peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/window
/test_apply.py
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
Timestamp, | |
concat, | |
date_range, | |
isna, | |
notna, | |
) | |
import pandas._testing as tm | |
from pandas.tseries import offsets | |
# suppress warnings about empty slices, as we are deliberately testing | |
# with a 0-length Series | |
pytestmark = pytest.mark.filterwarnings( | |
"ignore:.*(empty slice|0 for slice).*:RuntimeWarning" | |
) | |
def f(x): | |
return x[np.isfinite(x)].mean() | |
def test_rolling_apply_invalid_raw(bad_raw): | |
with pytest.raises(ValueError, match="raw parameter must be `True` or `False`"): | |
Series(range(3)).rolling(1).apply(len, raw=bad_raw) | |
def test_rolling_apply_out_of_bounds(engine_and_raw): | |
# gh-1850 | |
engine, raw = engine_and_raw | |
vals = Series([1, 2, 3, 4]) | |
result = vals.rolling(10).apply(np.sum, engine=engine, raw=raw) | |
assert result.isna().all() | |
result = vals.rolling(10, min_periods=1).apply(np.sum, engine=engine, raw=raw) | |
expected = Series([1, 3, 6, 10], dtype=float) | |
tm.assert_almost_equal(result, expected) | |
def test_rolling_apply_with_pandas_objects(window): | |
# 5071 | |
df = DataFrame( | |
{ | |
"A": np.random.default_rng(2).standard_normal(5), | |
"B": np.random.default_rng(2).integers(0, 10, size=5), | |
}, | |
index=date_range("20130101", periods=5, freq="s"), | |
) | |
# we have an equal spaced timeseries index | |
# so simulate removing the first period | |
def f(x): | |
if x.index[0] == df.index[0]: | |
return np.nan | |
return x.iloc[-1] | |
result = df.rolling(window).apply(f, raw=False) | |
expected = df.iloc[2:].reindex_like(df) | |
tm.assert_frame_equal(result, expected) | |
with tm.external_error_raised(AttributeError): | |
df.rolling(window).apply(f, raw=True) | |
def test_rolling_apply(engine_and_raw, step): | |
engine, raw = engine_and_raw | |
expected = Series([], dtype="float64") | |
result = expected.rolling(10, step=step).apply( | |
lambda x: x.mean(), engine=engine, raw=raw | |
) | |
tm.assert_series_equal(result, expected) | |
# gh-8080 | |
s = Series([None, None, None]) | |
result = s.rolling(2, min_periods=0, step=step).apply( | |
lambda x: len(x), engine=engine, raw=raw | |
) | |
expected = Series([1.0, 2.0, 2.0])[::step] | |
tm.assert_series_equal(result, expected) | |
result = s.rolling(2, min_periods=0, step=step).apply(len, engine=engine, raw=raw) | |
tm.assert_series_equal(result, expected) | |
def test_all_apply(engine_and_raw): | |
engine, raw = engine_and_raw | |
df = ( | |
DataFrame( | |
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} | |
).set_index("A") | |
* 2 | |
) | |
er = df.rolling(window=1) | |
r = df.rolling(window="1s") | |
result = r.apply(lambda x: 1, engine=engine, raw=raw) | |
expected = er.apply(lambda x: 1, engine=engine, raw=raw) | |
tm.assert_frame_equal(result, expected) | |
def test_ragged_apply(engine_and_raw): | |
engine, raw = engine_and_raw | |
df = DataFrame({"B": range(5)}) | |
df.index = [ | |
Timestamp("20130101 09:00:00"), | |
Timestamp("20130101 09:00:02"), | |
Timestamp("20130101 09:00:03"), | |
Timestamp("20130101 09:00:05"), | |
Timestamp("20130101 09:00:06"), | |
] | |
f = lambda x: 1 | |
result = df.rolling(window="1s", min_periods=1).apply(f, engine=engine, raw=raw) | |
expected = df.copy() | |
expected["B"] = 1.0 | |
tm.assert_frame_equal(result, expected) | |
result = df.rolling(window="2s", min_periods=1).apply(f, engine=engine, raw=raw) | |
expected = df.copy() | |
expected["B"] = 1.0 | |
tm.assert_frame_equal(result, expected) | |
result = df.rolling(window="5s", min_periods=1).apply(f, engine=engine, raw=raw) | |
expected = df.copy() | |
expected["B"] = 1.0 | |
tm.assert_frame_equal(result, expected) | |
def test_invalid_engine(): | |
with pytest.raises(ValueError, match="engine must be either 'numba' or 'cython'"): | |
Series(range(1)).rolling(1).apply(lambda x: x, engine="foo") | |
def test_invalid_engine_kwargs_cython(): | |
with pytest.raises(ValueError, match="cython engine does not accept engine_kwargs"): | |
Series(range(1)).rolling(1).apply( | |
lambda x: x, engine="cython", engine_kwargs={"nopython": False} | |
) | |
def test_invalid_raw_numba(): | |
with pytest.raises( | |
ValueError, match="raw must be `True` when using the numba engine" | |
): | |
Series(range(1)).rolling(1).apply(lambda x: x, raw=False, engine="numba") | |
def test_rolling_apply_args_kwargs(args_kwargs): | |
# GH 33433 | |
def numpysum(x, par): | |
return np.sum(x + par) | |
df = DataFrame({"gr": [1, 1], "a": [1, 2]}) | |
idx = Index(["gr", "a"]) | |
expected = DataFrame([[11.0, 11.0], [11.0, 12.0]], columns=idx) | |
