peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_decomp_qr.py
"""QR decomposition functions.""" | |
import numpy | |
# Local imports | |
from .lapack import get_lapack_funcs | |
from ._misc import _datacopied | |
__all__ = ['qr', 'qr_multiply', 'rq'] | |
def safecall(f, name, *args, **kwargs): | |
"""Call a LAPACK routine, determining lwork automatically and handling | |
error return values""" | |
lwork = kwargs.get("lwork", None) | |
if lwork in (None, -1): | |
kwargs['lwork'] = -1 | |
ret = f(*args, **kwargs) | |
kwargs['lwork'] = ret[-2][0].real.astype(numpy.int_) | |
ret = f(*args, **kwargs) | |
if ret[-1] < 0: | |
raise ValueError("illegal value in %dth argument of internal %s" | |
% (-ret[-1], name)) | |
return ret[:-2] | |
def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False, | |
check_finite=True): | |
""" | |
Compute QR decomposition of a matrix. | |
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal | |
and R upper triangular. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Matrix to be decomposed | |
overwrite_a : bool, optional | |
Whether data in `a` is overwritten (may improve performance if | |
`overwrite_a` is set to True by reusing the existing input data | |
structure rather than creating a new one.) | |
lwork : int, optional | |
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size | |
is computed. | |
mode : {'full', 'r', 'economic', 'raw'}, optional | |
Determines what information is to be returned: either both Q and R | |
('full', default), only R ('r') or both Q and R but computed in | |
economy-size ('economic', see Notes). The final option 'raw' | |
(added in SciPy 0.11) makes the function return two matrices | |
(Q, TAU) in the internal format used by LAPACK. | |
pivoting : bool, optional | |
Whether or not factorization should include pivoting for rank-revealing | |
qr decomposition. If pivoting, compute the decomposition | |
``A[:, P] = Q @ R`` as above, but where P is chosen such that the | |
diagonal of R is non-increasing. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
Q : float or complex ndarray | |
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned | |
if ``mode='r'``. Replaced by tuple ``(Q, TAU)`` if ``mode='raw'``. | |
R : float or complex ndarray | |
Of shape (M, N), or (K, N) for ``mode in ['economic', 'raw']``. | |
``K = min(M, N)``. | |
P : int ndarray | |
Of shape (N,) for ``pivoting=True``. Not returned if | |
``pivoting=False``. | |
Raises | |
------ | |
LinAlgError | |
Raised if decomposition fails | |
Notes | |
----- | |
This is an interface to the LAPACK routines dgeqrf, zgeqrf, | |
dorgqr, zungqr, dgeqp3, and zgeqp3. | |
If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead | |
of (M,M) and (M,N), with ``K=min(M,N)``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> rng = np.random.default_rng() | |
>>> a = rng.standard_normal((9, 6)) | |
>>> q, r = linalg.qr(a) | |
>>> np.allclose(a, np.dot(q, r)) | |
True | |
>>> q.shape, r.shape | |
((9, 9), (9, 6)) | |
>>> r2 = linalg.qr(a, mode='r') | |
>>> np.allclose(r, r2) | |
True | |
>>> q3, r3 = linalg.qr(a, mode='economic') | |
>>> q3.shape, r3.shape | |
((9, 6), (6, 6)) | |
>>> q4, r4, p4 = linalg.qr(a, pivoting=True) | |
>>> d = np.abs(np.diag(r4)) | |
>>> np.all(d[1:] <= d[:-1]) | |
True | |
>>> np.allclose(a[:, p4], np.dot(q4, r4)) | |
True | |
>>> q4.shape, r4.shape, p4.shape | |
((9, 9), (9, 6), (6,)) | |
>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True) | |
>>> q5.shape, r5.shape, p5.shape | |
((9, 6), (6, 6), (6,)) | |
""" | |
# 'qr' was the old default, equivalent to 'full'. Neither 'full' nor | |
# 'qr' are used below. | |
# 'raw' is used internally by qr_multiply | |
if mode not in ['full', 'qr', 'r', 'economic', 'raw']: | |
raise ValueError("Mode argument should be one of ['full', 'r'," | |
"'economic', 'raw']") | |
if check_finite: | |
a1 = numpy.asarray_chkfinite(a) | |
else: | |
a1 = numpy.asarray(a) | |
if len(a1.shape) != 2: | |
raise ValueError("expected a 2-D array") | |
M, N = a1.shape | |
