peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/test_algos.py
from datetime import datetime | |
import struct | |
import numpy as np | |
import pytest | |
from pandas._libs import ( | |
algos as libalgos, | |
hashtable as ht, | |
) | |
from pandas.core.dtypes.common import ( | |
is_bool_dtype, | |
is_complex_dtype, | |
is_float_dtype, | |
is_integer_dtype, | |
is_object_dtype, | |
) | |
from pandas.core.dtypes.dtypes import CategoricalDtype | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
CategoricalIndex, | |
DataFrame, | |
DatetimeIndex, | |
Index, | |
IntervalIndex, | |
MultiIndex, | |
NaT, | |
Period, | |
PeriodIndex, | |
Series, | |
Timedelta, | |
Timestamp, | |
cut, | |
date_range, | |
timedelta_range, | |
to_datetime, | |
to_timedelta, | |
) | |
import pandas._testing as tm | |
import pandas.core.algorithms as algos | |
from pandas.core.arrays import ( | |
DatetimeArray, | |
TimedeltaArray, | |
) | |
import pandas.core.common as com | |
class TestFactorize: | |
def test_factorize_complex(self): | |
# GH#17927 | |
array = [1, 2, 2 + 1j] | |
msg = "factorize with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
labels, uniques = algos.factorize(array) | |
expected_labels = np.array([0, 1, 2], dtype=np.intp) | |
tm.assert_numpy_array_equal(labels, expected_labels) | |
# Should return a complex dtype in the future | |
expected_uniques = np.array([(1 + 0j), (2 + 0j), (2 + 1j)], dtype=object) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_factorize(self, index_or_series_obj, sort): | |
obj = index_or_series_obj | |
result_codes, result_uniques = obj.factorize(sort=sort) | |
constructor = Index | |
if isinstance(obj, MultiIndex): | |
constructor = MultiIndex.from_tuples | |
expected_arr = obj.unique() | |
if expected_arr.dtype == np.float16: | |
expected_arr = expected_arr.astype(np.float32) | |
expected_uniques = constructor(expected_arr) | |
if ( | |
isinstance(obj, Index) | |
and expected_uniques.dtype == bool | |
and obj.dtype == object | |
): | |
expected_uniques = expected_uniques.astype(object) | |
if sort: | |
expected_uniques = expected_uniques.sort_values() | |
# construct an integer ndarray so that | |
# `expected_uniques.take(expected_codes)` is equal to `obj` | |
expected_uniques_list = list(expected_uniques) | |
expected_codes = [expected_uniques_list.index(val) for val in obj] | |
expected_codes = np.asarray(expected_codes, dtype=np.intp) | |
tm.assert_numpy_array_equal(result_codes, expected_codes) | |
tm.assert_index_equal(result_uniques, expected_uniques, exact=True) | |
def test_series_factorize_use_na_sentinel_false(self): | |
# GH#35667 | |
values = np.array([1, 2, 1, np.nan]) | |
ser = Series(values) | |
codes, uniques = ser.factorize(use_na_sentinel=False) | |
expected_codes = np.array([0, 1, 0, 2], dtype=np.intp) | |
expected_uniques = Index([1.0, 2.0, np.nan]) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_index_equal(uniques, expected_uniques) | |
def test_basic(self): | |
items = np.array(["a", "b", "b", "a", "a", "c", "c", "c"], dtype=object) | |
codes, uniques = algos.factorize(items) | |
tm.assert_numpy_array_equal(uniques, np.array(["a", "b", "c"], dtype=object)) | |
codes, uniques = algos.factorize(items, sort=True) | |
exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = np.array(["a", "b", "c"], dtype=object) | |
tm.assert_numpy_array_equal(uniques, exp) | |
arr = np.arange(5, dtype=np.intp)[::-1] | |
codes, uniques = algos.factorize(arr) | |
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = np.array([4, 3, 2, 1, 0], dtype=arr.dtype) | |
tm.assert_numpy_array_equal(uniques, exp) | |
codes, uniques = algos.factorize(arr, sort=True) | |
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = np.array([0, 1, 2, 3, 4], dtype=arr.dtype) | |
tm.assert_numpy_array_equal(uniques, exp) | |
arr = np.arange(5.0)[::-1] | |
codes, uniques = algos.factorize(arr) | |
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = np.array([4.0, 3.0, 2.0, 1.0, 0.0], dtype=arr.dtype) | |
tm.assert_numpy_array_equal(uniques, exp) | |
codes, uniques = algos.factorize(arr, sort=True) | |
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = np.array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=arr.dtype) | |
tm.assert_numpy_array_equal(uniques, exp) | |
def test_mixed(self): | |
# doc example reshaping.rst | |
x = Series(["A", "A", np.nan, "B", 3.14, np.inf]) | |
codes, uniques = algos.factorize(x) | |
exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = Index(["A", "B", 3.14, np.inf]) | |
tm.assert_index_equal(uniques, exp) | |
codes, uniques = algos.factorize(x, sort=True) | |
exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = Index([3.14, np.inf, "A", "B"]) | |
tm.assert_index_equal(uniques, exp) | |
def test_factorize_datetime64(self): | |
# M8 | |
v1 = Timestamp("20130101 09:00:00.00004") | |
v2 = Timestamp("20130101") | |
x = Series([v1, v1, v1, v2, v2, v1]) | |
codes, uniques = algos.factorize(x) | |
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = DatetimeIndex([v1, v2]) | |
tm.assert_index_equal(uniques, exp) | |
codes, uniques = algos.factorize(x, sort=True) | |
exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
exp = DatetimeIndex([v2, v1]) | |
tm.assert_index_equal(uniques, exp) | |
def test_factorize_period(self): | |
# period | |
v1 = Period("201302", freq="M") | |
v2 = Period("201303", freq="M") | |
x = Series([v1, v1, v1, v2, v2, v1]) | |
# periods are not 'sorted' as they are converted back into an index | |
codes, uniques = algos.factorize(x) | |
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
tm.assert_index_equal(uniques, PeriodIndex([v1, v2])) | |
codes, uniques = algos.factorize(x, sort=True) | |
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
tm.assert_index_equal(uniques, PeriodIndex([v1, v2])) | |
def test_factorize_timedelta(self): | |
# GH 5986 | |
v1 = to_timedelta("1 day 1 min") | |
v2 = to_timedelta("1 day") | |
x = Series([v1, v2, v1, v1, v2, v2, v1]) | |
codes, uniques = algos.factorize(x) | |
exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
tm.assert_index_equal(uniques, to_timedelta([v1, v2])) | |
codes, uniques = algos.factorize(x, sort=True) | |
exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, exp) | |
tm.assert_index_equal(uniques, to_timedelta([v2, v1])) | |
def test_factorize_nan(self): | |
# nan should map to na_sentinel, not reverse_indexer[na_sentinel] | |
# rizer.factorize should not raise an exception if na_sentinel indexes | |
# outside of reverse_indexer | |
key = np.array([1, 2, 1, np.nan], dtype="O") | |
rizer = ht.ObjectFactorizer(len(key)) | |
for na_sentinel in (-1, 20): | |
ids = rizer.factorize(key, na_sentinel=na_sentinel) | |
expected = np.array([0, 1, 0, na_sentinel], dtype=np.intp) | |
assert len(set(key)) == len(set(expected)) | |
tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) | |
tm.assert_numpy_array_equal(ids, expected) | |
def test_factorizer_with_mask(self): | |
# GH#49549 | |
data = np.array([1, 2, 3, 1, 1, 0], dtype="int64") | |
mask = np.array([False, False, False, False, False, True]) | |
rizer = ht.Int64Factorizer(len(data)) | |
result = rizer.factorize(data, mask=mask) | |
expected = np.array([0, 1, 2, 0, 0, -1], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
expected_uniques = np.array([1, 2, 3], dtype="int64") | |
tm.assert_numpy_array_equal(rizer.uniques.to_array(), expected_uniques) | |
def test_factorizer_object_with_nan(self): | |