result = df.rolling(1).apply(numpysum, args=args_kwargs[0], kwargs=args_kwargs[1]) | |
tm.assert_frame_equal(result, expected) | |
midx = MultiIndex.from_tuples([(1, 0), (1, 1)], names=["gr", None]) | |
expected = Series([11.0, 12.0], index=midx, name="a") | |
gb_rolling = df.groupby("gr")["a"].rolling(1) | |
result = gb_rolling.apply(numpysum, args=args_kwargs[0], kwargs=args_kwargs[1]) | |
tm.assert_series_equal(result, expected) | |
def test_nans(raw): | |
obj = Series(np.random.default_rng(2).standard_normal(50)) | |
obj[:10] = np.nan | |
obj[-10:] = np.nan | |
result = obj.rolling(50, min_periods=30).apply(f, raw=raw) | |
tm.assert_almost_equal(result.iloc[-1], np.mean(obj[10:-10])) | |
# min_periods is working correctly | |
result = obj.rolling(20, min_periods=15).apply(f, raw=raw) | |
assert isna(result.iloc[23]) | |
assert not isna(result.iloc[24]) | |
assert not isna(result.iloc[-6]) | |
assert isna(result.iloc[-5]) | |
obj2 = Series(np.random.default_rng(2).standard_normal(20)) | |
result = obj2.rolling(10, min_periods=5).apply(f, raw=raw) | |
assert isna(result.iloc[3]) | |
assert notna(result.iloc[4]) | |
result0 = obj.rolling(20, min_periods=0).apply(f, raw=raw) | |
result1 = obj.rolling(20, min_periods=1).apply(f, raw=raw) | |
tm.assert_almost_equal(result0, result1) | |
def test_center(raw): | |
obj = Series(np.random.default_rng(2).standard_normal(50)) | |
obj[:10] = np.nan | |
obj[-10:] = np.nan | |
result = obj.rolling(20, min_periods=15, center=True).apply(f, raw=raw) | |
expected = ( | |
concat([obj, Series([np.nan] * 9)]) | |
.rolling(20, min_periods=15) | |
.apply(f, raw=raw) | |
.iloc[9:] | |
.reset_index(drop=True) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_series(raw, series): | |
result = series.rolling(50).apply(f, raw=raw) | |
assert isinstance(result, Series) | |
tm.assert_almost_equal(result.iloc[-1], np.mean(series[-50:])) | |
def test_frame(raw, frame): | |
result = frame.rolling(50).apply(f, raw=raw) | |
assert isinstance(result, DataFrame) | |
tm.assert_series_equal( | |
result.iloc[-1, :], | |
frame.iloc[-50:, :].apply(np.mean, axis=0, raw=raw), | |
check_names=False, | |
) | |
def test_time_rule_series(raw, series): | |
win = 25 | |
minp = 10 | |
ser = series[::2].resample("B").mean() | |
series_result = ser.rolling(window=win, min_periods=minp).apply(f, raw=raw) | |
last_date = series_result.index[-1] | |
prev_date = last_date - 24 * offsets.BDay() | |
trunc_series = series[::2].truncate(prev_date, last_date) | |
tm.assert_almost_equal(series_result.iloc[-1], np.mean(trunc_series)) | |
def test_time_rule_frame(raw, frame): | |
win = 25 | |
minp = 10 | |
frm = frame[::2].resample("B").mean() | |
frame_result = frm.rolling(window=win, min_periods=minp).apply(f, raw=raw) | |
last_date = frame_result.index[-1] | |
prev_date = last_date - 24 * offsets.BDay() | |
trunc_frame = frame[::2].truncate(prev_date, last_date) | |
tm.assert_series_equal( | |
frame_result.xs(last_date), | |
trunc_frame.apply(np.mean, raw=raw), | |
check_names=False, | |
) | |
def test_min_periods(raw, series, minp, step): | |
result = series.rolling(len(series) + 1, min_periods=minp, step=step).apply( | |
f, raw=raw | |
) | |
expected = series.rolling(len(series), min_periods=minp, step=step).apply( | |
f, raw=raw | |
) | |
nan_mask = isna(result) | |
tm.assert_series_equal(nan_mask, isna(expected)) | |
nan_mask = ~nan_mask | |
tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) | |
def test_center_reindex_series(raw, series): | |
# shifter index | |
s = [f"x{x:d}" for x in range(12)] | |
minp = 10 | |
series_xp = ( | |
series.reindex(list(series.index) + s) | |
.rolling(window=25, min_periods=minp) | |
.apply(f, raw=raw) | |
.shift(-12) | |
.reindex(series.index) | |
) | |
series_rs = series.rolling(window=25, min_periods=minp, center=True).apply( | |
f, raw=raw | |
) | |
tm.assert_series_equal(series_xp, series_rs) | |
def test_center_reindex_frame(raw): | |
# shifter index | |
frame = DataFrame(range(100), index=date_range("2020-01-01", freq="D", periods=100)) | |
s = [f"x{x:d}" for x in range(12)] | |
minp = 10 | |
frame_xp = ( | |
frame.reindex(list(frame.index) + s) | |
.rolling(window=25, min_periods=minp) | |
.apply(f, raw=raw) | |
.shift(-12) | |
.reindex(frame.index) | |
) | |
frame_rs = frame.rolling(window=25, min_periods=minp, center=True).apply(f, raw=raw) | |
tm.assert_frame_equal(frame_xp, frame_rs) | |
def test_axis1(raw): | |
# GH 45912 | |
df = DataFrame([1, 2]) | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(window=1, axis=1).apply(np.sum, raw=raw) | |
expected = DataFrame([1.0, 2.0]) | |
tm.assert_frame_equal(result, expected) | |