overwrite_a = overwrite_a or (_datacopied(a1, a)) | |
if pivoting: | |
geqp3, = get_lapack_funcs(('geqp3',), (a1,)) | |
qr, jpvt, tau = safecall(geqp3, "geqp3", a1, overwrite_a=overwrite_a) | |
jpvt -= 1 # geqp3 returns a 1-based index array, so subtract 1 | |
else: | |
geqrf, = get_lapack_funcs(('geqrf',), (a1,)) | |
qr, tau = safecall(geqrf, "geqrf", a1, lwork=lwork, | |
overwrite_a=overwrite_a) | |
if mode not in ['economic', 'raw'] or M < N: | |
R = numpy.triu(qr) | |
else: | |
R = numpy.triu(qr[:N, :]) | |
if pivoting: | |
Rj = R, jpvt | |
else: | |
Rj = R, | |
if mode == 'r': | |
return Rj | |
elif mode == 'raw': | |
return ((qr, tau),) + Rj | |
gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,)) | |
if M < N: | |
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr[:, :M], tau, | |
lwork=lwork, overwrite_a=1) | |
elif mode == 'economic': | |
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr, tau, lwork=lwork, | |
overwrite_a=1) | |
else: | |
t = qr.dtype.char | |
qqr = numpy.empty((M, M), dtype=t) | |
qqr[:, :N] = qr | |
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qqr, tau, lwork=lwork, | |
overwrite_a=1) | |
return (Q,) + Rj | |
def qr_multiply(a, c, mode='right', pivoting=False, conjugate=False, | |
overwrite_a=False, overwrite_c=False): | |
""" | |
Calculate the QR decomposition and multiply Q with a matrix. | |
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal | |
and R upper triangular. Multiply Q with a vector or a matrix c. | |
Parameters | |
---------- | |
a : (M, N), array_like | |
Input array | |
c : array_like | |
Input array to be multiplied by ``q``. | |
mode : {'left', 'right'}, optional | |
``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if | |
mode is 'right'. | |
The shape of c must be appropriate for the matrix multiplications, | |
if mode is 'left', ``min(a.shape) == c.shape[0]``, | |
if mode is 'right', ``a.shape[0] == c.shape[1]``. | |
pivoting : bool, optional | |
Whether or not factorization should include pivoting for rank-revealing | |
qr decomposition, see the documentation of qr. | |
conjugate : bool, optional | |
Whether Q should be complex-conjugated. This might be faster | |
than explicit conjugation. | |
overwrite_a : bool, optional | |
Whether data in a is overwritten (may improve performance) | |
overwrite_c : bool, optional | |
Whether data in c is overwritten (may improve performance). | |
If this is used, c must be big enough to keep the result, | |
i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'. | |
Returns | |
------- | |
CQ : ndarray | |
The product of ``Q`` and ``c``. | |
R : (K, N), ndarray | |
R array of the resulting QR factorization where ``K = min(M, N)``. | |
P : (N,) ndarray | |
Integer pivot array. Only returned when ``pivoting=True``. | |
Raises | |
------ | |
LinAlgError | |
Raised if QR decomposition fails. | |
Notes | |
----- | |
This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``, | |
``?UNMQR``, and ``?GEQP3``. | |
.. versionadded:: 0.11.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import qr_multiply, qr | |
>>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]]) | |
>>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1) | |
>>> qc | |
array([[-1., 1., -1.], | |
[-1., -1., 1.], | |
[-1., -1., -1.], | |
[-1., 1., 1.]]) | |
>>> r1 | |
array([[-6., -3., -5. ], | |
[ 0., -1., -1.11022302e-16], | |
[ 0., 0., -1. ]]) | |
>>> piv1 | |
array([1, 0, 2], dtype=int32) | |
>>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1) | |
>>> np.allclose(2*q2 - qc, np.zeros((4, 3))) | |
True | |
""" | |
if mode not in ['left', 'right']: | |
raise ValueError("Mode argument can only be 'left' or 'right' but " | |
f"not '{mode}'") | |
c = numpy.asarray_chkfinite(c) | |
if c.ndim < 2: | |
onedim = True | |
c = numpy.atleast_2d(c) | |
if mode == "left": | |
c = c.T | |
else: | |
onedim = False | |
a = numpy.atleast_2d(numpy.asarray(a)) # chkfinite done in qr | |
M, N = a.shape | |
if mode == 'left': | |
if c.shape[0] != min(M, N + overwrite_c*(M-N)): | |
raise ValueError('Array shapes are not compatible for Q @ c' | |