# GH#49549 | |
data = np.array([1, 2, 3, 1, np.nan]) | |
rizer = ht.ObjectFactorizer(len(data)) | |
result = rizer.factorize(data.astype(object)) | |
expected = np.array([0, 1, 2, 0, -1], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
expected_uniques = np.array([1, 2, 3], dtype=object) | |
tm.assert_numpy_array_equal(rizer.uniques.to_array(), expected_uniques) | |
def test_factorize_tuple_list(self, data, expected_codes, expected_uniques): | |
# GH9454 | |
msg = "factorize with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
codes, uniques = pd.factorize(data) | |
tm.assert_numpy_array_equal(codes, np.array(expected_codes, dtype=np.intp)) | |
expected_uniques_array = com.asarray_tuplesafe(expected_uniques, dtype=object) | |
tm.assert_numpy_array_equal(uniques, expected_uniques_array) | |
def test_complex_sorting(self): | |
# gh 12666 - check no segfault | |
x17 = np.array([complex(i) for i in range(17)], dtype=object) | |
msg = "'[<>]' not supported between instances of .*" | |
with pytest.raises(TypeError, match=msg): | |
algos.factorize(x17[::-1], sort=True) | |
def test_numeric_dtype_factorize(self, any_real_numpy_dtype): | |
# GH41132 | |
dtype = any_real_numpy_dtype | |
data = np.array([1, 2, 2, 1], dtype=dtype) | |
expected_codes = np.array([0, 1, 1, 0], dtype=np.intp) | |
expected_uniques = np.array([1, 2], dtype=dtype) | |
codes, uniques = algos.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_float64_factorize(self, writable): | |
data = np.array([1.0, 1e8, 1.0, 1e-8, 1e8, 1.0], dtype=np.float64) | |
data.setflags(write=writable) | |
expected_codes = np.array([0, 1, 0, 2, 1, 0], dtype=np.intp) | |
expected_uniques = np.array([1.0, 1e8, 1e-8], dtype=np.float64) | |
codes, uniques = algos.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_uint64_factorize(self, writable): | |
data = np.array([2**64 - 1, 1, 2**64 - 1], dtype=np.uint64) | |
data.setflags(write=writable) | |
expected_codes = np.array([0, 1, 0], dtype=np.intp) | |
expected_uniques = np.array([2**64 - 1, 1], dtype=np.uint64) | |
codes, uniques = algos.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_int64_factorize(self, writable): | |
data = np.array([2**63 - 1, -(2**63), 2**63 - 1], dtype=np.int64) | |
data.setflags(write=writable) | |
expected_codes = np.array([0, 1, 0], dtype=np.intp) | |
expected_uniques = np.array([2**63 - 1, -(2**63)], dtype=np.int64) | |
codes, uniques = algos.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_string_factorize(self, writable): | |
data = np.array(["a", "c", "a", "b", "c"], dtype=object) | |
data.setflags(write=writable) | |
expected_codes = np.array([0, 1, 0, 2, 1], dtype=np.intp) | |
expected_uniques = np.array(["a", "c", "b"], dtype=object) | |
codes, uniques = algos.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_object_factorize(self, writable): | |
data = np.array(["a", "c", None, np.nan, "a", "b", NaT, "c"], dtype=object) | |
data.setflags(write=writable) | |
expected_codes = np.array([0, 1, -1, -1, 0, 2, -1, 1], dtype=np.intp) | |
expected_uniques = np.array(["a", "c", "b"], dtype=object) | |
codes, uniques = algos.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_datetime64_factorize(self, writable): | |
# GH35650 Verify whether read-only datetime64 array can be factorized | |
data = np.array([np.datetime64("2020-01-01T00:00:00.000")], dtype="M8[ns]") | |
data.setflags(write=writable) | |
expected_codes = np.array([0], dtype=np.intp) | |
expected_uniques = np.array( | |
["2020-01-01T00:00:00.000000000"], dtype="datetime64[ns]" | |
) | |
codes, uniques = pd.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_factorize_rangeindex(self, sort): | |
# increasing -> sort doesn't matter | |
ri = pd.RangeIndex.from_range(range(10)) | |
expected = np.arange(10, dtype=np.intp), ri | |
result = algos.factorize(ri, sort=sort) | |
tm.assert_numpy_array_equal(result[0], expected[0]) | |
tm.assert_index_equal(result[1], expected[1], exact=True) | |
result = ri.factorize(sort=sort) | |
tm.assert_numpy_array_equal(result[0], expected[0]) | |
tm.assert_index_equal(result[1], expected[1], exact=True) | |
def test_factorize_rangeindex_decreasing(self, sort): | |
# decreasing -> sort matters | |
ri = pd.RangeIndex.from_range(range(10)) | |
expected = np.arange(10, dtype=np.intp), ri | |
ri2 = ri[::-1] | |
expected = expected[0], ri2 | |
if sort: | |
expected = expected[0][::-1], expected[1][::-1] | |
result = algos.factorize(ri2, sort=sort) | |
tm.assert_numpy_array_equal(result[0], expected[0]) | |
tm.assert_index_equal(result[1], expected[1], exact=True) | |
result = ri2.factorize(sort=sort) | |
tm.assert_numpy_array_equal(result[0], expected[0]) | |
tm.assert_index_equal(result[1], expected[1], exact=True) | |
def test_deprecate_order(self): | |
# gh 19727 - check warning is raised for deprecated keyword, order. | |
# Test not valid once order keyword is removed. | |
data = np.array([2**63, 1, 2**63], dtype=np.uint64) | |
with pytest.raises(TypeError, match="got an unexpected keyword"): | |
algos.factorize(data, order=True) | |
with tm.assert_produces_warning(False): | |
algos.factorize(data) | |
def test_parametrized_factorize_na_value_default(self, data): | |
# arrays that include the NA default for that type, but isn't used. | |
codes, uniques = algos.factorize(data) | |
expected_uniques = data[[0, 1]] | |
expected_codes = np.array([0, 1, 0], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_parametrized_factorize_na_value(self, data, na_value): | |
codes, uniques = algos.factorize_array(data, na_value=na_value) | |
expected_uniques = data[[1, 3]] | |
expected_codes = np.array([-1, 0, -1, 1], dtype=np.intp) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
def test_factorize_use_na_sentinel(self, sort, data, uniques): | |
codes, uniques = algos.factorize(data, sort=sort, use_na_sentinel=True) | |
if sort: | |
expected_codes = np.array([1, 0, -1, 1], dtype=np.intp) | |
expected_uniques = algos.safe_sort(uniques) | |
else: | |
expected_codes = np.array([0, 1, -1, 0], dtype=np.intp) | |
expected_uniques = uniques | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
if isinstance(data, np.ndarray): | |
tm.assert_numpy_array_equal(uniques, expected_uniques) | |
else: | |
tm.assert_extension_array_equal(uniques, expected_uniques) | |
def test_object_factorize_use_na_sentinel_false( | |
self, data, expected_codes, expected_uniques | |
): | |
codes, uniques = algos.factorize( | |
np.array(data, dtype=object), use_na_sentinel=False | |
) | |
tm.assert_numpy_array_equal(uniques, expected_uniques, strict_nan=True) | |
tm.assert_numpy_array_equal(codes, expected_codes, strict_nan=True) | |
def test_int_factorize_use_na_sentinel_false( | |
self, data, expected_codes, expected_uniques | |
): | |
msg = "factorize with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
codes, uniques = algos.factorize(data, use_na_sentinel=False) | |
tm.assert_numpy_array_equal(uniques, expected_uniques, strict_nan=True) | |
tm.assert_numpy_array_equal(codes, expected_codes, strict_nan=True) | |
def test_factorize_mixed_values(self, data, expected_codes, expected_uniques): | |
# GH 19721 | |
codes, uniques = algos.factorize(data) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_index_equal(uniques, expected_uniques) | |
def test_factorize_interval_non_nano(self, unit): | |
# GH#56099 | |
left = DatetimeIndex(["2016-01-01", np.nan, "2015-10-11"]).as_unit(unit) | |
