peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/test_nanops.py
from functools import partial | |
import numpy as np | |
import pytest | |
import pandas.util._test_decorators as td | |
from pandas.core.dtypes.common import is_integer_dtype | |
import pandas as pd | |
from pandas import ( | |
Series, | |
isna, | |
) | |
import pandas._testing as tm | |
from pandas.core import nanops | |
use_bn = nanops._USE_BOTTLENECK | |
def disable_bottleneck(monkeypatch): | |
with monkeypatch.context() as m: | |
m.setattr(nanops, "_USE_BOTTLENECK", False) | |
yield | |
def arr_shape(): | |
return 11, 7 | |
def arr_float(arr_shape): | |
return np.random.default_rng(2).standard_normal(arr_shape) | |
def arr_complex(arr_float): | |
return arr_float + arr_float * 1j | |
def arr_int(arr_shape): | |
return np.random.default_rng(2).integers(-10, 10, arr_shape) | |
def arr_bool(arr_shape): | |
return np.random.default_rng(2).integers(0, 2, arr_shape) == 0 | |
def arr_str(arr_float): | |
return np.abs(arr_float).astype("S") | |
def arr_utf(arr_float): | |
return np.abs(arr_float).astype("U") | |
def arr_date(arr_shape): | |
return np.random.default_rng(2).integers(0, 20000, arr_shape).astype("M8[ns]") | |
def arr_tdelta(arr_shape): | |
return np.random.default_rng(2).integers(0, 20000, arr_shape).astype("m8[ns]") | |
def arr_nan(arr_shape): | |
return np.tile(np.nan, arr_shape) | |
def arr_float_nan(arr_float, arr_nan): | |
return np.vstack([arr_float, arr_nan]) | |
def arr_nan_float1(arr_nan, arr_float): | |
return np.vstack([arr_nan, arr_float]) | |
def arr_nan_nan(arr_nan): | |
return np.vstack([arr_nan, arr_nan]) | |
def arr_inf(arr_float): | |
return arr_float * np.inf | |
def arr_float_inf(arr_float, arr_inf): | |
return np.vstack([arr_float, arr_inf]) | |
def arr_nan_inf(arr_nan, arr_inf): | |
return np.vstack([arr_nan, arr_inf]) | |
def arr_float_nan_inf(arr_float, arr_nan, arr_inf): | |
return np.vstack([arr_float, arr_nan, arr_inf]) | |
def arr_nan_nan_inf(arr_nan, arr_inf): | |
return np.vstack([arr_nan, arr_nan, arr_inf]) | |
def arr_obj( | |
arr_float, arr_int, arr_bool, arr_complex, arr_str, arr_utf, arr_date, arr_tdelta | |
): | |
return np.vstack( | |
[ | |
arr_float.astype("O"), | |
arr_int.astype("O"), | |
arr_bool.astype("O"), | |
arr_complex.astype("O"), | |
arr_str.astype("O"), | |
arr_utf.astype("O"), | |
arr_date.astype("O"), | |
arr_tdelta.astype("O"), | |
] | |
) | |
def arr_nan_nanj(arr_nan): | |
with np.errstate(invalid="ignore"): | |
return arr_nan + arr_nan * 1j | |
def arr_complex_nan(arr_complex, arr_nan_nanj): | |
with np.errstate(invalid="ignore"): | |
return np.vstack([arr_complex, arr_nan_nanj]) | |
def arr_nan_infj(arr_inf): | |
with np.errstate(invalid="ignore"): | |
return arr_inf * 1j | |
def arr_complex_nan_infj(arr_complex, arr_nan_infj): | |
with np.errstate(invalid="ignore"): | |
return np.vstack([arr_complex, arr_nan_infj]) | |
def arr_float_1d(arr_float): | |
return arr_float[:, 0] | |
def arr_nan_1d(arr_nan): | |
return arr_nan[:, 0] | |
def arr_float_nan_1d(arr_float_nan): | |
return arr_float_nan[:, 0] | |
def arr_float1_nan_1d(arr_float1_nan): | |
return arr_float1_nan[:, 0] | |
def arr_nan_float1_1d(arr_nan_float1): | |
return arr_nan_float1[:, 0] | |
class TestnanopsDataFrame: | |
def setup_method(self): | |
nanops._USE_BOTTLENECK = False | |
arr_shape = (11, 7) | |
self.arr_float = np.random.default_rng(2).standard_normal(arr_shape) | |
self.arr_float1 = np.random.default_rng(2).standard_normal(arr_shape) | |
self.arr_complex = self.arr_float + self.arr_float1 * 1j | |
self.arr_int = np.random.default_rng(2).integers(-10, 10, arr_shape) | |
self.arr_bool = np.random.default_rng(2).integers(0, 2, arr_shape) == 0 | |
self.arr_str = np.abs(self.arr_float).astype("S") | |
self.arr_utf = np.abs(self.arr_float).astype("U") | |
self.arr_date = ( | |
np.random.default_rng(2).integers(0, 20000, arr_shape).astype("M8[ns]") | |
) | |
self.arr_tdelta = ( | |
np.random.default_rng(2).integers(0, 20000, arr_shape).astype("m8[ns]") | |
) | |
self.arr_nan = np.tile(np.nan, arr_shape) | |
self.arr_float_nan = np.vstack([self.arr_float, self.arr_nan]) | |
self.arr_float1_nan = np.vstack([self.arr_float1, self.arr_nan]) | |
