peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/strings
/test_cat.py
import re | |
import numpy as np | |
import pytest | |
import pandas.util._test_decorators as td | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
_testing as tm, | |
concat, | |
option_context, | |
) | |
def test_str_cat_name(index_or_series, other): | |
# GH 21053 | |
box = index_or_series | |
values = ["a", "b"] | |
if other: | |
other = other(values) | |
else: | |
other = values | |
result = box(values, name="name").str.cat(other, sep=",") | |
assert result.name == "name" | |
def test_str_cat(index_or_series, infer_string): | |
with option_context("future.infer_string", infer_string): | |
box = index_or_series | |
# test_cat above tests "str_cat" from ndarray; | |
# here testing "str.cat" from Series/Index to ndarray/list | |
s = box(["a", "a", "b", "b", "c", np.nan]) | |
# single array | |
result = s.str.cat() | |
expected = "aabbc" | |
assert result == expected | |
result = s.str.cat(na_rep="-") | |
expected = "aabbc-" | |
assert result == expected | |
result = s.str.cat(sep="_", na_rep="NA") | |
expected = "a_a_b_b_c_NA" | |
assert result == expected | |
t = np.array(["a", np.nan, "b", "d", "foo", np.nan], dtype=object) | |
expected = box(["aa", "a-", "bb", "bd", "cfoo", "--"]) | |
# Series/Index with array | |
result = s.str.cat(t, na_rep="-") | |
tm.assert_equal(result, expected) | |
# Series/Index with list | |
result = s.str.cat(list(t), na_rep="-") | |
tm.assert_equal(result, expected) | |
# errors for incorrect lengths | |
rgx = r"If `others` contains arrays or lists \(or other list-likes.*" | |
z = Series(["1", "2", "3"]) | |
with pytest.raises(ValueError, match=rgx): | |
s.str.cat(z.values) | |
with pytest.raises(ValueError, match=rgx): | |
s.str.cat(list(z)) | |
def test_str_cat_raises_intuitive_error(index_or_series): | |
# GH 11334 | |
box = index_or_series | |
s = box(["a", "b", "c", "d"]) | |
message = "Did you mean to supply a `sep` keyword?" | |
with pytest.raises(ValueError, match=message): | |
s.str.cat("|") | |
with pytest.raises(ValueError, match=message): | |
s.str.cat(" ") | |
def test_str_cat_categorical( | |
index_or_series, dtype_caller, dtype_target, sep, infer_string | |
): | |
box = index_or_series | |
with option_context("future.infer_string", infer_string): | |
s = Index(["a", "a", "b", "a"], dtype=dtype_caller) | |
s = s if box == Index else Series(s, index=s, dtype=s.dtype) | |
t = Index(["b", "a", "b", "c"], dtype=dtype_target) | |
expected = Index( | |
["ab", "aa", "bb", "ac"], dtype=object if dtype_caller == "object" else None | |
) | |
expected = ( | |
expected | |
if box == Index | |
else Series( | |
expected, index=Index(s, dtype=dtype_caller), dtype=expected.dtype | |
) | |
) | |
# Series/Index with unaligned Index -> t.values | |
result = s.str.cat(t.values, sep=sep) | |
tm.assert_equal(result, expected) | |
# Series/Index with Series having matching Index | |
t = Series(t.values, index=Index(s, dtype=dtype_caller)) | |
result = s.str.cat(t, sep=sep) | |
tm.assert_equal(result, expected) | |
# Series/Index with Series.values | |
result = s.str.cat(t.values, sep=sep) | |
tm.assert_equal(result, expected) | |
# Series/Index with Series having different Index | |
t = Series(t.values, index=t.values) | |
expected = Index( | |
["aa", "aa", "bb", "bb", "aa"], | |
dtype=object if dtype_caller == "object" else None, | |
) | |
dtype = object if dtype_caller == "object" else s.dtype.categories.dtype | |
expected = ( | |
expected | |
if box == Index | |
else Series( | |
expected, | |
index=Index(expected.str[:1], dtype=dtype), | |
dtype=expected.dtype, | |
) | |
) | |
result = s.str.cat(t, sep=sep) | |
tm.assert_equal(result, expected) | |
# without dtype=object, np.array would cast [1, 2, 'b'] to ['1', '2', 'b'] | |
def test_str_cat_wrong_dtype_raises(box, data): | |
# GH 22722 | |
s = Series(["a", "b", "c"]) | |
t = box(data) | |
msg = "Concatenation requires list-likes containing only strings.*" | |
with pytest.raises(TypeError, match=msg): | |