right = DatetimeIndex(["2016-01-02", np.nan, "2015-10-15"]).as_unit(unit) | |
idx = IntervalIndex.from_arrays(left, right) | |
codes, cats = idx.factorize() | |
assert cats.dtype == f"interval[datetime64[{unit}], right]" | |
ts = Timestamp(0).as_unit(unit) | |
idx2 = IntervalIndex.from_arrays(left - ts, right - ts) | |
codes2, cats2 = idx2.factorize() | |
assert cats2.dtype == f"interval[timedelta64[{unit}], right]" | |
idx3 = IntervalIndex.from_arrays( | |
left.tz_localize("US/Pacific"), right.tz_localize("US/Pacific") | |
) | |
codes3, cats3 = idx3.factorize() | |
assert cats3.dtype == f"interval[datetime64[{unit}, US/Pacific], right]" | |
class TestUnique: | |
def test_ints(self): | |
arr = np.random.default_rng(2).integers(0, 100, size=50) | |
result = algos.unique(arr) | |
assert isinstance(result, np.ndarray) | |
def test_objects(self): | |
arr = np.random.default_rng(2).integers(0, 100, size=50).astype("O") | |
result = algos.unique(arr) | |
assert isinstance(result, np.ndarray) | |
def test_object_refcount_bug(self): | |
lst = np.array(["A", "B", "C", "D", "E"], dtype=object) | |
for i in range(1000): | |
len(algos.unique(lst)) | |
def test_on_index_object(self): | |
mindex = MultiIndex.from_arrays( | |
[np.arange(5).repeat(5), np.tile(np.arange(5), 5)] | |
) | |
expected = mindex.values | |
expected.sort() | |
mindex = mindex.repeat(2) | |
result = pd.unique(mindex) | |
result.sort() | |
tm.assert_almost_equal(result, expected) | |
def test_dtype_preservation(self, any_numpy_dtype): | |
# GH 15442 | |
if any_numpy_dtype in (tm.BYTES_DTYPES + tm.STRING_DTYPES): | |
data = [1, 2, 2] | |
uniques = [1, 2] | |
elif is_integer_dtype(any_numpy_dtype): | |
data = [1, 2, 2] | |
uniques = [1, 2] | |
elif is_float_dtype(any_numpy_dtype): | |
data = [1, 2, 2] | |
uniques = [1.0, 2.0] | |
elif is_complex_dtype(any_numpy_dtype): | |
data = [complex(1, 0), complex(2, 0), complex(2, 0)] | |
uniques = [complex(1, 0), complex(2, 0)] | |
elif is_bool_dtype(any_numpy_dtype): | |
data = [True, True, False] | |
uniques = [True, False] | |
elif is_object_dtype(any_numpy_dtype): | |
data = ["A", "B", "B"] | |
uniques = ["A", "B"] | |
else: | |
# datetime64[ns]/M8[ns]/timedelta64[ns]/m8[ns] tested elsewhere | |
data = [1, 2, 2] | |
uniques = [1, 2] | |
result = Series(data, dtype=any_numpy_dtype).unique() | |
expected = np.array(uniques, dtype=any_numpy_dtype) | |
if any_numpy_dtype in tm.STRING_DTYPES: | |
expected = expected.astype(object) | |
if expected.dtype.kind in ["m", "M"]: | |
# We get TimedeltaArray/DatetimeArray | |
assert isinstance(result, (DatetimeArray, TimedeltaArray)) | |
result = np.array(result) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_datetime64_dtype_array_returned(self): | |
# GH 9431 | |
expected = np.array( | |
[ | |
"2015-01-03T00:00:00.000000000", | |
"2015-01-01T00:00:00.000000000", | |
], | |
dtype="M8[ns]", | |
) | |
dt_index = to_datetime( | |
[ | |
"2015-01-03T00:00:00.000000000", | |
"2015-01-01T00:00:00.000000000", | |
"2015-01-01T00:00:00.000000000", | |
] | |
) | |
result = algos.unique(dt_index) | |
tm.assert_numpy_array_equal(result, expected) | |
assert result.dtype == expected.dtype | |
s = Series(dt_index) | |
result = algos.unique(s) | |
tm.assert_numpy_array_equal(result, expected) | |
assert result.dtype == expected.dtype | |
arr = s.values | |
result = algos.unique(arr) | |
tm.assert_numpy_array_equal(result, expected) | |
assert result.dtype == expected.dtype | |
def test_datetime_non_ns(self): | |
a = np.array(["2000", "2000", "2001"], dtype="datetime64[s]") | |
result = pd.unique(a) | |
expected = np.array(["2000", "2001"], dtype="datetime64[s]") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_timedelta_non_ns(self): | |
a = np.array(["2000", "2000", "2001"], dtype="timedelta64[s]") | |
result = pd.unique(a) | |
expected = np.array([2000, 2001], dtype="timedelta64[s]") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_timedelta64_dtype_array_returned(self): | |
# GH 9431 | |
expected = np.array([31200, 45678, 10000], dtype="m8[ns]") | |
td_index = to_timedelta([31200, 45678, 31200, 10000, 45678]) | |
result = algos.unique(td_index) | |
tm.assert_numpy_array_equal(result, expected) | |
assert result.dtype == expected.dtype | |
s = Series(td_index) | |
result = algos.unique(s) | |
tm.assert_numpy_array_equal(result, expected) | |
assert result.dtype == expected.dtype | |
arr = s.values | |
result = algos.unique(arr) | |
tm.assert_numpy_array_equal(result, expected) | |
assert result.dtype == expected.dtype | |
def test_uint64_overflow(self): | |
s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) | |
exp = np.array([1, 2, 2**63], dtype=np.uint64) | |
tm.assert_numpy_array_equal(algos.unique(s), exp) | |
def test_nan_in_object_array(self): | |
duplicated_items = ["a", np.nan, "c", "c"] | |
result = pd.unique(np.array(duplicated_items, dtype=object)) | |
expected = np.array(["a", np.nan, "c"], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_categorical(self): | |
# we are expecting to return in the order | |
# of appearance | |
expected = Categorical(list("bac")) | |
# we are expecting to return in the order | |
# of the categories | |
expected_o = Categorical(list("bac"), categories=list("abc"), ordered=True) | |
# GH 15939 | |
c = Categorical(list("baabc")) | |
result = c.unique() | |
tm.assert_categorical_equal(result, expected) | |
result = algos.unique(c) | |
tm.assert_categorical_equal(result, expected) | |
c = Categorical(list("baabc"), ordered=True) | |
result = c.unique() | |
tm.assert_categorical_equal(result, expected_o) | |
result = algos.unique(c) | |
tm.assert_categorical_equal(result, expected_o) | |
# Series of categorical dtype | |
s = Series(Categorical(list("baabc")), name="foo") | |
result = s.unique() | |
tm.assert_categorical_equal(result, expected) | |
result = pd.unique(s) | |
tm.assert_categorical_equal(result, expected) | |
# CI -> return CI | |
ci = CategoricalIndex(Categorical(list("baabc"), categories=list("abc"))) | |
expected = CategoricalIndex(expected) | |
result = ci.unique() | |
tm.assert_index_equal(result, expected) | |
result = pd.unique(ci) | |
tm.assert_index_equal(result, expected) | |
def test_datetime64tz_aware(self, unit): | |
# GH 15939 | |
dti = Index( | |
[ | |
Timestamp("20160101", tz="US/Eastern"), | |
Timestamp("20160101", tz="US/Eastern"), | |
] | |
).as_unit(unit) | |
ser = Series(dti) | |
result = ser.unique() | |
expected = dti[:1]._data | |
tm.assert_extension_array_equal(result, expected) | |
result = dti.unique() | |
expected = dti[:1] | |
tm.assert_index_equal(result, expected) | |
result = pd.unique(ser) | |
expected = dti[:1]._data | |
tm.assert_extension_array_equal(result, expected) | |
result = pd.unique(dti) | |
expected = dti[:1] | |
tm.assert_index_equal(result, expected) | |
def test_order_of_appearance(self): | |
# 9346 | |
# light testing of guarantee of order of appearance | |
# these also are the doc-examples | |
result = pd.unique(Series([2, 1, 3, 3])) | |
tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype="int64")) | |
result = pd.unique(Series([2] + [1] * 5)) | |
tm.assert_numpy_array_equal(result, np.array([2, 1], dtype="int64")) | |
msg = "unique with argument that is not not a Series, Index," | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = pd.unique(list("aabc")) | |
expected = np.array(["a", "b", "c"], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