self.arr_nan_float1 = np.vstack([self.arr_nan, self.arr_float1]) | |
self.arr_nan_nan = np.vstack([self.arr_nan, self.arr_nan]) | |
self.arr_inf = self.arr_float * np.inf | |
self.arr_float_inf = np.vstack([self.arr_float, self.arr_inf]) | |
self.arr_nan_inf = np.vstack([self.arr_nan, self.arr_inf]) | |
self.arr_float_nan_inf = np.vstack([self.arr_float, self.arr_nan, self.arr_inf]) | |
self.arr_nan_nan_inf = np.vstack([self.arr_nan, self.arr_nan, self.arr_inf]) | |
self.arr_obj = np.vstack( | |
[ | |
self.arr_float.astype("O"), | |
self.arr_int.astype("O"), | |
self.arr_bool.astype("O"), | |
self.arr_complex.astype("O"), | |
self.arr_str.astype("O"), | |
self.arr_utf.astype("O"), | |
self.arr_date.astype("O"), | |
self.arr_tdelta.astype("O"), | |
] | |
) | |
with np.errstate(invalid="ignore"): | |
self.arr_nan_nanj = self.arr_nan + self.arr_nan * 1j | |
self.arr_complex_nan = np.vstack([self.arr_complex, self.arr_nan_nanj]) | |
self.arr_nan_infj = self.arr_inf * 1j | |
self.arr_complex_nan_infj = np.vstack([self.arr_complex, self.arr_nan_infj]) | |
self.arr_float_2d = self.arr_float | |
self.arr_float1_2d = self.arr_float1 | |
self.arr_nan_2d = self.arr_nan | |
self.arr_float_nan_2d = self.arr_float_nan | |
self.arr_float1_nan_2d = self.arr_float1_nan | |
self.arr_nan_float1_2d = self.arr_nan_float1 | |
self.arr_float_1d = self.arr_float[:, 0] | |
self.arr_float1_1d = self.arr_float1[:, 0] | |
self.arr_nan_1d = self.arr_nan[:, 0] | |
self.arr_float_nan_1d = self.arr_float_nan[:, 0] | |
self.arr_float1_nan_1d = self.arr_float1_nan[:, 0] | |
self.arr_nan_float1_1d = self.arr_nan_float1[:, 0] | |
def teardown_method(self): | |
nanops._USE_BOTTLENECK = use_bn | |
def check_results(self, targ, res, axis, check_dtype=True): | |
res = getattr(res, "asm8", res) | |
if ( | |
axis != 0 | |
and hasattr(targ, "shape") | |
and targ.ndim | |
and targ.shape != res.shape | |
): | |
res = np.split(res, [targ.shape[0]], axis=0)[0] | |
try: | |
tm.assert_almost_equal(targ, res, check_dtype=check_dtype) | |
except AssertionError: | |
# handle timedelta dtypes | |
if hasattr(targ, "dtype") and targ.dtype == "m8[ns]": | |
raise | |
# There are sometimes rounding errors with | |
# complex and object dtypes. | |
# If it isn't one of those, re-raise the error. | |
if not hasattr(res, "dtype") or res.dtype.kind not in ["c", "O"]: | |
raise | |
# convert object dtypes to something that can be split into | |
# real and imaginary parts | |
if res.dtype.kind == "O": | |
if targ.dtype.kind != "O": | |
res = res.astype(targ.dtype) | |
else: | |
cast_dtype = "c16" if hasattr(np, "complex128") else "f8" | |
res = res.astype(cast_dtype) | |
targ = targ.astype(cast_dtype) | |
# there should never be a case where numpy returns an object | |
# but nanops doesn't, so make that an exception | |
elif targ.dtype.kind == "O": | |
raise | |
tm.assert_almost_equal(np.real(targ), np.real(res), check_dtype=check_dtype) | |
tm.assert_almost_equal(np.imag(targ), np.imag(res), check_dtype=check_dtype) | |
def check_fun_data( | |
self, | |
testfunc, | |
targfunc, | |
testarval, | |
targarval, | |
skipna, | |
check_dtype=True, | |
empty_targfunc=None, | |
**kwargs, | |
): | |
for axis in list(range(targarval.ndim)) + [None]: | |
targartempval = targarval if skipna else testarval | |
if skipna and empty_targfunc and isna(targartempval).all(): | |
targ = empty_targfunc(targartempval, axis=axis, **kwargs) | |
else: | |
targ = targfunc(targartempval, axis=axis, **kwargs) | |
if targartempval.dtype == object and ( | |
targfunc is np.any or targfunc is np.all | |
): | |
# GH#12863 the numpy functions will retain e.g. floatiness | |
if isinstance(targ, np.ndarray): | |
targ = targ.astype(bool) | |
else: | |
targ = bool(targ) | |
res = testfunc(testarval, axis=axis, skipna=skipna, **kwargs) | |
if ( | |
isinstance(targ, np.complex128) | |
and isinstance(res, float) | |
and np.isnan(targ) | |
and np.isnan(res) | |
): | |
# GH#18463 | |
targ = res | |
self.check_results(targ, res, axis, check_dtype=check_dtype) | |
if skipna: | |
res = testfunc(testarval, axis=axis, **kwargs) | |
self.check_results(targ, res, axis, check_dtype=check_dtype) | |
if axis is None: | |
