peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/v1
/_hypothesis_plugin.py
""" | |
Register Hypothesis strategies for Pydantic custom types. | |
This enables fully-automatic generation of test data for most Pydantic classes. | |
Note that this module has *no* runtime impact on Pydantic itself; instead it | |
is registered as a setuptools entry point and Hypothesis will import it if | |
Pydantic is installed. See also: | |
https://hypothesis.readthedocs.io/en/latest/strategies.html#registering-strategies-via-setuptools-entry-points | |
https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.register_type_strategy | |
https://hypothesis.readthedocs.io/en/latest/strategies.html#interaction-with-pytest-cov | |
https://docs.pydantic.dev/usage/types/#pydantic-types | |
Note that because our motivation is to *improve user experience*, the strategies | |
are always sound (never generate invalid data) but sacrifice completeness for | |
maintainability (ie may be unable to generate some tricky but valid data). | |
Finally, this module makes liberal use of `# type: ignore[<code>]` pragmas. | |
This is because Hypothesis annotates `register_type_strategy()` with | |
`(T, SearchStrategy[T])`, but in most cases we register e.g. `ConstrainedInt` | |
to generate instances of the builtin `int` type which match the constraints. | |
""" | |
import contextlib | |
import datetime | |
import ipaddress | |
import json | |
import math | |
from fractions import Fraction | |
from typing import Callable, Dict, Type, Union, cast, overload | |
import hypothesis.strategies as st | |
import pydantic | |
import pydantic.color | |
import pydantic.types | |
from pydantic.utils import lenient_issubclass | |
# FilePath and DirectoryPath are explicitly unsupported, as we'd have to create | |
# them on-disk, and that's unsafe in general without being told *where* to do so. | |
# | |
# URLs are unsupported because it's easy for users to define their own strategy for | |
# "normal" URLs, and hard for us to define a general strategy which includes "weird" | |
# URLs but doesn't also have unpredictable performance problems. | |
# | |
# conlist() and conset() are unsupported for now, because the workarounds for | |
# Cython and Hypothesis to handle parametrized generic types are incompatible. | |
# We are rethinking Hypothesis compatibility in Pydantic v2. | |
# Emails | |
try: | |
import email_validator | |
except ImportError: # pragma: no cover | |
pass | |
else: | |
def is_valid_email(s: str) -> bool: | |
# Hypothesis' st.emails() occasionally generates emails like [email protected] | |
# that are invalid according to email-validator, so we filter those out. | |
try: | |
email_validator.validate_email(s, check_deliverability=False) | |
return True | |
except email_validator.EmailNotValidError: # pragma: no cover | |
return False | |
# Note that these strategies deliberately stay away from any tricky Unicode | |
# or other encoding issues; we're just trying to generate *something* valid. | |
st.register_type_strategy(pydantic.EmailStr, st.emails().filter(is_valid_email)) # type: ignore[arg-type] | |
st.register_type_strategy( | |
pydantic.NameEmail, | |
st.builds( | |
'{} <{}>'.format, # type: ignore[arg-type] | |
st.from_regex('[A-Za-z0-9_]+( [A-Za-z0-9_]+){0,5}', fullmatch=True), | |
st.emails().filter(is_valid_email), | |
), | |
) | |
# PyObject - dotted names, in this case taken from the math module. | |
st.register_type_strategy( | |
pydantic.PyObject, # type: ignore[arg-type] | |
st.sampled_from( | |
[cast(pydantic.PyObject, f'math.{name}') for name in sorted(vars(math)) if not name.startswith('_')] | |
