peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/test_downstream.py
""" | |
Testing that we work in the downstream packages | |
""" | |
import array | |
import subprocess | |
import sys | |
import numpy as np | |
import pytest | |
from pandas.errors import IntCastingNaNError | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
DatetimeIndex, | |
Series, | |
TimedeltaIndex, | |
) | |
import pandas._testing as tm | |
from pandas.core.arrays import ( | |
DatetimeArray, | |
TimedeltaArray, | |
) | |
def df(): | |
return DataFrame({"A": [1, 2, 3]}) | |
def test_dask(df): | |
# dask sets "compute.use_numexpr" to False, so catch the current value | |
# and ensure to reset it afterwards to avoid impacting other tests | |
olduse = pd.get_option("compute.use_numexpr") | |
try: | |
pytest.importorskip("toolz") | |
dd = pytest.importorskip("dask.dataframe") | |
ddf = dd.from_pandas(df, npartitions=3) | |
assert ddf.A is not None | |
assert ddf.compute() is not None | |
finally: | |
pd.set_option("compute.use_numexpr", olduse) | |
def test_dask_ufunc(): | |
# dask sets "compute.use_numexpr" to False, so catch the current value | |
# and ensure to reset it afterwards to avoid impacting other tests | |
olduse = pd.get_option("compute.use_numexpr") | |
try: | |
da = pytest.importorskip("dask.array") | |
dd = pytest.importorskip("dask.dataframe") | |
s = Series([1.5, 2.3, 3.7, 4.0]) | |
ds = dd.from_pandas(s, npartitions=2) | |
result = da.fix(ds).compute() | |
expected = np.fix(s) | |
tm.assert_series_equal(result, expected) | |
finally: | |
pd.set_option("compute.use_numexpr", olduse) | |
def test_construct_dask_float_array_int_dtype_match_ndarray(): | |
# GH#40110 make sure we treat a float-dtype dask array with the same | |
# rules we would for an ndarray | |
dd = pytest.importorskip("dask.dataframe") | |
arr = np.array([1, 2.5, 3]) | |
darr = dd.from_array(arr) | |
res = Series(darr) | |
expected = Series(arr) | |
tm.assert_series_equal(res, expected) | |
# GH#49599 in 2.0 we raise instead of silently ignoring the dtype | |
msg = "Trying to coerce float values to integers" | |
with pytest.raises(ValueError, match=msg): | |
Series(darr, dtype="i8") | |
msg = r"Cannot convert non-finite values \(NA or inf\) to integer" | |
arr[2] = np.nan | |
with pytest.raises(IntCastingNaNError, match=msg): | |
Series(darr, dtype="i8") | |
# which is the same as we get with a numpy input | |
with pytest.raises(IntCastingNaNError, match=msg): | |
Series(arr, dtype="i8") | |
def test_xarray(df): | |
pytest.importorskip("xarray") | |
assert df.to_xarray() is not None | |
def test_xarray_cftimeindex_nearest(): | |
# https://github.com/pydata/xarray/issues/3751 | |
cftime = pytest.importorskip("cftime") | |
xarray = pytest.importorskip("xarray") | |
times = xarray.cftime_range("0001", periods=2) | |
key = cftime.DatetimeGregorian(2000, 1, 1) | |
result = times.get_indexer([key], method="nearest") | |
expected = 1 | |
assert result == expected | |
def test_oo_optimizable(): | |
# GH 21071 | |
subprocess.check_call([sys.executable, "-OO", "-c", "import pandas"]) | |
def test_oo_optimized_datetime_index_unpickle(): | |
# GH 42866 | |
subprocess.check_call( | |
[ | |
sys.executable, | |
"-OO", | |
"-c", | |
( | |
"import pandas as pd, pickle; " | |
"pickle.loads(pickle.dumps(pd.date_range('2021-01-01', periods=1)))" | |
), | |
] | |
) | |
def test_statsmodels(): | |
smf = pytest.importorskip("statsmodels.formula.api") | |
df = DataFrame( | |
{"Lottery": range(5), "Literacy": range(5), "Pop1831": range(100, 105)} | |
) | |
smf.ols("Lottery ~ Literacy + np.log(Pop1831)", data=df).fit() | |
def test_scikit_learn(): | |
pytest.importorskip("sklearn") | |
from sklearn import ( | |
datasets, | |
svm, | |
) | |
digits = datasets.load_digits() | |
clf = svm.SVC(gamma=0.001, C=100.0) | |
clf.fit(digits.data[:-1], digits.target[:-1]) | |
clf.predict(digits.data[-1:]) | |
def test_seaborn(): | |
seaborn = pytest.importorskip("seaborn") | |
tips = DataFrame( | |
{"day": pd.date_range("2023", freq="D", periods=5), "total_bill": range(5)} | |
) | |
seaborn.stripplot(x="day", y="total_bill", data=tips) | |
def test_pandas_datareader(): | |
pytest.importorskip("pandas_datareader") | |
def test_pyarrow(df): | |
pyarrow = pytest.importorskip("pyarrow") | |
table = pyarrow.Table.from_pandas(df) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_yaml_dump(df): | |
# GH#42748 | |
yaml = pytest.importorskip("yaml") | |
dumped = yaml.dump(df) | |
loaded = yaml.load(dumped, Loader=yaml.Loader) | |
tm.assert_frame_equal(df, loaded) | |
loaded2 = yaml.load(dumped, Loader=yaml.UnsafeLoader) | |
tm.assert_frame_equal(df, loaded2) | |
def test_missing_required_dependency(): | |
# GH 23868 | |
# To ensure proper isolation, we pass these flags | |
# -S : disable site-packages | |
# -s : disable user site-packages | |
# -E : disable PYTHON* env vars, especially PYTHONPATH | |
# https://github.com/MacPython/pandas-wheels/pull/50 | |
pyexe = sys.executable.replace("\\", "/") | |