result = pd.unique(Series(Categorical(list("aabc")))) | |
expected = Categorical(list("abc")) | |
tm.assert_categorical_equal(result, expected) | |
def test_order_of_appearance_dt64(self, unit): | |
ser = Series([Timestamp("20160101"), Timestamp("20160101")]).dt.as_unit(unit) | |
result = pd.unique(ser) | |
expected = np.array(["2016-01-01T00:00:00.000000000"], dtype=f"M8[{unit}]") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_order_of_appearance_dt64tz(self, unit): | |
dti = DatetimeIndex( | |
[ | |
Timestamp("20160101", tz="US/Eastern"), | |
Timestamp("20160101", tz="US/Eastern"), | |
] | |
).as_unit(unit) | |
result = pd.unique(dti) | |
expected = DatetimeIndex( | |
["2016-01-01 00:00:00"], dtype=f"datetime64[{unit}, US/Eastern]", freq=None | |
) | |
tm.assert_index_equal(result, expected) | |
def test_tuple_with_strings(self, arg, expected): | |
# see GH 17108 | |
msg = "unique with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = pd.unique(arg) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_obj_none_preservation(self): | |
# GH 20866 | |
arr = np.array(["foo", None], dtype=object) | |
result = pd.unique(arr) | |
expected = np.array(["foo", None], dtype=object) | |
tm.assert_numpy_array_equal(result, expected, strict_nan=True) | |
def test_signed_zero(self): | |
# GH 21866 | |
a = np.array([-0.0, 0.0]) | |
result = pd.unique(a) | |
expected = np.array([-0.0]) # 0.0 and -0.0 are equivalent | |
tm.assert_numpy_array_equal(result, expected) | |
def test_different_nans(self): | |
# GH 21866 | |
# create different nans from bit-patterns: | |
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0] | |
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0] | |
assert NAN1 != NAN1 | |
assert NAN2 != NAN2 | |
a = np.array([NAN1, NAN2]) # NAN1 and NAN2 are equivalent | |
result = pd.unique(a) | |
expected = np.array([np.nan]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_first_nan_kept(self, el_type): | |
# GH 22295 | |
# create different nans from bit-patterns: | |
bits_for_nan1 = 0xFFF8000000000001 | |
bits_for_nan2 = 0x7FF8000000000001 | |
NAN1 = struct.unpack("d", struct.pack("=Q", bits_for_nan1))[0] | |
NAN2 = struct.unpack("d", struct.pack("=Q", bits_for_nan2))[0] | |
assert NAN1 != NAN1 | |
assert NAN2 != NAN2 | |
a = np.array([NAN1, NAN2], dtype=el_type) | |
result = pd.unique(a) | |
assert result.size == 1 | |
# use bit patterns to identify which nan was kept: | |
result_nan_bits = struct.unpack("=Q", struct.pack("d", result[0]))[0] | |
assert result_nan_bits == bits_for_nan1 | |
def test_do_not_mangle_na_values(self, unique_nulls_fixture, unique_nulls_fixture2): | |
# GH 22295 | |
if unique_nulls_fixture is unique_nulls_fixture2: | |
return # skip it, values not unique | |
a = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=object) | |
result = pd.unique(a) | |
assert result.size == 2 | |
assert a[0] is unique_nulls_fixture | |
assert a[1] is unique_nulls_fixture2 | |
def test_unique_masked(self, any_numeric_ea_dtype): | |
# GH#48019 | |
ser = Series([1, pd.NA, 2] * 3, dtype=any_numeric_ea_dtype) | |
result = pd.unique(ser) | |
expected = pd.array([1, pd.NA, 2], dtype=any_numeric_ea_dtype) | |
tm.assert_extension_array_equal(result, expected) | |
def test_nunique_ints(index_or_series_or_array): | |
# GH#36327 | |
values = index_or_series_or_array(np.random.default_rng(2).integers(0, 20, 30)) | |
result = algos.nunique_ints(values) | |
expected = len(algos.unique(values)) | |
assert result == expected | |
class TestIsin: | |
def test_invalid(self): | |
msg = ( | |
r"only list-like objects are allowed to be passed to isin\(\), " | |
r"you passed a `int`" | |
) | |
with pytest.raises(TypeError, match=msg): | |
algos.isin(1, 1) | |
with pytest.raises(TypeError, match=msg): | |
algos.isin(1, [1]) | |
with pytest.raises(TypeError, match=msg): | |
algos.isin([1], 1) | |
def test_basic(self): | |
msg = "isin with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.isin([1, 2], [1]) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(np.array([1, 2]), [1]) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(Series([1, 2]), [1]) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(Series([1, 2]), Series([1])) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(Series([1, 2]), {1}) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.isin(["a", "b"], ["a"]) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(Series(["a", "b"]), Series(["a"])) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(Series(["a", "b"]), {"a"}) | |
expected = np.array([True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.isin(["a", "b"], [1]) | |
expected = np.array([False, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_i8(self): | |
arr = date_range("20130101", periods=3).values | |
result = algos.isin(arr, [arr[0]]) | |
expected = np.array([True, False, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(arr, arr[0:2]) | |
expected = np.array([True, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(arr, set(arr[0:2])) | |
expected = np.array([True, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
arr = timedelta_range("1 day", periods=3).values | |
result = algos.isin(arr, [arr[0]]) | |
expected = np.array([True, False, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(arr, arr[0:2]) | |
expected = np.array([True, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.isin(arr, set(arr[0:2])) | |
expected = np.array([True, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_isin_datetimelike_values_numeric_comps(self, dtype, dtype1): | |
# Anything but object and we get all-False shortcut | |
dta = date_range("2013-01-01", periods=3)._values | |
arr = Series(dta.view("i8")).array.view(dtype1) | |
comps = arr.view("i8").astype(dtype) | |
result = algos.isin(comps, arr) | |
expected = np.zeros(comps.shape, dtype=bool) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_large(self): | |
s = date_range("20000101", periods=2000000, freq="s").values | |
result = algos.isin(s, s[0:2]) | |
expected = np.zeros(len(s), dtype=bool) | |
expected[0] = True | |
expected[1] = True | |
tm.assert_numpy_array_equal(result, expected) | |
def test_isin_datetimelike_all_nat(self, dtype): | |
# GH#56427 | |
dta = date_range("2013-01-01", periods=3)._values | |
arr = Series(dta.view("i8")).array.view(dtype) | |
arr[0] = NaT | |
result = algos.isin(arr, [NaT]) | |
expected = np.array([True, False, False], dtype=bool) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_isin_datetimelike_strings_deprecated(self, dtype): | |
# GH#53111 | |
dta = date_range("2013-01-01", periods=3)._values | |
arr = Series(dta.view("i8")).array.view(dtype) | |
vals = [str(x) for x in arr] | |
msg = "The behavior of 'isin' with dtype=.* is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
res = algos.isin(arr, vals) | |
assert res.all() | |
vals2 = np.array(vals, dtype=str) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
res2 = algos.isin(arr, vals2) | |
assert res2.all() | |
def test_isin_dt64tz_with_nat(self): | |
# the all-NaT values used to get inferred to tznaive, which was evaluated | |
# as non-matching GH#56427 | |
dti = date_range("2016-01-01", periods=3, tz="UTC") | |
ser = Series(dti) | |
ser[0] = NaT | |
res = algos.isin(ser._values, [NaT]) | |
exp = np.array([True, False, False], dtype=bool) | |
tm.assert_numpy_array_equal(res, exp) | |
def test_categorical_from_codes(self): | |