res = testfunc(testarval, skipna=skipna, **kwargs) | |
self.check_results(targ, res, axis, check_dtype=check_dtype) | |
if skipna and axis is None: | |
res = testfunc(testarval, **kwargs) | |
self.check_results(targ, res, axis, check_dtype=check_dtype) | |
if testarval.ndim <= 1: | |
return | |
# Recurse on lower-dimension | |
testarval2 = np.take(testarval, 0, axis=-1) | |
targarval2 = np.take(targarval, 0, axis=-1) | |
self.check_fun_data( | |
testfunc, | |
targfunc, | |
testarval2, | |
targarval2, | |
skipna=skipna, | |
check_dtype=check_dtype, | |
empty_targfunc=empty_targfunc, | |
**kwargs, | |
) | |
def check_fun( | |
self, testfunc, targfunc, testar, skipna, empty_targfunc=None, **kwargs | |
): | |
targar = testar | |
if testar.endswith("_nan") and hasattr(self, testar[:-4]): | |
targar = testar[:-4] | |
testarval = getattr(self, testar) | |
targarval = getattr(self, targar) | |
self.check_fun_data( | |
testfunc, | |
targfunc, | |
testarval, | |
targarval, | |
skipna=skipna, | |
empty_targfunc=empty_targfunc, | |
**kwargs, | |
) | |
def check_funs( | |
self, | |
testfunc, | |
targfunc, | |
skipna, | |
allow_complex=True, | |
allow_all_nan=True, | |
allow_date=True, | |
allow_tdelta=True, | |
allow_obj=True, | |
**kwargs, | |
): | |
self.check_fun(testfunc, targfunc, "arr_float", skipna, **kwargs) | |
self.check_fun(testfunc, targfunc, "arr_float_nan", skipna, **kwargs) | |
self.check_fun(testfunc, targfunc, "arr_int", skipna, **kwargs) | |
self.check_fun(testfunc, targfunc, "arr_bool", skipna, **kwargs) | |
objs = [ | |
self.arr_float.astype("O"), | |
self.arr_int.astype("O"), | |
self.arr_bool.astype("O"), | |
] | |
if allow_all_nan: | |
self.check_fun(testfunc, targfunc, "arr_nan", skipna, **kwargs) | |
if allow_complex: | |
self.check_fun(testfunc, targfunc, "arr_complex", skipna, **kwargs) | |
self.check_fun(testfunc, targfunc, "arr_complex_nan", skipna, **kwargs) | |
if allow_all_nan: | |
self.check_fun(testfunc, targfunc, "arr_nan_nanj", skipna, **kwargs) | |
objs += [self.arr_complex.astype("O")] | |
if allow_date: | |
targfunc(self.arr_date) | |
self.check_fun(testfunc, targfunc, "arr_date", skipna, **kwargs) | |
objs += [self.arr_date.astype("O")] | |
if allow_tdelta: | |
try: | |
targfunc(self.arr_tdelta) | |
except TypeError: | |
pass | |
else: | |
self.check_fun(testfunc, targfunc, "arr_tdelta", skipna, **kwargs) | |
objs += [self.arr_tdelta.astype("O")] | |
if allow_obj: | |
self.arr_obj = np.vstack(objs) | |
# some nanops handle object dtypes better than their numpy | |
# counterparts, so the numpy functions need to be given something | |
# else | |
if allow_obj == "convert": | |
targfunc = partial( | |
self._badobj_wrap, func=targfunc, allow_complex=allow_complex | |
) | |
self.check_fun(testfunc, targfunc, "arr_obj", skipna, **kwargs) | |
def _badobj_wrap(self, value, func, allow_complex=True, **kwargs): | |
if value.dtype.kind == "O": | |
if allow_complex: | |
value = value.astype("c16") | |
else: | |
value = value.astype("f8") | |
return func(value, **kwargs) | |
def test_nan_funcs(self, nan_op, np_op, skipna): | |
self.check_funs(nan_op, np_op, skipna, allow_all_nan=False, allow_date=False) | |
def test_nansum(self, skipna): | |
self.check_funs( | |
nanops.nansum, | |
np.sum, | |
skipna, | |
allow_date=False, | |
check_dtype=False, | |
empty_targfunc=np.nansum, | |
) | |
def test_nanmean(self, skipna): | |
self.check_funs( | |
nanops.nanmean, np.mean, skipna, allow_obj=False, allow_date=False | |
) | |
def test_nanmedian(self, skipna): | |
self.check_funs( | |
nanops.nanmedian, | |
np.median, | |
skipna, | |
allow_complex=False, | |
allow_date=False, | |
allow_obj="convert", | |
) | |
def test_nanvar(self, ddof, skipna): | |
self.check_funs( | |
nanops.nanvar, | |
np.var, | |
skipna, | |
allow_complex=False, | |
allow_date=False, | |
allow_obj="convert", | |
ddof=ddof, | |
) | |
def test_nanstd(self, ddof, skipna): | |
self.check_funs( | |
nanops.nanstd, | |
np.std, | |
skipna, | |
allow_complex=False, | |
allow_date=False, | |
allow_obj="convert", | |
ddof=ddof, | |
) | |
def test_nansem(self, ddof, skipna): | |
sp_stats = pytest.importorskip("scipy.stats") | |
with np.errstate(invalid="ignore"): | |
self.check_funs( | |