f' operation: {a.shape} vs {c.shape}') | |
else: | |
if M != c.shape[1]: | |
raise ValueError('Array shapes are not compatible for c @ Q' | |
f' operation: {c.shape} vs {a.shape}') | |
raw = qr(a, overwrite_a, None, "raw", pivoting) | |
Q, tau = raw[0] | |
gor_un_mqr, = get_lapack_funcs(('ormqr',), (Q,)) | |
if gor_un_mqr.typecode in ('s', 'd'): | |
trans = "T" | |
else: | |
trans = "C" | |
Q = Q[:, :min(M, N)] | |
if M > N and mode == "left" and not overwrite_c: | |
if conjugate: | |
cc = numpy.zeros((c.shape[1], M), dtype=c.dtype, order="F") | |
cc[:, :N] = c.T | |
else: | |
cc = numpy.zeros((M, c.shape[1]), dtype=c.dtype, order="F") | |
cc[:N, :] = c | |
trans = "N" | |
if conjugate: | |
lr = "R" | |
else: | |
lr = "L" | |
overwrite_c = True | |
elif c.flags["C_CONTIGUOUS"] and trans == "T" or conjugate: | |
cc = c.T | |
if mode == "left": | |
lr = "R" | |
else: | |
lr = "L" | |
else: | |
trans = "N" | |
cc = c | |
if mode == "left": | |
lr = "L" | |
else: | |
lr = "R" | |
cQ, = safecall(gor_un_mqr, "gormqr/gunmqr", lr, trans, Q, tau, cc, | |
overwrite_c=overwrite_c) | |
if trans != "N": | |
cQ = cQ.T | |
if mode == "right": | |
cQ = cQ[:, :min(M, N)] | |
if onedim: | |
cQ = cQ.ravel() | |
return (cQ,) + raw[1:] | |
def rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True): | |
""" | |
Compute RQ decomposition of a matrix. | |
Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal | |
and R upper triangular. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Matrix to be decomposed | |
overwrite_a : bool, optional | |
Whether data in a is overwritten (may improve performance) | |
lwork : int, optional | |
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size | |
is computed. | |
mode : {'full', 'r', 'economic'}, optional | |
Determines what information is to be returned: either both Q and R | |
('full', default), only R ('r') or both Q and R but computed in | |
economy-size ('economic', see Notes). | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
R : float or complex ndarray | |
Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``. | |
Q : float or complex ndarray | |
Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned | |
if ``mode='r'``. | |
Raises | |
------ | |
LinAlgError | |
If decomposition fails. | |
Notes | |
----- | |
This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, | |
sorgrq, dorgrq, cungrq and zungrq. | |
If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead | |
of (N,N) and (M,N), with ``K=min(M,N)``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> rng = np.random.default_rng() | |
>>> a = rng.standard_normal((6, 9)) | |
>>> r, q = linalg.rq(a) | |
>>> np.allclose(a, r @ q) | |
True | |
>>> r.shape, q.shape | |
((6, 9), (9, 9)) | |
>>> r2 = linalg.rq(a, mode='r') | |
>>> np.allclose(r, r2) | |
True | |
>>> r3, q3 = linalg.rq(a, mode='economic') | |
>>> r3.shape, q3.shape | |
((6, 6), (6, 9)) | |
""" | |
if mode not in ['full', 'r', 'economic']: | |
raise ValueError( | |
"Mode argument should be one of ['full', 'r', 'economic']") | |
if check_finite: | |
a1 = numpy.asarray_chkfinite(a) | |
else: | |
a1 = numpy.asarray(a) | |
if len(a1.shape) != 2: | |
raise ValueError('expected matrix') | |
M, N = a1.shape | |
overwrite_a = overwrite_a or (_datacopied(a1, a)) | |
gerqf, = get_lapack_funcs(('gerqf',), (a1,)) | |
rq, tau = safecall(gerqf, 'gerqf', a1, lwork=lwork, | |
overwrite_a=overwrite_a) | |
if not mode == 'economic' or N < M: | |
R = numpy.triu(rq, N-M) | |
else: | |
R = numpy.triu(rq[-M:, -M:]) | |
if mode == 'r': | |
return R | |
gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,)) | |
if N < M: | |
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq[-N:], tau, lwork=lwork, | |
overwrite_a=1) | |
elif mode == 'economic': | |
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq, tau, lwork=lwork, | |
overwrite_a=1) | |
else: | |
rq1 = numpy.empty((N, N), dtype=rq.dtype) | |
rq1[-M:] = rq | |
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq1, tau, lwork=lwork, | |
overwrite_a=1) | |
return R, Q | |