 10.0], [11.0, 11.0], [21.0, 21.0]], | |
index=MultiIndex.from_arrays( | |
[ | |
Index([1, 2, "All"], name="b"), | |
Index( | |
[pd.Timestamp("2019-12-31"), pd.Timestamp("2019-12-31"), ""], | |
dtype=object, | |
name="date", | |
), | |
] | |
), | |
columns=MultiIndex.from_tuples( | |
[("sales", "A"), ("sales", "All")], names=[None, "a"] | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_with_mixed_nested_tuples(self, using_array_manager): | |
# GH 50342 | |
df = DataFrame( | |
{ | |
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], | |
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], | |
"C": [ | |
"small", | |
"large", | |
"large", | |
"small", | |
"small", | |
"large", | |
"small", | |
"small", | |
"large", | |
], | |
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7], | |
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9], | |
("col5",): [ | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"bar", | |
"bar", | |
"bar", | |
"bar", | |
], | |
("col6", 6): [ | |
"one", | |
"one", | |
"one", | |
"two", | |
"two", | |
"one", | |
"one", | |
"two", | |
"two", | |
], | |
(7, "seven"): [ | |
"small", | |
"large", | |
"large", | |
"small", | |
"small", | |
"large", | |
"small", | |
"small", | |
"large", | |
], | |
} | |
) | |
result = pivot_table( | |
df, values="D", index=["A", "B"], columns=[(7, "seven")], aggfunc="sum" | |
) | |
expected = DataFrame( | |
[[4.0, 5.0], [7.0, 6.0], [4.0, 1.0], [np.nan, 6.0]], | |
columns=Index(["large", "small"], name=(7, "seven")), | |
index=MultiIndex.from_arrays( | |
[["bar", "bar", "foo", "foo"], ["one", "two"] * 2], names=["A", "B"] | |
), | |
) | |
if using_array_manager: | |
# INFO(ArrayManager) column without NaNs can preserve int dtype | |
expected["small"] = expected["small"].astype("int64") | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_table_aggfunc_nunique_with_different_values(self): | |
test = DataFrame( | |
{ | |
"a": range(10), | |
"b": range(10), | |
"c": range(10), | |
"d": range(10), | |
} | |
) | |
columnval = MultiIndex.from_arrays( | |
[ | |
["nunique" for i in range(10)], | |
["c" for i in range(10)], | |
range(10), | |
], | |
names=(None, None, "b"), | |
) | |
nparr = np.full((10, 10), np.nan) | |
np.fill_diagonal(nparr, 1.0) | |
expected = DataFrame(nparr, index=Index(range(10), name="a"), columns=columnval) | |
result = test.pivot_table( | |
index=[ | |
"a", | |
], | |
columns=[ | |
"b", | |
], | |
values=[ | |
"c", | |
], | |
aggfunc=["nunique"], | |
) | |
tm.assert_frame_equal(result, expected) | |
class TestPivot: | |
def test_pivot(self): | |
data = { | |
"index": ["A", "B", "C", "C", "B", "A"], | |
"columns": ["One", "One", "One", "Two", "Two", "Two"], | |
"values": [1.0, 2.0, 3.0, 3.0, 2.0, 1.0], | |
} | |
frame = DataFrame(data) | |
pivoted = frame.pivot(index="index", columns="columns", values="values") | |
expected = DataFrame( | |
{ | |
"One": {"A": 1.0, "B": 2.0, "C": 3.0}, | |
"Two": {"A": 1.0, "B": 2.0, "C": 3.0}, | |
} | |
) | |
expected.index.name, expected.columns.name = "index", "columns" | |
tm.assert_frame_equal(pivoted, expected) | |
# name tracking | |
assert pivoted.index.name == "index" | |
assert pivoted.columns.name == "columns" | |
# don't specify values | |
pivoted = frame.pivot(index="index", columns="columns") | |