nanops.nansem, | |
sp_stats.sem, | |
skipna, | |
allow_complex=False, | |
allow_date=False, | |
allow_tdelta=False, | |
allow_obj="convert", | |
ddof=ddof, | |
) | |
def test_nanops_with_warnings(self, nan_op, np_op, skipna): | |
self.check_funs(nan_op, np_op, skipna, allow_obj=False) | |
def _argminmax_wrap(self, value, axis=None, func=None): | |
res = func(value, axis) | |
nans = np.min(value, axis) | |
nullnan = isna(nans) | |
if res.ndim: | |
res[nullnan] = -1 | |
elif ( | |
hasattr(nullnan, "all") | |
and nullnan.all() | |
or not hasattr(nullnan, "all") | |
and nullnan | |
): | |
res = -1 | |
return res | |
def test_nanargmax(self, skipna): | |
func = partial(self._argminmax_wrap, func=np.argmax) | |
self.check_funs(nanops.nanargmax, func, skipna, allow_obj=False) | |
def test_nanargmin(self, skipna): | |
func = partial(self._argminmax_wrap, func=np.argmin) | |
self.check_funs(nanops.nanargmin, func, skipna, allow_obj=False) | |
def _skew_kurt_wrap(self, values, axis=None, func=None): | |
if not isinstance(values.dtype.type, np.floating): | |
values = values.astype("f8") | |
result = func(values, axis=axis, bias=False) | |
# fix for handling cases where all elements in an axis are the same | |
if isinstance(result, np.ndarray): | |
result[np.max(values, axis=axis) == np.min(values, axis=axis)] = 0 | |
return result | |
elif np.max(values) == np.min(values): | |
return 0.0 | |
return result | |
def test_nanskew(self, skipna): | |
sp_stats = pytest.importorskip("scipy.stats") | |
func = partial(self._skew_kurt_wrap, func=sp_stats.skew) | |
with np.errstate(invalid="ignore"): | |
self.check_funs( | |
nanops.nanskew, | |
func, | |
skipna, | |
allow_complex=False, | |
allow_date=False, | |
allow_tdelta=False, | |
) | |
def test_nankurt(self, skipna): | |
sp_stats = pytest.importorskip("scipy.stats") | |
func1 = partial(sp_stats.kurtosis, fisher=True) | |
func = partial(self._skew_kurt_wrap, func=func1) | |
with np.errstate(invalid="ignore"): | |
self.check_funs( | |
nanops.nankurt, | |
func, | |
skipna, | |
allow_complex=False, | |
allow_date=False, | |
allow_tdelta=False, | |
) | |
def test_nanprod(self, skipna): | |
self.check_funs( | |
nanops.nanprod, | |
np.prod, | |
skipna, | |
allow_date=False, | |
allow_tdelta=False, | |
empty_targfunc=np.nanprod, | |
) | |
def check_nancorr_nancov_2d(self, checkfun, targ0, targ1, **kwargs): | |
res00 = checkfun(self.arr_float_2d, self.arr_float1_2d, **kwargs) | |
res01 = checkfun( | |
self.arr_float_2d, | |
self.arr_float1_2d, | |
min_periods=len(self.arr_float_2d) - 1, | |
**kwargs, | |
) | |
tm.assert_almost_equal(targ0, res00) | |
tm.assert_almost_equal(targ0, res01) | |
res10 = checkfun(self.arr_float_nan_2d, self.arr_float1_nan_2d, **kwargs) | |
res11 = checkfun( | |
self.arr_float_nan_2d, | |
self.arr_float1_nan_2d, | |
min_periods=len(self.arr_float_2d) - 1, | |
**kwargs, | |
) | |
tm.assert_almost_equal(targ1, res10) | |
tm.assert_almost_equal(targ1, res11) | |
targ2 = np.nan | |
res20 = checkfun(self.arr_nan_2d, self.arr_float1_2d, **kwargs) | |
res21 = checkfun(self.arr_float_2d, self.arr_nan_2d, **kwargs) | |
res22 = checkfun(self.arr_nan_2d, self.arr_nan_2d, **kwargs) | |
res23 = checkfun(self.arr_float_nan_2d, self.arr_nan_float1_2d, **kwargs) | |
res24 = checkfun( | |
self.arr_float_nan_2d, | |
self.arr_nan_float1_2d, | |
min_periods=len(self.arr_float_2d) - 1, | |
**kwargs, | |
) | |
res25 = checkfun( | |
self.arr_float_2d, | |
self.arr_float1_2d, | |
min_periods=len(self.arr_float_2d) + 1, | |
**kwargs, | |
) | |
tm.assert_almost_equal(targ2, res20) | |
tm.assert_almost_equal(targ2, res21) | |
tm.assert_almost_equal(targ2, res22) | |
tm.assert_almost_equal(targ2, res23) | |
tm.assert_almost_equal(targ2, res24) | |
tm.assert_almost_equal(targ2, res25) | |
def check_nancorr_nancov_1d(self, checkfun, targ0, targ1, **kwargs): | |
res00 = checkfun(self.arr_float_1d, self.arr_float1_1d, **kwargs) | |
res01 = checkfun( | |
self.arr_float_1d, | |
self.arr_float1_1d, | |
min_periods=len(self.arr_float_1d) - 1, | |
**kwargs, | |
) | |
tm.assert_almost_equal(targ0, res00) | |
tm.assert_almost_equal(targ0, res01) | |
res10 = checkfun(self.arr_float_nan_1d, self.arr_float1_nan_1d, **kwargs) | |