# GH 16639 | |
vals = np.array([0, 1, 2, 0]) | |
cats = ["a", "b", "c"] | |
Sd = Series(Categorical([1]).from_codes(vals, cats)) | |
St = Series(Categorical([1]).from_codes(np.array([0, 1]), cats)) | |
expected = np.array([True, True, False, True]) | |
result = algos.isin(Sd, St) | |
tm.assert_numpy_array_equal(expected, result) | |
def test_categorical_isin(self): | |
vals = np.array([0, 1, 2, 0]) | |
cats = ["a", "b", "c"] | |
cat = Categorical([1]).from_codes(vals, cats) | |
other = Categorical([1]).from_codes(np.array([0, 1]), cats) | |
expected = np.array([True, True, False, True]) | |
result = algos.isin(cat, other) | |
tm.assert_numpy_array_equal(expected, result) | |
def test_same_nan_is_in(self): | |
# GH 22160 | |
# nan is special, because from " a is b" doesn't follow "a == b" | |
# at least, isin() should follow python's "np.nan in [nan] == True" | |
# casting to -> np.float64 -> another float-object somewhere on | |
# the way could lead jeopardize this behavior | |
comps = [np.nan] # could be casted to float64 | |
values = [np.nan] | |
expected = np.array([True]) | |
msg = "isin with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.isin(comps, values) | |
tm.assert_numpy_array_equal(expected, result) | |
def test_same_nan_is_in_large(self): | |
# https://github.com/pandas-dev/pandas/issues/22205 | |
s = np.tile(1.0, 1_000_001) | |
s[0] = np.nan | |
result = algos.isin(s, np.array([np.nan, 1])) | |
expected = np.ones(len(s), dtype=bool) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_same_nan_is_in_large_series(self): | |
# https://github.com/pandas-dev/pandas/issues/22205 | |
s = np.tile(1.0, 1_000_001) | |
series = Series(s) | |
s[0] = np.nan | |
result = series.isin(np.array([np.nan, 1])) | |
expected = Series(np.ones(len(s), dtype=bool)) | |
tm.assert_series_equal(result, expected) | |
def test_same_object_is_in(self): | |
# GH 22160 | |
# there could be special treatment for nans | |
# the user however could define a custom class | |
# with similar behavior, then we at least should | |
# fall back to usual python's behavior: "a in [a] == True" | |
class LikeNan: | |
def __eq__(self, other) -> bool: | |
return False | |
def __hash__(self): | |
return 0 | |
a, b = LikeNan(), LikeNan() | |
msg = "isin with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
# same object -> True | |
tm.assert_numpy_array_equal(algos.isin([a], [a]), np.array([True])) | |
# different objects -> False | |
tm.assert_numpy_array_equal(algos.isin([a], [b]), np.array([False])) | |
def test_different_nans(self): | |
# GH 22160 | |
# all nans are handled as equivalent | |
comps = [float("nan")] | |
values = [float("nan")] | |
assert comps[0] is not values[0] # different nan-objects | |
# as list of python-objects: | |
result = algos.isin(np.array(comps), values) | |
tm.assert_numpy_array_equal(np.array([True]), result) | |
# as object-array: | |
result = algos.isin( | |
np.asarray(comps, dtype=object), np.asarray(values, dtype=object) | |
) | |
tm.assert_numpy_array_equal(np.array([True]), result) | |
# as float64-array: | |
result = algos.isin( | |
np.asarray(comps, dtype=np.float64), np.asarray(values, dtype=np.float64) | |
) | |
tm.assert_numpy_array_equal(np.array([True]), result) | |
def test_no_cast(self): | |
# GH 22160 | |
# ensure 42 is not casted to a string | |
comps = ["ss", 42] | |
values = ["42"] | |
expected = np.array([False, False]) | |
msg = "isin with argument that is not not a Series, Index" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.isin(comps, values) | |
tm.assert_numpy_array_equal(expected, result) | |
def test_empty(self, empty): | |
# see gh-16991 | |
vals = Index(["a", "b"]) | |
expected = np.array([False, False]) | |
result = algos.isin(vals, empty) | |
tm.assert_numpy_array_equal(expected, result) | |
def test_different_nan_objects(self): | |
# GH 22119 | |
comps = np.array(["nan", np.nan * 1j, float("nan")], dtype=object) | |
vals = np.array([float("nan")], dtype=object) | |
expected = np.array([False, False, True]) | |
result = algos.isin(comps, vals) | |
tm.assert_numpy_array_equal(expected, result) | |
def test_different_nans_as_float64(self): | |
# GH 21866 | |
# create different nans from bit-patterns, | |
# these nans will land in different buckets in the hash-table | |
# if no special care is taken | |
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0] | |
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0] | |
assert NAN1 != NAN1 | |
assert NAN2 != NAN2 | |
# check that NAN1 and NAN2 are equivalent: | |
arr = np.array([NAN1, NAN2], dtype=np.float64) | |
lookup1 = np.array([NAN1], dtype=np.float64) | |
result = algos.isin(arr, lookup1) | |
expected = np.array([True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
lookup2 = np.array([NAN2], dtype=np.float64) | |
result = algos.isin(arr, lookup2) | |
expected = np.array([True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_isin_int_df_string_search(self): | |
"""Comparing df with int`s (1,2) with a string at isin() ("1") | |
-> should not match values because int 1 is not equal str 1""" | |
df = DataFrame({"values": [1, 2]}) | |
result = df.isin(["1"]) | |
expected_false = DataFrame({"values": [False, False]}) | |
tm.assert_frame_equal(result, expected_false) | |
def test_isin_nan_df_string_search(self): | |
"""Comparing df with nan value (np.nan,2) with a string at isin() ("NaN") | |
-> should not match values because np.nan is not equal str NaN""" | |
df = DataFrame({"values": [np.nan, 2]}) | |
result = df.isin(np.array(["NaN"], dtype=object)) | |
expected_false = DataFrame({"values": [False, False]}) | |
tm.assert_frame_equal(result, expected_false) | |
def test_isin_float_df_string_search(self): | |
"""Comparing df with floats (1.4245,2.32441) with a string at isin() ("1.4245") | |
-> should not match values because float 1.4245 is not equal str 1.4245""" | |
df = DataFrame({"values": [1.4245, 2.32441]}) | |
result = df.isin(np.array(["1.4245"], dtype=object)) | |
expected_false = DataFrame({"values": [False, False]}) | |
tm.assert_frame_equal(result, expected_false) | |
def test_isin_unsigned_dtype(self): | |
# GH#46485 | |
ser = Series([1378774140726870442], dtype=np.uint64) | |
result = ser.isin([1378774140726870528]) | |
expected = Series(False) | |
tm.assert_series_equal(result, expected) | |
class TestValueCounts: | |
def test_value_counts(self): | |
arr = np.random.default_rng(1234).standard_normal(4) | |
factor = cut(arr, 4) | |
# assert isinstance(factor, n) | |
msg = "pandas.value_counts is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.value_counts(factor) | |
breaks = [-1.606, -1.018, -0.431, 0.155, 0.741] | |
index = IntervalIndex.from_breaks(breaks).astype(CategoricalDtype(ordered=True)) | |
expected = Series([1, 0, 2, 1], index=index, name="count") | |
tm.assert_series_equal(result.sort_index(), expected.sort_index()) | |
def test_value_counts_bins(self): | |
s = [1, 2, 3, 4] | |
msg = "pandas.value_counts is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.value_counts(s, bins=1) | |
expected = Series( | |
[4], index=IntervalIndex.from_tuples([(0.996, 4.0)]), name="count" | |
) | |
tm.assert_series_equal(result, expected) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.value_counts(s, bins=2, sort=False) | |
expected = Series( | |
[2, 2], | |
index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)]), | |
name="count", | |
) | |