assert pivoted.index.name == "index" | |
assert pivoted.columns.names == (None, "columns") | |
def test_pivot_duplicates(self): | |
data = DataFrame( | |
{ | |
"a": ["bar", "bar", "foo", "foo", "foo"], | |
"b": ["one", "two", "one", "one", "two"], | |
"c": [1.0, 2.0, 3.0, 3.0, 4.0], | |
} | |
) | |
with pytest.raises(ValueError, match="duplicate entries"): | |
data.pivot(index="a", columns="b", values="c") | |
def test_pivot_empty(self): | |
df = DataFrame(columns=["a", "b", "c"]) | |
result = df.pivot(index="a", columns="b", values="c") | |
expected = DataFrame(index=[], columns=[]) | |
tm.assert_frame_equal(result, expected, check_names=False) | |
def test_pivot_integer_bug(self, dtype): | |
df = DataFrame(data=[("A", "1", "A1"), ("B", "2", "B2")], dtype=dtype) | |
result = df.pivot(index=1, columns=0, values=2) | |
tm.assert_index_equal(result.columns, Index(["A", "B"], name=0, dtype=dtype)) | |
def test_pivot_index_none(self): | |
# GH#3962 | |
data = { | |
"index": ["A", "B", "C", "C", "B", "A"], | |
"columns": ["One", "One", "One", "Two", "Two", "Two"], | |
"values": [1.0, 2.0, 3.0, 3.0, 2.0, 1.0], | |
} | |
frame = DataFrame(data).set_index("index") | |
result = frame.pivot(columns="columns", values="values") | |
expected = DataFrame( | |
{ | |
"One": {"A": 1.0, "B": 2.0, "C": 3.0}, | |
"Two": {"A": 1.0, "B": 2.0, "C": 3.0}, | |
} | |
) | |
expected.index.name, expected.columns.name = "index", "columns" | |
tm.assert_frame_equal(result, expected) | |
# omit values | |
result = frame.pivot(columns="columns") | |
expected.columns = MultiIndex.from_tuples( | |
[("values", "One"), ("values", "Two")], names=[None, "columns"] | |
) | |
expected.index.name = "index" | |
tm.assert_frame_equal(result, expected, check_names=False) | |
assert result.index.name == "index" | |
assert result.columns.names == (None, "columns") | |
expected.columns = expected.columns.droplevel(0) | |
result = frame.pivot(columns="columns", values="values") | |
expected.columns.name = "columns" | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_index_list_values_none_immutable_args(self): | |
# GH37635 | |
df = DataFrame( | |
{ | |
"lev1": [1, 1, 1, 2, 2, 2], | |
"lev2": [1, 1, 2, 1, 1, 2], | |
"lev3": [1, 2, 1, 2, 1, 2], | |
"lev4": [1, 2, 3, 4, 5, 6], | |
"values": [0, 1, 2, 3, 4, 5], | |
} | |
) | |
index = ["lev1", "lev2"] | |
columns = ["lev3"] | |
result = df.pivot(index=index, columns=columns) | |
expected = DataFrame( | |
np.array( | |
[ | |
[1.0, 2.0, 0.0, 1.0], | |
[3.0, np.nan, 2.0, np.nan], | |
[5.0, 4.0, 4.0, 3.0], | |
[np.nan, 6.0, np.nan, 5.0], | |
] | |
), | |
index=MultiIndex.from_arrays( | |
[(1, 1, 2, 2), (1, 2, 1, 2)], names=["lev1", "lev2"] | |
), | |
columns=MultiIndex.from_arrays( | |
[("lev4", "lev4", "values", "values"), (1, 2, 1, 2)], | |
names=[None, "lev3"], | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
assert index == ["lev1", "lev2"] | |
assert columns == ["lev3"] | |
def test_pivot_columns_not_given(self): | |
# GH#48293 | |
df = DataFrame({"a": [1], "b": 1}) | |
with pytest.raises(TypeError, match="missing 1 required keyword-only argument"): | |
df.pivot() # pylint: disable=missing-kwoa | |
def test_pivot_columns_is_none(self): | |
# GH#48293 | |
df = DataFrame({None: [1], "b": 2, "c": 3}) | |