res11 = checkfun( | |
self.arr_float_nan_1d, | |
self.arr_float1_nan_1d, | |
min_periods=len(self.arr_float_1d) - 1, | |
**kwargs, | |
) | |
tm.assert_almost_equal(targ1, res10) | |
tm.assert_almost_equal(targ1, res11) | |
targ2 = np.nan | |
res20 = checkfun(self.arr_nan_1d, self.arr_float1_1d, **kwargs) | |
res21 = checkfun(self.arr_float_1d, self.arr_nan_1d, **kwargs) | |
res22 = checkfun(self.arr_nan_1d, self.arr_nan_1d, **kwargs) | |
res23 = checkfun(self.arr_float_nan_1d, self.arr_nan_float1_1d, **kwargs) | |
res24 = checkfun( | |
self.arr_float_nan_1d, | |
self.arr_nan_float1_1d, | |
min_periods=len(self.arr_float_1d) - 1, | |
**kwargs, | |
) | |
res25 = checkfun( | |
self.arr_float_1d, | |
self.arr_float1_1d, | |
min_periods=len(self.arr_float_1d) + 1, | |
**kwargs, | |
) | |
tm.assert_almost_equal(targ2, res20) | |
tm.assert_almost_equal(targ2, res21) | |
tm.assert_almost_equal(targ2, res22) | |
tm.assert_almost_equal(targ2, res23) | |
tm.assert_almost_equal(targ2, res24) | |
tm.assert_almost_equal(targ2, res25) | |
def test_nancorr(self): | |
targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] | |
targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] | |
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1) | |
targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] | |
targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] | |
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="pearson") | |
def test_nancorr_pearson(self): | |
targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] | |
targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] | |
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method="pearson") | |
targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] | |
targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] | |
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="pearson") | |
def test_nancorr_kendall(self): | |
sp_stats = pytest.importorskip("scipy.stats") | |
targ0 = sp_stats.kendalltau(self.arr_float_2d, self.arr_float1_2d)[0] | |
targ1 = sp_stats.kendalltau(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] | |
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method="kendall") | |
targ0 = sp_stats.kendalltau(self.arr_float_1d, self.arr_float1_1d)[0] | |
targ1 = sp_stats.kendalltau(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] | |
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="kendall") | |
def test_nancorr_spearman(self): | |
sp_stats = pytest.importorskip("scipy.stats") | |
targ0 = sp_stats.spearmanr(self.arr_float_2d, self.arr_float1_2d)[0] | |
targ1 = sp_stats.spearmanr(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] | |
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method="spearman") | |
targ0 = sp_stats.spearmanr(self.arr_float_1d, self.arr_float1_1d)[0] | |
targ1 = sp_stats.spearmanr(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] | |
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="spearman") | |
def test_invalid_method(self): | |
pytest.importorskip("scipy") | |
targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] | |
targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] | |
msg = "Unknown method 'foo', expected one of 'kendall', 'spearman'" | |
with pytest.raises(ValueError, match=msg): | |
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="foo") | |
def test_nancov(self): | |
targ0 = np.cov(self.arr_float_2d, self.arr_float1_2d)[0, 1] | |
targ1 = np.cov(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] | |
self.check_nancorr_nancov_2d(nanops.nancov, targ0, targ1) | |
targ0 = np.cov(self.arr_float_1d, self.arr_float1_1d)[0, 1] | |
targ1 = np.cov(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] | |
self.check_nancorr_nancov_1d(nanops.nancov, targ0, targ1) | |
def test_has_infs_non_float(request, arr, correct, disable_bottleneck): | |
val = request.getfixturevalue(arr) | |
while getattr(val, "ndim", True): | |
res0 = nanops._has_infs(val) | |
if correct: | |
assert res0 | |
else: | |
assert not res0 | |
if not hasattr(val, "ndim"): | |
break | |
# Reduce dimension for next step in the loop | |
val = np.take(val, 0, axis=-1) | |
