peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/test_expressions.py
import operator | |
import re | |
import numpy as np | |
import pytest | |
from pandas import option_context | |
import pandas._testing as tm | |
from pandas.core.api import ( | |
DataFrame, | |
Index, | |
Series, | |
) | |
from pandas.core.computation import expressions as expr | |
def _frame(): | |
return DataFrame( | |
np.random.default_rng(2).standard_normal((10001, 4)), | |
columns=list("ABCD"), | |
dtype="float64", | |
) | |
def _frame2(): | |
return DataFrame( | |
np.random.default_rng(2).standard_normal((100, 4)), | |
columns=list("ABCD"), | |
dtype="float64", | |
) | |
def _mixed(_frame): | |
return DataFrame( | |
{ | |
"A": _frame["A"].copy(), | |
"B": _frame["B"].astype("float32"), | |
"C": _frame["C"].astype("int64"), | |
"D": _frame["D"].astype("int32"), | |
} | |
) | |
def _mixed2(_frame2): | |
return DataFrame( | |
{ | |
"A": _frame2["A"].copy(), | |
"B": _frame2["B"].astype("float32"), | |
"C": _frame2["C"].astype("int64"), | |
"D": _frame2["D"].astype("int32"), | |
} | |
) | |
def _integer(): | |
return DataFrame( | |
np.random.default_rng(2).integers(1, 100, size=(10001, 4)), | |
columns=list("ABCD"), | |
dtype="int64", | |
) | |
def _integer_integers(_integer): | |
# integers to get a case with zeros | |
return _integer * np.random.default_rng(2).integers(0, 2, size=np.shape(_integer)) | |
def _integer2(): | |
return DataFrame( | |
np.random.default_rng(2).integers(1, 100, size=(101, 4)), | |
columns=list("ABCD"), | |
dtype="int64", | |
) | |
def _array(_frame): | |
return _frame["A"].values.copy() | |
def _array2(_frame2): | |
return _frame2["A"].values.copy() | |
def _array_mixed(_mixed): | |
return _mixed["D"].values.copy() | |
def _array_mixed2(_mixed2): | |
return _mixed2["D"].values.copy() | |
class TestExpressions: | |
def call_op(df, other, flex: bool, opname: str): | |
if flex: | |
op = lambda x, y: getattr(x, opname)(y) | |
op.__name__ = opname | |
else: | |
op = getattr(operator, opname) | |
with option_context("compute.use_numexpr", False): | |
expected = op(df, other) | |
expr.get_test_result() | |
result = op(df, other) | |
return result, expected | |
def test_run_arithmetic(self, request, fixture, flex, arith, monkeypatch): | |
df = request.getfixturevalue(fixture) | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", 0) | |
result, expected = self.call_op(df, df, flex, arith) | |
if arith == "truediv": | |
assert all(x.kind == "f" for x in expected.dtypes.values) | |
tm.assert_equal(expected, result) | |
for i in range(len(df.columns)): | |
result, expected = self.call_op( | |
df.iloc[:, i], df.iloc[:, i], flex, arith | |
) | |
if arith == "truediv": | |
assert expected.dtype.kind == "f" | |
tm.assert_equal(expected, result) | |
def test_run_binary(self, request, fixture, flex, comparison_op, monkeypatch): | |
""" | |
tests solely that the result is the same whether or not numexpr is | |
enabled. Need to test whether the function does the correct thing | |
elsewhere. | |
""" | |
df = request.getfixturevalue(fixture) | |
arith = comparison_op.__name__ | |
with option_context("compute.use_numexpr", False): | |
other = df.copy() + 1 | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", 0) | |
expr.set_test_mode(True) | |
result, expected = self.call_op(df, other, flex, arith) | |
used_numexpr = expr.get_test_result() | |
assert used_numexpr, "Did not use numexpr as expected." | |
tm.assert_equal(expected, result) | |
for i in range(len(df.columns)): | |
binary_comp = other.iloc[:, i] + 1 | |
self.call_op(df.iloc[:, i], binary_comp, flex, "add") | |
def test_invalid(self): | |
array = np.random.default_rng(2).standard_normal(1_000_001) | |
array2 = np.random.default_rng(2).standard_normal(100) | |
# no op | |
result = expr._can_use_numexpr(operator.add, None, array, array, "evaluate") | |
assert not result | |
# min elements | |
result = expr._can_use_numexpr(operator.add, "+", array2, array2, "evaluate") | |
assert not result | |
# ok, we only check on first part of expression | |
result = expr._can_use_numexpr(operator.add, "+", array, array2, "evaluate") | |
assert result | |
def test_binary_ops(self, request, opname, op_str, left_fix, right_fix): | |
left = request.getfixturevalue(left_fix) | |
right = request.getfixturevalue(right_fix) | |
def testit(left, right, opname, op_str): | |
if opname == "pow": | |
left = np.abs(left) | |
op = getattr(operator, opname) | |
# array has 0s | |
result = expr.evaluate(op, left, left, use_numexpr=True) | |
expected = expr.evaluate(op, left, left, use_numexpr=False) | |
tm.assert_numpy_array_equal(result, expected) | |
result = expr._can_use_numexpr(op, op_str, right, right, "evaluate") | |
assert not result | |
with option_context("compute.use_numexpr", False): | |
testit(left, right, opname, op_str) | |