result = df.pivot(columns=None) | |
expected = DataFrame({("b", 1): [2], ("c", 1): 3}) | |
tm.assert_frame_equal(result, expected) | |
result = df.pivot(columns=None, index="b") | |
expected = DataFrame({("c", 1): 3}, index=Index([2], name="b")) | |
tm.assert_frame_equal(result, expected) | |
result = df.pivot(columns=None, index="b", values="c") | |
expected = DataFrame({1: 3}, index=Index([2], name="b")) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_index_is_none(self): | |
# GH#48293 | |
df = DataFrame({None: [1], "b": 2, "c": 3}) | |
result = df.pivot(columns="b", index=None) | |
expected = DataFrame({("c", 2): 3}, index=[1]) | |
expected.columns.names = [None, "b"] | |
tm.assert_frame_equal(result, expected) | |
result = df.pivot(columns="b", index=None, values="c") | |
expected = DataFrame(3, index=[1], columns=Index([2], name="b")) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_values_is_none(self): | |
# GH#48293 | |
df = DataFrame({None: [1], "b": 2, "c": 3}) | |
result = df.pivot(columns="b", index="c", values=None) | |
expected = DataFrame( | |
1, index=Index([3], name="c"), columns=Index([2], name="b") | |
) | |
tm.assert_frame_equal(result, expected) | |
result = df.pivot(columns="b", values=None) | |
expected = DataFrame(1, index=[0], columns=Index([2], name="b")) | |
tm.assert_frame_equal(result, expected) | |
def test_pivot_not_changing_index_name(self): | |
# GH#52692 | |
df = DataFrame({"one": ["a"], "two": 0, "three": 1}) | |
expected = df.copy(deep=True) | |
df.pivot(index="one", columns="two", values="three") | |
tm.assert_frame_equal(df, expected) | |
def test_pivot_table_empty_dataframe_correct_index(self): | |
# GH 21932 | |
df = DataFrame([], columns=["a", "b", "value"]) | |
pivot = df.pivot_table(index="a", columns="b", values="value", aggfunc="count") | |
expected = Index([], dtype="object", name="b") | |
tm.assert_index_equal(pivot.columns, expected) | |
def test_pivot_table_handles_explicit_datetime_types(self): | |
# GH#43574 | |
df = DataFrame( | |
[ | |
{"a": "x", "date_str": "2023-01-01", "amount": 1}, | |
{"a": "y", "date_str": "2023-01-02", "amount": 2}, | |
{"a": "z", "date_str": "2023-01-03", "amount": 3}, | |
] | |
) | |
df["date"] = pd.to_datetime(df["date_str"]) | |
with tm.assert_produces_warning(False): | |
pivot = df.pivot_table( | |
index=["a", "date"], values=["amount"], aggfunc="sum", margins=True | |
) | |
expected = MultiIndex.from_tuples( | |
[ | |
("x", datetime.strptime("2023-01-01 00:00:00", "%Y-%m-%d %H:%M:%S")), | |
("y", datetime.strptime("2023-01-02 00:00:00", "%Y-%m-%d %H:%M:%S")), | |
("z", datetime.strptime("2023-01-03 00:00:00", "%Y-%m-%d %H:%M:%S")), | |
("All", ""), | |
], | |
names=["a", "date"], | |
) | |
tm.assert_index_equal(pivot.index, expected) | |
def test_pivot_table_with_margins_and_numeric_column_names(self): | |
# GH#26568 | |
df = DataFrame([["a", "x", 1], ["a", "y", 2], ["b", "y", 3], ["b", "z", 4]]) | |
result = df.pivot_table( | |
index=0, columns=1, values=2, aggfunc="sum", fill_value=0, margins=True | |
) | |
expected = DataFrame( | |
[[1, 2, 0, 3], [0, 3, 4, 7], [1, 5, 4, 10]], | |
columns=Index(["x", "y", "z", "All"], name=1), | |
index=Index(["a", "b", "All"], name=0), | |
) | |
tm.assert_frame_equal(result, expected) | |