peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/window
/test_online.py
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Series, | |
) | |
import pandas._testing as tm | |
pytestmark = pytest.mark.single_cpu | |
pytest.importorskip("numba") | |
# Filter warnings when parallel=True and the function can't be parallelized by Numba | |
class TestEWM: | |
def test_invalid_update(self): | |
df = DataFrame({"a": range(5), "b": range(5)}) | |
online_ewm = df.head(2).ewm(0.5).online() | |
with pytest.raises( | |
ValueError, | |
match="Must call mean with update=None first before passing update", | |
): | |
online_ewm.mean(update=df.head(1)) | |
def test_online_vs_non_online_mean( | |
self, obj, nogil, parallel, nopython, adjust, ignore_na | |
): | |
expected = obj.ewm(0.5, adjust=adjust, ignore_na=ignore_na).mean() | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
online_ewm = ( | |
obj.head(2) | |
.ewm(0.5, adjust=adjust, ignore_na=ignore_na) | |
.online(engine_kwargs=engine_kwargs) | |
) | |
# Test resetting once | |
for _ in range(2): | |
result = online_ewm.mean() | |
tm.assert_equal(result, expected.head(2)) | |
result = online_ewm.mean(update=obj.tail(3)) | |
tm.assert_equal(result, expected.tail(3)) | |
online_ewm.reset() | |
def test_update_times_mean( | |
self, obj, nogil, parallel, nopython, adjust, ignore_na, halflife_with_times | |
): | |
times = Series( | |
np.array( | |
["2020-01-01", "2020-01-05", "2020-01-07", "2020-01-17", "2020-01-21"], | |
dtype="datetime64[ns]", | |
) | |
) | |
expected = obj.ewm( | |
0.5, | |
adjust=adjust, | |
ignore_na=ignore_na, | |
times=times, | |
halflife=halflife_with_times, | |
).mean() | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
online_ewm = ( | |
obj.head(2) | |
.ewm( | |
0.5, | |
adjust=adjust, | |
ignore_na=ignore_na, | |
times=times.head(2), | |
halflife=halflife_with_times, | |
) | |
.online(engine_kwargs=engine_kwargs) | |
) | |
# Test resetting once | |
for _ in range(2): | |
result = online_ewm.mean() | |
tm.assert_equal(result, expected.head(2)) | |
result = online_ewm.mean(update=obj.tail(3), update_times=times.tail(3)) | |
tm.assert_equal(result, expected.tail(3)) | |
online_ewm.reset() | |
def test_ewm_notimplementederror_raises(self, method): | |
ser = Series(range(10)) | |
kwargs = {} | |
if method == "aggregate": | |
kwargs["func"] = lambda x: x | |
with pytest.raises(NotImplementedError, match=".* is not implemented."): | |
getattr(ser.ewm(1).online(), method)(**kwargs) | |