# need to use outer and na_rep, as otherwise Index would not raise | |
s.str.cat(t, join="outer", na_rep="-") | |
def test_str_cat_mixed_inputs(index_or_series): | |
box = index_or_series | |
s = Index(["a", "b", "c", "d"]) | |
s = s if box == Index else Series(s, index=s) | |
t = Series(["A", "B", "C", "D"], index=s.values) | |
d = concat([t, Series(s, index=s)], axis=1) | |
expected = Index(["aAa", "bBb", "cCc", "dDd"]) | |
expected = expected if box == Index else Series(expected.values, index=s.values) | |
# Series/Index with DataFrame | |
result = s.str.cat(d) | |
tm.assert_equal(result, expected) | |
# Series/Index with two-dimensional ndarray | |
result = s.str.cat(d.values) | |
tm.assert_equal(result, expected) | |
# Series/Index with list of Series | |
result = s.str.cat([t, s]) | |
tm.assert_equal(result, expected) | |
# Series/Index with mixed list of Series/array | |
result = s.str.cat([t, s.values]) | |
tm.assert_equal(result, expected) | |
# Series/Index with list of Series; different indexes | |
t.index = ["b", "c", "d", "a"] | |
expected = box(["aDa", "bAb", "cBc", "dCd"]) | |
expected = expected if box == Index else Series(expected.values, index=s.values) | |
result = s.str.cat([t, s]) | |
tm.assert_equal(result, expected) | |
# Series/Index with mixed list; different index | |
result = s.str.cat([t, s.values]) | |
tm.assert_equal(result, expected) | |
# Series/Index with DataFrame; different indexes | |
d.index = ["b", "c", "d", "a"] | |
expected = box(["aDd", "bAa", "cBb", "dCc"]) | |
expected = expected if box == Index else Series(expected.values, index=s.values) | |
result = s.str.cat(d) | |
tm.assert_equal(result, expected) | |
# errors for incorrect lengths | |
rgx = r"If `others` contains arrays or lists \(or other list-likes.*" | |
z = Series(["1", "2", "3"]) | |
e = concat([z, z], axis=1) | |
# two-dimensional ndarray | |
with pytest.raises(ValueError, match=rgx): | |
s.str.cat(e.values) | |
# list of list-likes | |
with pytest.raises(ValueError, match=rgx): | |
s.str.cat([z.values, s.values]) | |
# mixed list of Series/list-like | |
with pytest.raises(ValueError, match=rgx): | |
s.str.cat([z.values, s]) | |
# errors for incorrect arguments in list-like | |
rgx = "others must be Series, Index, DataFrame,.*" | |
# make sure None/NaN do not crash checks in _get_series_list | |
u = Series(["a", np.nan, "c", None]) | |
# mix of string and Series | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat([u, "u"]) | |
# DataFrame in list | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat([u, d]) | |
# 2-dim ndarray in list | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat([u, d.values]) | |
# nested lists | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat([u, [u, d]]) | |
# forbidden input type: set | |
# GH 23009 | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat(set(u)) | |
# forbidden input type: set in list | |
# GH 23009 | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat([u, set(u)]) | |
# other forbidden input type, e.g. int | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat(1) | |
# nested list-likes | |
with pytest.raises(TypeError, match=rgx): | |
s.str.cat(iter([t.values, list(s)])) | |
def test_str_cat_align_indexed(index_or_series, join): | |
# https://github.com/pandas-dev/pandas/issues/18657 | |
box = index_or_series | |
s = Series(["a", "b", "c", "d"], index=["a", "b", "c", "d"]) | |
t = Series(["D", "A", "E", "B"], index=["d", "a", "e", "b"]) | |
sa, ta = s.align(t, join=join) | |
# result after manual alignment of inputs | |
expected = sa.str.cat(ta, na_rep="-") | |
if box == Index: | |
s = Index(s) | |
sa = Index(sa) | |
expected = Index(expected) | |
result = s.str.cat(t, join=join, na_rep="-") | |
tm.assert_equal(result, expected) | |
def test_str_cat_align_mixed_inputs(join): | |
s = Series(["a", "b", "c", "d"]) | |
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1]) | |
d = concat([t, t], axis=1) | |
expected_outer = Series(["aaa", "bbb", "c--", "ddd", "-ee"]) | |