tm.assert_series_equal(result, expected) | |
def test_value_counts_dtypes(self): | |
msg2 = "pandas.value_counts is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg2): | |
result = algos.value_counts(np.array([1, 1.0])) | |
assert len(result) == 1 | |
with tm.assert_produces_warning(FutureWarning, match=msg2): | |
result = algos.value_counts(np.array([1, 1.0]), bins=1) | |
assert len(result) == 1 | |
with tm.assert_produces_warning(FutureWarning, match=msg2): | |
result = algos.value_counts(Series([1, 1.0, "1"])) # object | |
assert len(result) == 2 | |
msg = "bins argument only works with numeric data" | |
with pytest.raises(TypeError, match=msg): | |
with tm.assert_produces_warning(FutureWarning, match=msg2): | |
algos.value_counts(np.array(["1", 1], dtype=object), bins=1) | |
def test_value_counts_nat(self): | |
td = Series([np.timedelta64(10000), NaT], dtype="timedelta64[ns]") | |
dt = to_datetime(["NaT", "2014-01-01"]) | |
msg = "pandas.value_counts is deprecated" | |
for ser in [td, dt]: | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
vc = algos.value_counts(ser) | |
vc_with_na = algos.value_counts(ser, dropna=False) | |
assert len(vc) == 1 | |
assert len(vc_with_na) == 2 | |
exp_dt = Series({Timestamp("2014-01-01 00:00:00"): 1}, name="count") | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result_dt = algos.value_counts(dt) | |
tm.assert_series_equal(result_dt, exp_dt) | |
exp_td = Series({np.timedelta64(10000): 1}, name="count") | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result_td = algos.value_counts(td) | |
tm.assert_series_equal(result_td, exp_td) | |
def test_value_counts_datetime_outofbounds(self, dtype): | |
# GH 13663 | |
ser = Series( | |
[ | |
datetime(3000, 1, 1), | |
datetime(5000, 1, 1), | |
datetime(5000, 1, 1), | |
datetime(6000, 1, 1), | |
datetime(3000, 1, 1), | |
datetime(3000, 1, 1), | |
], | |
dtype=dtype, | |
) | |
res = ser.value_counts() | |
exp_index = Index( | |
[datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], | |
dtype=dtype, | |
) | |
exp = Series([3, 2, 1], index=exp_index, name="count") | |
tm.assert_series_equal(res, exp) | |
def test_categorical(self): | |
s = Series(Categorical(list("aaabbc"))) | |
result = s.value_counts() | |
expected = Series( | |
[3, 2, 1], index=CategoricalIndex(["a", "b", "c"]), name="count" | |
) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
# preserve order? | |
s = s.cat.as_ordered() | |
result = s.value_counts() | |
expected.index = expected.index.as_ordered() | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
def test_categorical_nans(self): | |
s = Series(Categorical(list("aaaaabbbcc"))) # 4,3,2,1 (nan) | |
s.iloc[1] = np.nan | |
result = s.value_counts() | |
expected = Series( | |
[4, 3, 2], | |
index=CategoricalIndex(["a", "b", "c"], categories=["a", "b", "c"]), | |
name="count", | |
) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
result = s.value_counts(dropna=False) | |
expected = Series( | |
[4, 3, 2, 1], index=CategoricalIndex(["a", "b", "c", np.nan]), name="count" | |
) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
# out of order | |
s = Series( | |
Categorical(list("aaaaabbbcc"), ordered=True, categories=["b", "a", "c"]) | |
) | |
s.iloc[1] = np.nan | |
result = s.value_counts() | |
expected = Series( | |
[4, 3, 2], | |
index=CategoricalIndex( | |
["a", "b", "c"], | |
categories=["b", "a", "c"], | |
ordered=True, | |
), | |
name="count", | |
) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
result = s.value_counts(dropna=False) | |
expected = Series( | |
[4, 3, 2, 1], | |
index=CategoricalIndex( | |
["a", "b", "c", np.nan], categories=["b", "a", "c"], ordered=True | |
), | |
name="count", | |
) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
def test_categorical_zeroes(self): | |
# keep the `d` category with 0 | |
s = Series(Categorical(list("bbbaac"), categories=list("abcd"), ordered=True)) | |
result = s.value_counts() | |
expected = Series( | |
[3, 2, 1, 0], | |
index=Categorical( | |
["b", "a", "c", "d"], categories=list("abcd"), ordered=True | |
), | |
name="count", | |
) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
def test_value_counts_dropna(self): | |
# https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328 | |
tm.assert_series_equal( | |
Series([True, True, False]).value_counts(dropna=True), | |
Series([2, 1], index=[True, False], name="count"), | |
) | |
tm.assert_series_equal( | |
Series([True, True, False]).value_counts(dropna=False), | |
Series([2, 1], index=[True, False], name="count"), | |
) | |
tm.assert_series_equal( | |
Series([True] * 3 + [False] * 2 + [None] * 5).value_counts(dropna=True), | |
Series([3, 2], index=Index([True, False], dtype=object), name="count"), | |
) | |
tm.assert_series_equal( | |
Series([True] * 5 + [False] * 3 + [None] * 2).value_counts(dropna=False), | |
Series([5, 3, 2], index=[True, False, None], name="count"), | |
) | |
tm.assert_series_equal( | |
Series([10.3, 5.0, 5.0]).value_counts(dropna=True), | |
Series([2, 1], index=[5.0, 10.3], name="count"), | |
) | |
tm.assert_series_equal( | |
Series([10.3, 5.0, 5.0]).value_counts(dropna=False), | |
Series([2, 1], index=[5.0, 10.3], name="count"), | |
) | |
tm.assert_series_equal( | |
Series([10.3, 5.0, 5.0, None]).value_counts(dropna=True), | |
Series([2, 1], index=[5.0, 10.3], name="count"), | |
) | |
result = Series([10.3, 10.3, 5.0, 5.0, 5.0, None]).value_counts(dropna=False) | |
expected = Series([3, 2, 1], index=[5.0, 10.3, None], name="count") | |
tm.assert_series_equal(result, expected) | |
def test_value_counts_normalized(self, dtype): | |
# GH12558 | |
s = Series([1] * 2 + [2] * 3 + [np.nan] * 5) | |
s_typed = s.astype(dtype) | |
result = s_typed.value_counts(normalize=True, dropna=False) | |
expected = Series( | |
[0.5, 0.3, 0.2], | |
index=Series([np.nan, 2.0, 1.0], dtype=dtype), | |
name="proportion", | |
) | |
tm.assert_series_equal(result, expected) | |
result = s_typed.value_counts(normalize=True, dropna=True) | |
expected = Series( | |
[0.6, 0.4], index=Series([2.0, 1.0], dtype=dtype), name="proportion" | |
) | |
tm.assert_series_equal(result, expected) | |
def test_value_counts_uint64(self): | |
arr = np.array([2**63], dtype=np.uint64) | |
expected = Series([1], index=[2**63], name="count") | |
msg = "pandas.value_counts is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.value_counts(arr) | |
tm.assert_series_equal(result, expected) | |
arr = np.array([-1, 2**63], dtype=object) | |
expected = Series([1, 1], index=[-1, 2**63], name="count") | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.value_counts(arr) | |
tm.assert_series_equal(result, expected) | |
def test_value_counts_series(self): | |
# GH#54857 | |
values = np.array([3, 1, 2, 3, 4, np.nan]) | |
result = Series(values).value_counts(bins=3) | |
expected = Series( | |
[2, 2, 1], | |
index=IntervalIndex.from_tuples( | |
[(0.996, 2.0), (2.0, 3.0), (3.0, 4.0)], dtype="interval[float64, right]" | |
), | |
name="count", | |
) | |
tm.assert_series_equal(result, expected) | |
class TestDuplicated: | |
def test_duplicated_with_nas(self): | |
keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) | |
result = algos.duplicated(keys) | |
expected = np.array([False, False, False, True, False, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.duplicated(keys, keep="first") | |
expected = np.array([False, False, False, True, False, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.duplicated(keys, keep="last") | |