), | |
) | |
# CSS3 Colors; as name, hex, rgb(a) tuples or strings, or hsl strings | |
_color_regexes = ( | |
'|'.join( | |
( | |
pydantic.color.r_hex_short, | |
pydantic.color.r_hex_long, | |
pydantic.color.r_rgb, | |
pydantic.color.r_rgba, | |
pydantic.color.r_hsl, | |
pydantic.color.r_hsla, | |
) | |
) | |
# Use more precise regex patterns to avoid value-out-of-range errors | |
.replace(pydantic.color._r_sl, r'(?:(\d\d?(?:\.\d+)?|100(?:\.0+)?)%)') | |
.replace(pydantic.color._r_alpha, r'(?:(0(?:\.\d+)?|1(?:\.0+)?|\.\d+|\d{1,2}%))') | |
.replace(pydantic.color._r_255, r'(?:((?:\d|\d\d|[01]\d\d|2[0-4]\d|25[0-4])(?:\.\d+)?|255(?:\.0+)?))') | |
) | |
st.register_type_strategy( | |
pydantic.color.Color, | |
st.one_of( | |
st.sampled_from(sorted(pydantic.color.COLORS_BY_NAME)), | |
st.tuples( | |
st.integers(0, 255), | |
st.integers(0, 255), | |
st.integers(0, 255), | |
st.none() | st.floats(0, 1) | st.floats(0, 100).map('{}%'.format), | |
), | |
st.from_regex(_color_regexes, fullmatch=True), | |
), | |
) | |
# Card numbers, valid according to the Luhn algorithm | |
def add_luhn_digit(card_number: str) -> str: | |
# See https://en.wikipedia.org/wiki/Luhn_algorithm | |
for digit in '0123456789': | |
with contextlib.suppress(Exception): | |
pydantic.PaymentCardNumber.validate_luhn_check_digit(card_number + digit) | |
return card_number + digit | |
raise AssertionError('Unreachable') # pragma: no cover | |
card_patterns = ( | |
# Note that these patterns omit the Luhn check digit; that's added by the function above | |
'4[0-9]{14}', # Visa | |
'5[12345][0-9]{13}', # Mastercard | |
'3[47][0-9]{12}', # American Express | |
'[0-26-9][0-9]{10,17}', # other (incomplete to avoid overlap) | |
) | |
st.register_type_strategy( | |
pydantic.PaymentCardNumber, | |
st.from_regex('|'.join(card_patterns), fullmatch=True).map(add_luhn_digit), # type: ignore[arg-type] | |
) | |
# UUIDs | |
st.register_type_strategy(pydantic.UUID1, st.uuids(version=1)) | |
st.register_type_strategy(pydantic.UUID3, st.uuids(version=3)) | |
st.register_type_strategy(pydantic.UUID4, st.uuids(version=4)) | |
st.register_type_strategy(pydantic.UUID5, st.uuids(version=5)) | |
# Secrets | |
st.register_type_strategy(pydantic.SecretBytes, st.binary().map(pydantic.SecretBytes)) | |
st.register_type_strategy(pydantic.SecretStr, st.text().map(pydantic.SecretStr)) | |
# IP addresses, networks, and interfaces | |
st.register_type_strategy(pydantic.IPvAnyAddress, st.ip_addresses()) # type: ignore[arg-type] | |
st.register_type_strategy( | |
pydantic.IPvAnyInterface, | |
st.from_type(ipaddress.IPv4Interface) | st.from_type(ipaddress.IPv6Interface), # type: ignore[arg-type] | |
) | |
st.register_type_strategy( | |
pydantic.IPvAnyNetwork, | |
st.from_type(ipaddress.IPv4Network) | st.from_type(ipaddress.IPv6Network), # type: ignore[arg-type] | |
) | |
# We hook into the con***() functions and the ConstrainedNumberMeta metaclass, | |
# so here we only have to register subclasses for other constrained types which | |
# don't go via those mechanisms. Then there are the registration hooks below. | |
st.register_type_strategy(pydantic.StrictBool, st.booleans()) | |
st.register_type_strategy(pydantic.StrictStr, st.text()) | |
# FutureDate, PastDate | |
st.register_type_strategy(pydantic.FutureDate, st.dates(min_value=datetime.date.today() + datetime.timedelta(days=1))) | |
st.register_type_strategy(pydantic.PastDate, st.dates(max_value=datetime.date.today() - datetime.timedelta(days=1))) | |