expected = expected_outer.loc[s.index.join(t.index, how=join)] | |
# list of Series | |
result = s.str.cat([t, t], join=join, na_rep="-") | |
tm.assert_series_equal(result, expected) | |
# DataFrame | |
result = s.str.cat(d, join=join, na_rep="-") | |
tm.assert_series_equal(result, expected) | |
# mixed list of indexed/unindexed | |
u = np.array(["A", "B", "C", "D"]) | |
expected_outer = Series(["aaA", "bbB", "c-C", "ddD", "-e-"]) | |
# joint index of rhs [t, u]; u will be forced have index of s | |
rhs_idx = ( | |
t.index.intersection(s.index) | |
if join == "inner" | |
else t.index.union(s.index) | |
if join == "outer" | |
else t.index.append(s.index.difference(t.index)) | |
) | |
expected = expected_outer.loc[s.index.join(rhs_idx, how=join)] | |
result = s.str.cat([t, u], join=join, na_rep="-") | |
tm.assert_series_equal(result, expected) | |
with pytest.raises(TypeError, match="others must be Series,.*"): | |
# nested lists are forbidden | |
s.str.cat([t, list(u)], join=join) | |
# errors for incorrect lengths | |
rgx = r"If `others` contains arrays or lists \(or other list-likes.*" | |
z = Series(["1", "2", "3"]).values | |
# unindexed object of wrong length | |
with pytest.raises(ValueError, match=rgx): | |
s.str.cat(z, join=join) | |
# unindexed object of wrong length in list | |
with pytest.raises(ValueError, match=rgx): | |
s.str.cat([t, z], join=join) | |
def test_str_cat_all_na(index_or_series, index_or_series2): | |
# GH 24044 | |
box = index_or_series | |
other = index_or_series2 | |
# check that all NaNs in caller / target work | |
s = Index(["a", "b", "c", "d"]) | |
s = s if box == Index else Series(s, index=s) | |
t = other([np.nan] * 4, dtype=object) | |
# add index of s for alignment | |
t = t if other == Index else Series(t, index=s) | |
# all-NA target | |
if box == Series: | |
expected = Series([np.nan] * 4, index=s.index, dtype=s.dtype) | |
else: # box == Index | |
# TODO: Strimg option, this should return string dtype | |
expected = Index([np.nan] * 4, dtype=object) | |
result = s.str.cat(t, join="left") | |
tm.assert_equal(result, expected) | |
# all-NA caller (only for Series) | |
if other == Series: | |
expected = Series([np.nan] * 4, dtype=object, index=t.index) | |
result = t.str.cat(s, join="left") | |
tm.assert_series_equal(result, expected) | |
def test_str_cat_special_cases(): | |
s = Series(["a", "b", "c", "d"]) | |
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1]) | |
# iterator of elements with different types | |
expected = Series(["aaa", "bbb", "c-c", "ddd", "-e-"]) | |
result = s.str.cat(iter([t, s.values]), join="outer", na_rep="-") | |
tm.assert_series_equal(result, expected) | |
# right-align with different indexes in others | |
expected = Series(["aa-", "d-d"], index=[0, 3]) | |
result = s.str.cat([t.loc[[0]], t.loc[[3]]], join="right", na_rep="-") | |
tm.assert_series_equal(result, expected) | |
def test_cat_on_filtered_index(): | |
df = DataFrame( | |
index=MultiIndex.from_product( | |
[[2011, 2012], [1, 2, 3]], names=["year", "month"] | |
) | |
) | |
df = df.reset_index() | |
df = df[df.month > 1] | |
str_year = df.year.astype("str") | |
str_month = df.month.astype("str") | |
str_both = str_year.str.cat(str_month, sep=" ") | |
assert str_both.loc[1] == "2011 2" | |
str_multiple = str_year.str.cat([str_month, str_month], sep=" ") | |
assert str_multiple.loc[1] == "2011 2 2" | |
def test_cat_different_classes(klass): | |
# https://github.com/pandas-dev/pandas/issues/33425 | |
s = Series(["a", "b", "c"]) | |
result = s.str.cat(klass(["x", "y", "z"])) | |
expected = Series(["ax", "by", "cz"]) | |
tm.assert_series_equal(result, expected) | |
def test_cat_on_series_dot_str(): | |
# GH 28277 | |
ps = Series(["AbC", "de", "FGHI", "j", "kLLLm"]) | |
message = re.escape( | |
"others must be Series, Index, DataFrame, np.ndarray " | |
"or list-like (either containing only strings or " | |
"containing only objects of type Series/Index/" | |
"np.ndarray[1-dim])" | |
) | |
with pytest.raises(TypeError, match=message): | |
ps.str.cat(others=ps.str) | |