expected = np.array([True, False, True, False, False, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.duplicated(keys, keep=False) | |
expected = np.array([True, False, True, True, False, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
keys = np.empty(8, dtype=object) | |
for i, t in enumerate( | |
zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2) | |
): | |
keys[i] = t | |
result = algos.duplicated(keys) | |
falses = [False] * 4 | |
trues = [True] * 4 | |
expected = np.array(falses + trues) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.duplicated(keys, keep="last") | |
expected = np.array(trues + falses) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.duplicated(keys, keep=False) | |
expected = np.array(trues + trues) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_numeric_object_likes(self, case): | |
exp_first = np.array( | |
[False, False, True, False, False, True, False, True, True, False] | |
) | |
exp_last = np.array( | |
[True, True, True, True, False, False, False, False, False, False] | |
) | |
exp_false = exp_first | exp_last | |
res_first = algos.duplicated(case, keep="first") | |
tm.assert_numpy_array_equal(res_first, exp_first) | |
res_last = algos.duplicated(case, keep="last") | |
tm.assert_numpy_array_equal(res_last, exp_last) | |
res_false = algos.duplicated(case, keep=False) | |
tm.assert_numpy_array_equal(res_false, exp_false) | |
# index | |
for idx in [Index(case), Index(case, dtype="category")]: | |
res_first = idx.duplicated(keep="first") | |
tm.assert_numpy_array_equal(res_first, exp_first) | |
res_last = idx.duplicated(keep="last") | |
tm.assert_numpy_array_equal(res_last, exp_last) | |
res_false = idx.duplicated(keep=False) | |
tm.assert_numpy_array_equal(res_false, exp_false) | |
# series | |
for s in [Series(case), Series(case, dtype="category")]: | |
res_first = s.duplicated(keep="first") | |
tm.assert_series_equal(res_first, Series(exp_first)) | |
res_last = s.duplicated(keep="last") | |
tm.assert_series_equal(res_last, Series(exp_last)) | |
res_false = s.duplicated(keep=False) | |
tm.assert_series_equal(res_false, Series(exp_false)) | |
def test_datetime_likes(self): | |
dt = [ | |
"2011-01-01", | |
"2011-01-02", | |
"2011-01-01", | |
"NaT", | |
"2011-01-03", | |
"2011-01-02", | |
"2011-01-04", | |
"2011-01-01", | |
"NaT", | |
"2011-01-06", | |
] | |
td = [ | |
"1 days", | |
"2 days", | |
"1 days", | |
"NaT", | |
"3 days", | |
"2 days", | |
"4 days", | |
"1 days", | |
"NaT", | |
"6 days", | |
] | |
cases = [ | |
np.array([Timestamp(d) for d in dt]), | |
np.array([Timestamp(d, tz="US/Eastern") for d in dt]), | |
np.array([Period(d, freq="D") for d in dt]), | |
np.array([np.datetime64(d) for d in dt]), | |
np.array([Timedelta(d) for d in td]), | |
] | |
exp_first = np.array( | |
[False, False, True, False, False, True, False, True, True, False] | |
) | |
exp_last = np.array( | |
[True, True, True, True, False, False, False, False, False, False] | |
) | |
exp_false = exp_first | exp_last | |
for case in cases: | |
res_first = algos.duplicated(case, keep="first") | |
tm.assert_numpy_array_equal(res_first, exp_first) | |
res_last = algos.duplicated(case, keep="last") | |
tm.assert_numpy_array_equal(res_last, exp_last) | |
res_false = algos.duplicated(case, keep=False) | |
tm.assert_numpy_array_equal(res_false, exp_false) | |
# index | |
for idx in [ | |
Index(case), | |
Index(case, dtype="category"), | |
Index(case, dtype=object), | |
]: | |
res_first = idx.duplicated(keep="first") | |
tm.assert_numpy_array_equal(res_first, exp_first) | |
res_last = idx.duplicated(keep="last") | |
tm.assert_numpy_array_equal(res_last, exp_last) | |
res_false = idx.duplicated(keep=False) | |
tm.assert_numpy_array_equal(res_false, exp_false) | |
# series | |
for s in [ | |
Series(case), | |
Series(case, dtype="category"), | |
Series(case, dtype=object), | |
]: | |
res_first = s.duplicated(keep="first") | |
tm.assert_series_equal(res_first, Series(exp_first)) | |
res_last = s.duplicated(keep="last") | |
tm.assert_series_equal(res_last, Series(exp_last)) | |
res_false = s.duplicated(keep=False) | |
tm.assert_series_equal(res_false, Series(exp_false)) | |
def test_unique_index(self, case): | |
assert case.is_unique is True | |
tm.assert_numpy_array_equal(case.duplicated(), np.array([False, False, False])) | |
def test_unique_tuples(self, arr, uniques): | |
# https://github.com/pandas-dev/pandas/issues/16519 | |
expected = np.empty(len(uniques), dtype=object) | |
expected[:] = uniques | |
msg = "unique with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = pd.unique(arr) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_unique_complex_numbers(self, array, expected): | |
# GH 17927 | |
msg = "unique with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = pd.unique(array) | |
tm.assert_numpy_array_equal(result, expected) | |
class TestHashTable: | |
def test_hashtable_unique(self, htable, data, writable): | |
# output of maker has guaranteed unique elements | |
s = Series(data) | |
if htable == ht.Float64HashTable: | |
# add NaN for float column | |
s.loc[500] = np.nan | |
elif htable == ht.PyObjectHashTable: | |
# use different NaN types for object column | |
s.loc[500:502] = [np.nan, None, NaT] | |
# create duplicated selection | |
s_duplicated = s.sample(frac=3, replace=True).reset_index(drop=True) | |
s_duplicated.values.setflags(write=writable) | |
# drop_duplicates has own cython code (hash_table_func_helper.pxi) | |
# and is tested separately; keeps first occurrence like ht.unique() | |
expected_unique = s_duplicated.drop_duplicates(keep="first").values | |
result_unique = htable().unique(s_duplicated.values) | |
tm.assert_numpy_array_equal(result_unique, expected_unique) | |
# test return_inverse=True | |
# reconstruction can only succeed if the inverse is correct | |
result_unique, result_inverse = htable().unique( | |
s_duplicated.values, return_inverse=True | |
) | |
tm.assert_numpy_array_equal(result_unique, expected_unique) | |
reconstr = result_unique[result_inverse] | |
tm.assert_numpy_array_equal(reconstr, s_duplicated.values) | |
def test_hashtable_factorize(self, htable, writable, data): | |
# output of maker has guaranteed unique elements | |
s = Series(data) | |
if htable == ht.Float64HashTable: | |
# add NaN for float column | |
s.loc[500] = np.nan | |
elif htable == ht.PyObjectHashTable: | |
# use different NaN types for object column | |
s.loc[500:502] = [np.nan, None, NaT] | |
# create duplicated selection | |
s_duplicated = s.sample(frac=3, replace=True).reset_index(drop=True) | |
s_duplicated.values.setflags(write=writable) | |
na_mask = s_duplicated.isna().values | |
result_unique, result_inverse = htable().factorize(s_duplicated.values) | |
# drop_duplicates has own cython code (hash_table_func_helper.pxi) | |
# and is tested separately; keeps first occurrence like ht.factorize() | |
# since factorize removes all NaNs, we do the same here | |
expected_unique = s_duplicated.dropna().drop_duplicates().values | |
tm.assert_numpy_array_equal(result_unique, expected_unique) | |
# reconstruction can only succeed if the inverse is correct. Since | |
# factorize removes the NaNs, those have to be excluded here as well | |
result_reconstruct = result_unique[result_inverse[~na_mask]] | |
expected_reconstruct = s_duplicated.dropna().values | |
tm.assert_numpy_array_equal(result_reconstruct, expected_reconstruct) | |