# We skip this test if pandas is installed as a site package. We first | |
# import the package normally and check the path to the module before | |
# executing the test which imports pandas with site packages disabled. | |
call = [pyexe, "-c", "import pandas;print(pandas.__file__)"] | |
output = subprocess.check_output(call).decode() | |
if "site-packages" in output: | |
pytest.skip("pandas installed as site package") | |
# This test will fail if pandas is installed as a site package. The flags | |
# prevent pandas being imported and the test will report Failed: DID NOT | |
# RAISE <class 'subprocess.CalledProcessError'> | |
call = [pyexe, "-sSE", "-c", "import pandas"] | |
msg = ( | |
rf"Command '\['{pyexe}', '-sSE', '-c', 'import pandas'\]' " | |
"returned non-zero exit status 1." | |
) | |
with pytest.raises(subprocess.CalledProcessError, match=msg) as exc: | |
subprocess.check_output(call, stderr=subprocess.STDOUT) | |
output = exc.value.stdout.decode() | |
for name in ["numpy", "pytz", "dateutil"]: | |
assert name in output | |
def test_frame_setitem_dask_array_into_new_col(): | |
# GH#47128 | |
# dask sets "compute.use_numexpr" to False, so catch the current value | |
# and ensure to reset it afterwards to avoid impacting other tests | |
olduse = pd.get_option("compute.use_numexpr") | |
try: | |
da = pytest.importorskip("dask.array") | |
dda = da.array([1, 2]) | |
df = DataFrame({"a": ["a", "b"]}) | |
df["b"] = dda | |
df["c"] = dda | |
df.loc[[False, True], "b"] = 100 | |
result = df.loc[[1], :] | |
expected = DataFrame({"a": ["b"], "b": [100], "c": [2]}, index=[1]) | |
tm.assert_frame_equal(result, expected) | |
finally: | |
pd.set_option("compute.use_numexpr", olduse) | |
def test_pandas_priority(): | |
# GH#48347 | |
class MyClass: | |
__pandas_priority__ = 5000 | |
def __radd__(self, other): | |
return self | |
left = MyClass() | |
right = Series(range(3)) | |
assert right.__add__(left) is NotImplemented | |
assert right + left is left | |
def array_likes(request): | |
""" | |
Fixture giving a numpy array and a parametrized 'data' object, which can | |
be a memoryview, array, dask or xarray object created from the numpy array. | |
""" | |
# GH#24539 recognize e.g xarray, dask, ... | |
arr = np.array([1, 2, 3], dtype=np.int64) | |
name = request.param | |
if name == "memoryview": | |
data = memoryview(arr) | |
elif name == "array": | |
data = array.array("i", arr) | |
elif name == "dask": | |
import dask.array | |
data = dask.array.array(arr) | |
elif name == "xarray": | |
import xarray as xr | |
data = xr.DataArray(arr) | |
return arr, data | |
def test_from_obscure_array(dtype, array_likes): | |
# GH#24539 recognize e.g xarray, dask, ... | |
# Note: we dont do this for PeriodArray bc _from_sequence won't accept | |
# an array of integers | |
# TODO: could check with arraylike of Period objects | |
arr, data = array_likes | |
cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype] | |
depr_msg = f"{cls.__name__}.__init__ is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
expected = cls(arr) | |
result = cls._from_sequence(data, dtype=dtype) | |
tm.assert_extension_array_equal(result, expected) | |
if not isinstance(data, memoryview): | |
# FIXME(GH#44431) these raise on memoryview and attempted fix | |
# fails on py3.10 | |
func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype] | |
result = func(arr).array | |
expected = func(data).array | |
tm.assert_equal(result, expected) | |
# Let's check the Indexes while we're here | |
idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype] | |
result = idx_cls(arr) | |
expected = idx_cls(data) | |
tm.assert_index_equal(result, expected) | |
def test_dataframe_consortium() -> None: | |
""" | |
Test some basic methods of the dataframe consortium standard. | |
Full testing is done at https://github.com/data-apis/dataframe-api-compat, | |
this is just to check that the entry point works as expected. | |
""" | |
pytest.importorskip("dataframe_api_compat") | |
df_pd = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df = df_pd.__dataframe_consortium_standard__() | |
result_1 = df.get_column_names() | |
expected_1 = ["a", "b"] | |
assert result_1 == expected_1 | |
ser = Series([1, 2, 3], name="a") | |
col = ser.__column_consortium_standard__() | |
assert col.name == "a" | |
def test_xarray_coerce_unit(): | |
# GH44053 | |
xr = pytest.importorskip("xarray") | |
arr = xr.DataArray([1, 2, 3]) | |
result = pd.to_datetime(arr, unit="ns") | |
expected = DatetimeIndex( | |
[ | |
"1970-01-01 00:00:00.000000001", | |
"1970-01-01 00:00:00.000000002", | |
"1970-01-01 00:00:00.000000003", | |
], | |
dtype="datetime64[ns]", | |
freq=None, | |
) | |
tm.assert_index_equal(result, expected) | |