def test_has_infs_floats(request, arr, correct, astype, disable_bottleneck): | |
val = request.getfixturevalue(arr) | |
if astype is not None: | |
val = val.astype(astype) | |
while getattr(val, "ndim", True): | |
res0 = nanops._has_infs(val) | |
if correct: | |
assert res0 | |
else: | |
assert not res0 | |
if not hasattr(val, "ndim"): | |
break | |
# Reduce dimension for next step in the loop | |
val = np.take(val, 0, axis=-1) | |
def test_bn_ok_dtype(fixture, request, disable_bottleneck): | |
obj = request.getfixturevalue(fixture) | |
assert nanops._bn_ok_dtype(obj.dtype, "test") | |
def test_bn_not_ok_dtype(fixture, request, disable_bottleneck): | |
obj = request.getfixturevalue(fixture) | |
assert not nanops._bn_ok_dtype(obj.dtype, "test") | |
class TestEnsureNumeric: | |
def test_numeric_values(self): | |
# Test integer | |
assert nanops._ensure_numeric(1) == 1 | |
# Test float | |
assert nanops._ensure_numeric(1.1) == 1.1 | |
# Test complex | |
assert nanops._ensure_numeric(1 + 2j) == 1 + 2j | |
def test_ndarray(self): | |
# Test numeric ndarray | |
values = np.array([1, 2, 3]) | |
assert np.allclose(nanops._ensure_numeric(values), values) | |
# Test object ndarray | |
o_values = values.astype(object) | |
assert np.allclose(nanops._ensure_numeric(o_values), values) | |
# Test convertible string ndarray | |
s_values = np.array(["1", "2", "3"], dtype=object) | |
msg = r"Could not convert \['1' '2' '3'\] to numeric" | |
with pytest.raises(TypeError, match=msg): | |
nanops._ensure_numeric(s_values) | |
# Test non-convertible string ndarray | |
s_values = np.array(["foo", "bar", "baz"], dtype=object) | |
msg = r"Could not convert .* to numeric" | |
with pytest.raises(TypeError, match=msg): | |
nanops._ensure_numeric(s_values) | |
def test_convertable_values(self): | |
with pytest.raises(TypeError, match="Could not convert string '1' to numeric"): | |
nanops._ensure_numeric("1") | |
with pytest.raises( | |
TypeError, match="Could not convert string '1.1' to numeric" | |
): | |
nanops._ensure_numeric("1.1") | |
with pytest.raises( | |
TypeError, match=r"Could not convert string '1\+1j' to numeric" | |
): | |
nanops._ensure_numeric("1+1j") | |
def test_non_convertable_values(self): | |
msg = "Could not convert string 'foo' to numeric" | |
with pytest.raises(TypeError, match=msg): | |
nanops._ensure_numeric("foo") | |
# with the wrong type, python raises TypeError for us | |
msg = "argument must be a string or a number" | |
with pytest.raises(TypeError, match=msg): | |
nanops._ensure_numeric({}) | |
with pytest.raises(TypeError, match=msg): | |
nanops._ensure_numeric([]) | |
class TestNanvarFixedValues: | |
# xref GH10242 | |
# Samples from a normal distribution. | |
def variance(self): | |
return 3.0 | |
def samples(self, variance): | |
return self.prng.normal(scale=variance**0.5, size=100000) | |
def test_nanvar_all_finite(self, samples, variance): | |
actual_variance = nanops.nanvar(samples) | |
tm.assert_almost_equal(actual_variance, variance, rtol=1e-2) | |
def test_nanvar_nans(self, samples, variance): | |
samples_test = np.nan * np.ones(2 * samples.shape[0]) | |
samples_test[::2] = samples | |
actual_variance = nanops.nanvar(samples_test, skipna=True) | |
tm.assert_almost_equal(actual_variance, variance, rtol=1e-2) | |
actual_variance = nanops.nanvar(samples_test, skipna=False) | |
tm.assert_almost_equal(actual_variance, np.nan, rtol=1e-2) | |
def test_nanstd_nans(self, samples, variance): | |
samples_test = np.nan * np.ones(2 * samples.shape[0]) | |
samples_test[::2] = samples | |
actual_std = nanops.nanstd(samples_test, skipna=True) | |
tm.assert_almost_equal(actual_std, variance**0.5, rtol=1e-2) | |
actual_std = nanops.nanvar(samples_test, skipna=False) | |
tm.assert_almost_equal(actual_std, np.nan, rtol=1e-2) | |
def test_nanvar_axis(self, samples, variance): | |
# Generate some sample data. | |
samples_unif = self.prng.uniform(size=samples.shape[0]) | |
samples = np.vstack([samples, samples_unif]) | |
actual_variance = nanops.nanvar(samples, axis=1) | |
tm.assert_almost_equal( | |
actual_variance, np.array([variance, 1.0 / 12]), rtol=1e-2 | |
) | |
def test_nanvar_ddof(self): | |
n = 5 | |
samples = self.prng.uniform(size=(10000, n + 1)) | |