# Constrained-type resolver functions | |
# | |
# For these ones, we actually want to inspect the type in order to work out a | |
# satisfying strategy. First up, the machinery for tracking resolver functions: | |
RESOLVERS: Dict[type, Callable[[type], st.SearchStrategy]] = {} # type: ignore[type-arg] | |
def _registered(typ: Type[pydantic.types.T]) -> Type[pydantic.types.T]: | |
pass | |
def _registered(typ: pydantic.types.ConstrainedNumberMeta) -> pydantic.types.ConstrainedNumberMeta: | |
pass | |
def _registered( | |
typ: Union[Type[pydantic.types.T], pydantic.types.ConstrainedNumberMeta] | |
) -> Union[Type[pydantic.types.T], pydantic.types.ConstrainedNumberMeta]: | |
# This function replaces the version in `pydantic.types`, in order to | |
# effect the registration of new constrained types so that Hypothesis | |
# can generate valid examples. | |
pydantic.types._DEFINED_TYPES.add(typ) | |
for supertype, resolver in RESOLVERS.items(): | |
if issubclass(typ, supertype): | |
st.register_type_strategy(typ, resolver(typ)) # type: ignore | |
return typ | |
raise NotImplementedError(f'Unknown type {typ!r} has no resolver to register') # pragma: no cover | |
def resolves( | |
typ: Union[type, pydantic.types.ConstrainedNumberMeta] | |
) -> Callable[[Callable[..., st.SearchStrategy]], Callable[..., st.SearchStrategy]]: # type: ignore[type-arg] | |
def inner(f): # type: ignore | |
assert f not in RESOLVERS | |
RESOLVERS[typ] = f | |
return f | |
return inner | |
# Type-to-strategy resolver functions | |
def resolve_json(cls): # type: ignore[no-untyped-def] | |
try: | |
inner = st.none() if cls.inner_type is None else st.from_type(cls.inner_type) | |
except Exception: # pragma: no cover | |
finite = st.floats(allow_infinity=False, allow_nan=False) | |
inner = st.recursive( | |
base=st.one_of(st.none(), st.booleans(), st.integers(), finite, st.text()), | |
extend=lambda x: st.lists(x) | st.dictionaries(st.text(), x), # type: ignore | |
) | |
inner_type = getattr(cls, 'inner_type', None) | |
return st.builds( | |
cls.inner_type.json if lenient_issubclass(inner_type, pydantic.BaseModel) else json.dumps, | |
inner, | |
ensure_ascii=st.booleans(), | |
indent=st.none() | st.integers(0, 16), | |
sort_keys=st.booleans(), | |
) | |
def resolve_conbytes(cls): # type: ignore[no-untyped-def] # pragma: no cover | |
min_size = cls.min_length or 0 | |
max_size = cls.max_length | |
if not cls.strip_whitespace: | |
return st.binary(min_size=min_size, max_size=max_size) | |
# Fun with regex to ensure we neither start nor end with whitespace | |
repeats = '{{{},{}}}'.format( | |
min_size - 2 if min_size > 2 else 0, | |
max_size - 2 if (max_size or 0) > 2 else '', | |
) | |
if min_size >= 2: | |
pattern = rf'\W.{repeats}\W' | |
elif min_size == 1: | |
pattern = rf'\W(.{repeats}\W)?' | |
else: | |
assert min_size == 0 | |
pattern = rf'(\W(.{repeats}\W)?)?' | |
return st.from_regex(pattern.encode(), fullmatch=True) | |
def resolve_condecimal(cls): # type: ignore[no-untyped-def] | |
min_value = cls.ge | |
max_value = cls.le | |
if cls.gt is not None: | |
assert min_value is None, 'Set `gt` or `ge`, but not both' | |
min_value = cls.gt | |
if cls.lt is not None: | |
assert max_value is None, 'Set `lt` or `le`, but not both' | |
max_value = cls.lt | |
s = st.decimals(min_value, max_value, allow_nan=False, places=cls.decimal_places) | |
if cls.lt is not None: | |
s = s.filter(lambda d: d < cls.lt) | |
if cls.gt is not None: | |
s = s.filter(lambda d: cls.gt < d) | |
return s | |
def resolve_confloat(cls): # type: ignore[no-untyped-def] | |
min_value = cls.ge | |
max_value = cls.le | |
exclude_min = False | |
exclude_max = False | |