class TestRank: | |
def test_scipy_compat(self, arr): | |
sp_stats = pytest.importorskip("scipy.stats") | |
arr = np.array(arr) | |
mask = ~np.isfinite(arr) | |
arr = arr.copy() | |
result = libalgos.rank_1d(arr) | |
arr[mask] = np.inf | |
exp = sp_stats.rankdata(arr) | |
exp[mask] = np.nan | |
tm.assert_almost_equal(result, exp) | |
def test_basic(self, writable, dtype): | |
exp = np.array([1, 2], dtype=np.float64) | |
data = np.array([1, 100], dtype=dtype) | |
data.setflags(write=writable) | |
ser = Series(data) | |
result = algos.rank(ser) | |
tm.assert_numpy_array_equal(result, exp) | |
def test_uint64_overflow(self, dtype): | |
exp = np.array([1, 2], dtype=np.float64) | |
s = Series([1, 2**63], dtype=dtype) | |
tm.assert_numpy_array_equal(algos.rank(s), exp) | |
def test_too_many_ndims(self): | |
arr = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]) | |
msg = "Array with ndim > 2 are not supported" | |
with pytest.raises(TypeError, match=msg): | |
algos.rank(arr) | |
def test_pct_max_many_rows(self): | |
# GH 18271 | |
values = np.arange(2**24 + 1) | |
result = algos.rank(values, pct=True).max() | |
assert result == 1 | |
values = np.arange(2**25 + 2).reshape(2**24 + 1, 2) | |
result = algos.rank(values, pct=True).max() | |
assert result == 1 | |
class TestMode: | |
def test_no_mode(self): | |
exp = Series([], dtype=np.float64, index=Index([], dtype=int)) | |
tm.assert_numpy_array_equal(algos.mode(np.array([])), exp.values) | |
def test_mode_single(self, dt): | |
# GH 15714 | |
exp_single = [1] | |
data_single = [1] | |
exp_multi = [1] | |
data_multi = [1, 1] | |
ser = Series(data_single, dtype=dt) | |
exp = Series(exp_single, dtype=dt) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
ser = Series(data_multi, dtype=dt) | |
exp = Series(exp_multi, dtype=dt) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_mode_obj_int(self): | |
exp = Series([1], dtype=int) | |
tm.assert_numpy_array_equal(algos.mode(exp.values), exp.values) | |
exp = Series(["a", "b", "c"], dtype=object) | |
tm.assert_numpy_array_equal(algos.mode(exp.values), exp.values) | |
def test_number_mode(self, dt): | |
exp_single = [1] | |
data_single = [1] * 5 + [2] * 3 | |
exp_multi = [1, 3] | |
data_multi = [1] * 5 + [2] * 3 + [3] * 5 | |
ser = Series(data_single, dtype=dt) | |
exp = Series(exp_single, dtype=dt) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
ser = Series(data_multi, dtype=dt) | |
exp = Series(exp_multi, dtype=dt) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_strobj_mode(self): | |
exp = ["b"] | |
data = ["a"] * 2 + ["b"] * 3 | |
ser = Series(data, dtype="c") | |
exp = Series(exp, dtype="c") | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_strobj_multi_char(self, dt): | |
exp = ["bar"] | |
data = ["foo"] * 2 + ["bar"] * 3 | |
ser = Series(data, dtype=dt) | |
exp = Series(exp, dtype=dt) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_datelike_mode(self): | |
exp = Series(["1900-05-03", "2011-01-03", "2013-01-02"], dtype="M8[ns]") | |
ser = Series(["2011-01-03", "2013-01-02", "1900-05-03"], dtype="M8[ns]") | |
tm.assert_extension_array_equal(algos.mode(ser.values), exp._values) | |
tm.assert_series_equal(ser.mode(), exp) | |
exp = Series(["2011-01-03", "2013-01-02"], dtype="M8[ns]") | |
ser = Series( | |
["2011-01-03", "2013-01-02", "1900-05-03", "2011-01-03", "2013-01-02"], | |
dtype="M8[ns]", | |
) | |
tm.assert_extension_array_equal(algos.mode(ser.values), exp._values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_timedelta_mode(self): | |
exp = Series(["-1 days", "0 days", "1 days"], dtype="timedelta64[ns]") | |
ser = Series(["1 days", "-1 days", "0 days"], dtype="timedelta64[ns]") | |
tm.assert_extension_array_equal(algos.mode(ser.values), exp._values) | |
tm.assert_series_equal(ser.mode(), exp) | |
exp = Series(["2 min", "1 day"], dtype="timedelta64[ns]") | |
ser = Series( | |
["1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min"], | |
dtype="timedelta64[ns]", | |
) | |
tm.assert_extension_array_equal(algos.mode(ser.values), exp._values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_mixed_dtype(self): | |
exp = Series(["foo"], dtype=object) | |
ser = Series([1, "foo", "foo"]) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_uint64_overflow(self): | |
exp = Series([2**63], dtype=np.uint64) | |
ser = Series([1, 2**63, 2**63], dtype=np.uint64) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
exp = Series([1, 2**63], dtype=np.uint64) | |
ser = Series([1, 2**63], dtype=np.uint64) | |
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values) | |
tm.assert_series_equal(ser.mode(), exp) | |
def test_categorical(self): | |
c = Categorical([1, 2]) | |
exp = c | |
res = Series(c).mode()._values | |
tm.assert_categorical_equal(res, exp) | |
c = Categorical([1, "a", "a"]) | |
exp = Categorical(["a"], categories=[1, "a"]) | |
res = Series(c).mode()._values | |
tm.assert_categorical_equal(res, exp) | |
c = Categorical([1, 1, 2, 3, 3]) | |
exp = Categorical([1, 3], categories=[1, 2, 3]) | |
res = Series(c).mode()._values | |
tm.assert_categorical_equal(res, exp) | |
def test_index(self): | |
idx = Index([1, 2, 3]) | |
exp = Series([1, 2, 3], dtype=np.int64) | |
tm.assert_numpy_array_equal(algos.mode(idx), exp.values) | |
idx = Index([1, "a", "a"]) | |
exp = Series(["a"], dtype=object) | |
tm.assert_numpy_array_equal(algos.mode(idx), exp.values) | |
idx = Index([1, 1, 2, 3, 3]) | |
exp = Series([1, 3], dtype=np.int64) | |
tm.assert_numpy_array_equal(algos.mode(idx), exp.values) | |
idx = Index( | |
["1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min"], | |
dtype="timedelta64[ns]", | |
) | |
with pytest.raises(AttributeError, match="TimedeltaIndex"): | |
# algos.mode expects Arraylike, does *not* unwrap TimedeltaIndex | |
algos.mode(idx) | |
def test_ser_mode_with_name(self): | |
# GH 46737 | |
ser = Series([1, 1, 3], name="foo") | |
result = ser.mode() | |
expected = Series([1], name="foo") | |
tm.assert_series_equal(result, expected) | |
class TestDiff: | |
def test_diff_datetimelike_nat(self, dtype): | |
# NaT - NaT is NaT, not 0 | |
arr = np.arange(12).astype(np.int64).view(dtype).reshape(3, 4) | |
arr[:, 2] = arr.dtype.type("NaT", "ns") | |
result = algos.diff(arr, 1, axis=0) | |
expected = np.ones(arr.shape, dtype="timedelta64[ns]") * 4 | |
expected[:, 2] = np.timedelta64("NaT", "ns") | |
expected[0, :] = np.timedelta64("NaT", "ns") | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.diff(arr.T, 1, axis=1) | |
tm.assert_numpy_array_equal(result, expected.T) | |
def test_diff_ea_axis(self): | |
dta = date_range("2016-01-01", periods=3, tz="US/Pacific")._data | |
msg = "cannot diff DatetimeArray on axis=1" | |
with pytest.raises(ValueError, match=msg): | |
algos.diff(dta, 1, axis=1) | |
def test_diff_low_precision_int(self, dtype): | |
arr = np.array([0, 1, 1, 0, 0], dtype=dtype) | |
result = algos.diff(arr, 1) | |
expected = np.array([np.nan, 1, 0, -1, 0], dtype="float32") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_union_with_duplicates(op): | |
# GH#36289 | |
lvals = op([3, 1, 3, 4]) | |
rvals = op([2, 3, 1, 1]) | |
expected = op([3, 3, 1, 1, 4, 2]) | |
if isinstance(expected, np.ndarray): | |
result = algos.union_with_duplicates(lvals, rvals) | |
tm.assert_numpy_array_equal(result, expected) | |
else: | |
result = algos.union_with_duplicates(lvals, rvals) | |
tm.assert_extension_array_equal(result, expected) | |