samples[:, -1] = np.nan # Force use of our own algorithm. | |
variance_0 = nanops.nanvar(samples, axis=1, skipna=True, ddof=0).mean() | |
variance_1 = nanops.nanvar(samples, axis=1, skipna=True, ddof=1).mean() | |
variance_2 = nanops.nanvar(samples, axis=1, skipna=True, ddof=2).mean() | |
# The unbiased estimate. | |
var = 1.0 / 12 | |
tm.assert_almost_equal(variance_1, var, rtol=1e-2) | |
# The underestimated variance. | |
tm.assert_almost_equal(variance_0, (n - 1.0) / n * var, rtol=1e-2) | |
# The overestimated variance. | |
tm.assert_almost_equal(variance_2, (n - 1.0) / (n - 2.0) * var, rtol=1e-2) | |
def test_ground_truth(self, axis, ddof): | |
# Test against values that were precomputed with Numpy. | |
samples = np.empty((4, 4)) | |
samples[:3, :3] = np.array( | |
[ | |
[0.97303362, 0.21869576, 0.55560287], | |
[0.72980153, 0.03109364, 0.99155171], | |
[0.09317602, 0.60078248, 0.15871292], | |
] | |
) | |
samples[3] = samples[:, 3] = np.nan | |
# Actual variances along axis=0, 1 for ddof=0, 1, 2 | |
variance = np.array( | |
[ | |
[ | |
[0.13762259, 0.05619224, 0.11568816], | |
[0.20643388, 0.08428837, 0.17353224], | |
[0.41286776, 0.16857673, 0.34706449], | |
], | |
[ | |
[0.09519783, 0.16435395, 0.05082054], | |
[0.14279674, 0.24653093, 0.07623082], | |
[0.28559348, 0.49306186, 0.15246163], | |
], | |
] | |
) | |
# Test nanvar. | |
var = nanops.nanvar(samples, skipna=True, axis=axis, ddof=ddof) | |
tm.assert_almost_equal(var[:3], variance[axis, ddof]) | |
assert np.isnan(var[3]) | |
# Test nanstd. | |
std = nanops.nanstd(samples, skipna=True, axis=axis, ddof=ddof) | |
tm.assert_almost_equal(std[:3], variance[axis, ddof] ** 0.5) | |
assert np.isnan(std[3]) | |
def test_nanstd_roundoff(self, ddof): | |
# Regression test for GH 10242 (test data taken from GH 10489). Ensure | |
# that variance is stable. | |
data = Series(766897346 * np.ones(10)) | |
result = data.std(ddof=ddof) | |
assert result == 0.0 | |
def prng(self): | |
return np.random.default_rng(2) | |
class TestNanskewFixedValues: | |
# xref GH 11974 | |
# Test data + skewness value (computed with scipy.stats.skew) | |
def samples(self): | |
return np.sin(np.linspace(0, 1, 200)) | |
def actual_skew(self): | |
return -0.1875895205961754 | |
def test_constant_series(self, val): | |
# xref GH 11974 | |
data = val * np.ones(300) | |
skew = nanops.nanskew(data) | |
assert skew == 0.0 | |
def test_all_finite(self): | |
alpha, beta = 0.3, 0.1 | |
left_tailed = self.prng.beta(alpha, beta, size=100) | |
assert nanops.nanskew(left_tailed) < 0 | |
alpha, beta = 0.1, 0.3 | |
right_tailed = self.prng.beta(alpha, beta, size=100) | |
assert nanops.nanskew(right_tailed) > 0 | |
def test_ground_truth(self, samples, actual_skew): | |
skew = nanops.nanskew(samples) | |
tm.assert_almost_equal(skew, actual_skew) | |
def test_axis(self, samples, actual_skew): | |
samples = np.vstack([samples, np.nan * np.ones(len(samples))]) | |
skew = nanops.nanskew(samples, axis=1) | |
tm.assert_almost_equal(skew, np.array([actual_skew, np.nan])) | |
def test_nans(self, samples): | |
samples = np.hstack([samples, np.nan]) | |
skew = nanops.nanskew(samples, skipna=False) | |
assert np.isnan(skew) | |
def test_nans_skipna(self, samples, actual_skew): | |
samples = np.hstack([samples, np.nan]) | |
skew = nanops.nanskew(samples, skipna=True) | |
tm.assert_almost_equal(skew, actual_skew) | |
def prng(self): | |
return np.random.default_rng(2) | |
class TestNankurtFixedValues: | |
# xref GH 11974 | |
# Test data + kurtosis value (computed with scipy.stats.kurtosis) | |
def samples(self): | |
return np.sin(np.linspace(0, 1, 200)) | |
def actual_kurt(self): | |
return -1.2058303433799713 | |
def test_constant_series(self, val): | |
# xref GH 11974 | |
data = val * np.ones(300) | |
kurt = nanops.nankurt(data) | |
assert kurt == 0.0 | |
def test_all_finite(self): | |
alpha, beta = 0.3, 0.1 | |
left_tailed = self.prng.beta(alpha, beta, size=100) | |
assert nanops.nankurt(left_tailed) < 2 | |
alpha, beta = 0.1, 0.3 | |
right_tailed = self.prng.beta(alpha, beta, size=100) | |
assert nanops.nankurt(right_tailed) < 0 | |
def test_ground_truth(self, samples, actual_kurt): | |
kurt = nanops.nankurt(samples) | |