expr.set_numexpr_threads(1) | |
testit(left, right, opname, op_str) | |
expr.set_numexpr_threads() | |
testit(left, right, opname, op_str) | |
def test_comparison_ops(self, request, comparison_op, left_fix, right_fix): | |
left = request.getfixturevalue(left_fix) | |
right = request.getfixturevalue(right_fix) | |
def testit(): | |
f12 = left + 1 | |
f22 = right + 1 | |
op = comparison_op | |
result = expr.evaluate(op, left, f12, use_numexpr=True) | |
expected = expr.evaluate(op, left, f12, use_numexpr=False) | |
tm.assert_numpy_array_equal(result, expected) | |
result = expr._can_use_numexpr(op, op, right, f22, "evaluate") | |
assert not result | |
with option_context("compute.use_numexpr", False): | |
testit() | |
expr.set_numexpr_threads(1) | |
testit() | |
expr.set_numexpr_threads() | |
testit() | |
def test_where(self, request, cond, fixture): | |
df = request.getfixturevalue(fixture) | |
def testit(): | |
c = np.empty(df.shape, dtype=np.bool_) | |
c.fill(cond) | |
result = expr.where(c, df.values, df.values + 1) | |
expected = np.where(c, df.values, df.values + 1) | |
tm.assert_numpy_array_equal(result, expected) | |
with option_context("compute.use_numexpr", False): | |
testit() | |
expr.set_numexpr_threads(1) | |
testit() | |
expr.set_numexpr_threads() | |
testit() | |
def test_bool_ops_raise_on_arithmetic(self, op_str, opname): | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).random(10) > 0.5, | |
"b": np.random.default_rng(2).random(10) > 0.5, | |
} | |
) | |
msg = f"operator '{opname}' not implemented for bool dtypes" | |
f = getattr(operator, opname) | |
err_msg = re.escape(msg) | |
with pytest.raises(NotImplementedError, match=err_msg): | |
f(df, df) | |
with pytest.raises(NotImplementedError, match=err_msg): | |
f(df.a, df.b) | |
with pytest.raises(NotImplementedError, match=err_msg): | |
f(df.a, True) | |
with pytest.raises(NotImplementedError, match=err_msg): | |
f(False, df.a) | |
with pytest.raises(NotImplementedError, match=err_msg): | |
f(False, df) | |
with pytest.raises(NotImplementedError, match=err_msg): | |
f(df, True) | |
def test_bool_ops_warn_on_arithmetic(self, op_str, opname): | |
n = 10 | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).random(n) > 0.5, | |
"b": np.random.default_rng(2).random(n) > 0.5, | |
} | |
) | |
subs = {"+": "|", "*": "&", "-": "^"} | |
sub_funcs = {"|": "or_", "&": "and_", "^": "xor"} | |
f = getattr(operator, opname) | |
fe = getattr(operator, sub_funcs[subs[op_str]]) | |
if op_str == "-": | |
# raises TypeError | |
return | |
with tm.use_numexpr(True, min_elements=5): | |
with tm.assert_produces_warning(): | |
r = f(df, df) | |
e = fe(df, df) | |
tm.assert_frame_equal(r, e) | |
with tm.assert_produces_warning(): | |
r = f(df.a, df.b) | |
e = fe(df.a, df.b) | |
tm.assert_series_equal(r, e) | |
with tm.assert_produces_warning(): | |
r = f(df.a, True) | |
e = fe(df.a, True) | |
tm.assert_series_equal(r, e) | |
with tm.assert_produces_warning(): | |
r = f(False, df.a) | |
e = fe(False, df.a) | |
tm.assert_series_equal(r, e) | |
with tm.assert_produces_warning(): | |
r = f(False, df) | |
e = fe(False, df) | |
tm.assert_frame_equal(r, e) | |
with tm.assert_produces_warning(): | |
r = f(df, True) | |
e = fe(df, True) | |
tm.assert_frame_equal(r, e) | |
def test_bool_ops_column_name_dtype(self, test_input, expected): | |
# GH 22383 - .ne fails if columns containing column name 'dtype' | |
result = test_input.loc[:, ["a", "dtype"]].ne(test_input.loc[:, ["a", "dtype"]]) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_series_axis(self, axis, arith, _frame, monkeypatch): | |
# GH#26736 Dataframe.floordiv(Series, axis=1) fails | |
df = _frame | |
if axis == 1: | |
other = df.iloc[0, :] | |
else: | |
other = df.iloc[:, 0] | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", 0) | |
op_func = getattr(df, arith) | |
with option_context("compute.use_numexpr", False): | |
expected = op_func(other, axis=axis) | |
result = op_func(other, axis=axis) | |
tm.assert_frame_equal(expected, result) | |
def test_python_semantics_with_numexpr_installed( | |
self, op, box, scalar, monkeypatch | |
): | |
# https://github.com/pandas-dev/pandas/issues/36047 | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", 0) | |
data = np.arange(-50, 50) | |
obj = box(data) | |
method = getattr(obj, op) | |
result = method(scalar) | |
# compare result with numpy | |
with option_context("compute.use_numexpr", False): | |
expected = method(scalar) | |
tm.assert_equal(result, expected) | |
# compare result element-wise with Python | |
for i, elem in enumerate(data): | |
if box == DataFrame: | |
scalar_result = result.iloc[i, 0] | |
else: | |
scalar_result = result[i] | |
try: | |
expected = getattr(int(elem), op)(scalar) | |
except ZeroDivisionError: | |
pass | |
else: | |
assert scalar_result == expected | |