if cls.gt is not None: | |
assert min_value is None, 'Set `gt` or `ge`, but not both' | |
min_value = cls.gt | |
exclude_min = True | |
if cls.lt is not None: | |
assert max_value is None, 'Set `lt` or `le`, but not both' | |
max_value = cls.lt | |
exclude_max = True | |
if cls.multiple_of is None: | |
return st.floats(min_value, max_value, exclude_min=exclude_min, exclude_max=exclude_max, allow_nan=False) | |
if min_value is not None: | |
min_value = math.ceil(min_value / cls.multiple_of) | |
if exclude_min: | |
min_value = min_value + 1 | |
if max_value is not None: | |
assert max_value >= cls.multiple_of, 'Cannot build model with max value smaller than multiple of' | |
max_value = math.floor(max_value / cls.multiple_of) | |
if exclude_max: | |
max_value = max_value - 1 | |
return st.integers(min_value, max_value).map(lambda x: x * cls.multiple_of) | |
def resolve_conint(cls): # type: ignore[no-untyped-def] | |
min_value = cls.ge | |
max_value = cls.le | |
if cls.gt is not None: | |
assert min_value is None, 'Set `gt` or `ge`, but not both' | |
min_value = cls.gt + 1 | |
if cls.lt is not None: | |
assert max_value is None, 'Set `lt` or `le`, but not both' | |
max_value = cls.lt - 1 | |
if cls.multiple_of is None or cls.multiple_of == 1: | |
return st.integers(min_value, max_value) | |
# These adjustments and the .map handle integer-valued multiples, while the | |
# .filter handles trickier cases as for confloat. | |
if min_value is not None: | |
min_value = math.ceil(Fraction(min_value) / Fraction(cls.multiple_of)) | |
if max_value is not None: | |
max_value = math.floor(Fraction(max_value) / Fraction(cls.multiple_of)) | |
return st.integers(min_value, max_value).map(lambda x: x * cls.multiple_of) | |
def resolve_condate(cls): # type: ignore[no-untyped-def] | |
if cls.ge is not None: | |
assert cls.gt is None, 'Set `gt` or `ge`, but not both' | |
min_value = cls.ge | |
elif cls.gt is not None: | |
min_value = cls.gt + datetime.timedelta(days=1) | |
else: | |
min_value = datetime.date.min | |
if cls.le is not None: | |
assert cls.lt is None, 'Set `lt` or `le`, but not both' | |
max_value = cls.le | |
elif cls.lt is not None: | |
max_value = cls.lt - datetime.timedelta(days=1) | |
else: | |
max_value = datetime.date.max | |
return st.dates(min_value, max_value) | |
def resolve_constr(cls): # type: ignore[no-untyped-def] # pragma: no cover | |
min_size = cls.min_length or 0 | |
max_size = cls.max_length | |
if cls.regex is None and not cls.strip_whitespace: | |
return st.text(min_size=min_size, max_size=max_size) | |
if cls.regex is not None: | |
strategy = st.from_regex(cls.regex) | |
if cls.strip_whitespace: | |
strategy = strategy.filter(lambda s: s == s.strip()) | |
elif cls.strip_whitespace: | |
repeats = '{{{},{}}}'.format( | |
min_size - 2 if min_size > 2 else 0, | |
max_size - 2 if (max_size or 0) > 2 else '', | |
) | |
if min_size >= 2: | |
strategy = st.from_regex(rf'\W.{repeats}\W') | |
elif min_size == 1: | |
strategy = st.from_regex(rf'\W(.{repeats}\W)?') | |
else: | |
assert min_size == 0 | |
strategy = st.from_regex(rf'(\W(.{repeats}\W)?)?') | |
if min_size == 0 and max_size is None: | |
return strategy | |
elif max_size is None: | |
return strategy.filter(lambda s: min_size <= len(s)) | |
return strategy.filter(lambda s: min_size <= len(s) <= max_size) | |
# Finally, register all previously-defined types, and patch in our new function | |
for typ in list(pydantic.types._DEFINED_TYPES): | |
_registered(typ) | |
pydantic.types._registered = _registered | |
st.register_type_strategy(pydantic.Json, resolve_json) | |