tm.assert_almost_equal(kurt, actual_kurt) | |
def test_axis(self, samples, actual_kurt): | |
samples = np.vstack([samples, np.nan * np.ones(len(samples))]) | |
kurt = nanops.nankurt(samples, axis=1) | |
tm.assert_almost_equal(kurt, np.array([actual_kurt, np.nan])) | |
def test_nans(self, samples): | |
samples = np.hstack([samples, np.nan]) | |
kurt = nanops.nankurt(samples, skipna=False) | |
assert np.isnan(kurt) | |
def test_nans_skipna(self, samples, actual_kurt): | |
samples = np.hstack([samples, np.nan]) | |
kurt = nanops.nankurt(samples, skipna=True) | |
tm.assert_almost_equal(kurt, actual_kurt) | |
def prng(self): | |
return np.random.default_rng(2) | |
class TestDatetime64NaNOps: | |
def unit(self, request): | |
return request.param | |
# Enabling mean changes the behavior of DataFrame.mean | |
# See https://github.com/pandas-dev/pandas/issues/24752 | |
def test_nanmean(self, unit): | |
dti = pd.date_range("2016-01-01", periods=3).as_unit(unit) | |
expected = dti[1] | |
for obj in [dti, dti._data]: | |
result = nanops.nanmean(obj) | |
assert result == expected | |
dti2 = dti.insert(1, pd.NaT) | |
for obj in [dti2, dti2._data]: | |
result = nanops.nanmean(obj) | |
assert result == expected | |
def test_nanmean_skipna_false(self, constructor, unit): | |
dtype = f"{constructor}[{unit}]" | |
arr = np.arange(12).astype(np.int64).view(dtype).reshape(4, 3) | |
arr[-1, -1] = "NaT" | |
result = nanops.nanmean(arr, skipna=False) | |
assert np.isnat(result) | |
assert result.dtype == dtype | |
result = nanops.nanmean(arr, axis=0, skipna=False) | |
expected = np.array([4, 5, "NaT"], dtype=arr.dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
result = nanops.nanmean(arr, axis=1, skipna=False) | |
expected = np.array([arr[0, 1], arr[1, 1], arr[2, 1], arr[-1, -1]]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_use_bottleneck(): | |
if nanops._BOTTLENECK_INSTALLED: | |
with pd.option_context("use_bottleneck", True): | |
assert pd.get_option("use_bottleneck") | |
with pd.option_context("use_bottleneck", False): | |
assert not pd.get_option("use_bottleneck") | |
def test_numpy_ops(numpy_op, expected): | |
# GH8383 | |
result = numpy_op(Series([1, 2, 3, 4])) | |
assert result == expected | |
def test_nanops_independent_of_mask_param(operation): | |
# GH22764 | |
ser = Series([1, 2, np.nan, 3, np.nan, 4]) | |
mask = ser.isna() | |
median_expected = operation(ser._values) | |
median_result = operation(ser._values, mask=mask) | |
assert median_expected == median_result | |
def test_check_below_min_count_negative_or_zero_min_count(min_count): | |
# GH35227 | |
result = nanops.check_below_min_count((21, 37), None, min_count) | |
expected_result = False | |
assert result == expected_result | |
def test_check_below_min_count_positive_min_count(mask, min_count, expected_result): | |
# GH35227 | |
shape = (10, 10) | |
result = nanops.check_below_min_count(shape, mask, min_count) | |
assert result == expected_result | |
def test_check_below_min_count_large_shape(min_count, expected_result): | |
# GH35227 large shape used to show that the issue is fixed | |
shape = (2244367, 1253) | |
result = nanops.check_below_min_count(shape, mask=None, min_count=min_count) | |
assert result == expected_result | |
def test_check_bottleneck_disallow(any_real_numpy_dtype, func): | |
# GH 42878 bottleneck sometimes produces unreliable results for mean and sum | |
assert not nanops._bn_ok_dtype(np.dtype(any_real_numpy_dtype).type, func) | |
def test_nanmean_overflow(disable_bottleneck, val): | |
# GH 10155 | |
# In the previous implementation mean can overflow for int dtypes, it | |
# is now consistent with numpy | |
ser = Series(val, index=range(500), dtype=np.int64) | |
result = ser.mean() | |
np_result = ser.values.mean() | |
assert result == val | |
assert result == np_result | |
assert result.dtype == np.float64 | |
def test_returned_dtype(disable_bottleneck, dtype, method): | |
if dtype is None: | |
pytest.skip("np.float128 not available") | |
ser = Series(range(10), dtype=dtype) | |
result = getattr(ser, method)() | |
if is_integer_dtype(dtype) and method not in ["min", "max"]: | |
assert result.dtype == np.float64 | |
else: | |
assert result.dtype == dtype | |