peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/cluster
/tests
/test_optics.py
# Authors: Shane Grigsby <[email protected]> | |
# Adrin Jalali <[email protected]> | |
# License: BSD 3 clause | |
import warnings | |
import numpy as np | |
import pytest | |
from sklearn.cluster import DBSCAN, OPTICS | |
from sklearn.cluster._optics import _extend_region, _extract_xi_labels | |
from sklearn.cluster.tests.common import generate_clustered_data | |
from sklearn.datasets import make_blobs | |
from sklearn.exceptions import DataConversionWarning, EfficiencyWarning | |
from sklearn.metrics.cluster import contingency_matrix | |
from sklearn.metrics.pairwise import pairwise_distances | |
from sklearn.utils import shuffle | |
from sklearn.utils._testing import assert_allclose, assert_array_equal | |
from sklearn.utils.fixes import CSR_CONTAINERS | |
rng = np.random.RandomState(0) | |
n_points_per_cluster = 10 | |
C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2) | |
C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2) | |
C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2) | |
C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2) | |
C5 = [3, -2] + 1.6 * rng.randn(n_points_per_cluster, 2) | |
C6 = [5, 6] + 2 * rng.randn(n_points_per_cluster, 2) | |
X = np.vstack((C1, C2, C3, C4, C5, C6)) | |
def test_extend_downward(r_plot, end): | |
r_plot = np.array(r_plot) | |
ratio = r_plot[:-1] / r_plot[1:] | |
steep_downward = ratio >= 1 / 0.9 | |
upward = ratio < 1 | |
e = _extend_region(steep_downward, upward, 0, 2) | |
assert e == end | |
def test_extend_upward(r_plot, end): | |
r_plot = np.array(r_plot) | |
ratio = r_plot[:-1] / r_plot[1:] | |
steep_upward = ratio <= 0.9 | |
downward = ratio > 1 | |
e = _extend_region(steep_upward, downward, 0, 2) | |
assert e == end | |
def test_the_extract_xi_labels(ordering, clusters, expected): | |
labels = _extract_xi_labels(ordering, clusters) | |
assert_array_equal(labels, expected) | |
def test_extract_xi(global_dtype): | |
# small and easy test (no clusters around other clusters) | |
# but with a clear noise data. | |
rng = np.random.RandomState(0) | |
n_points_per_cluster = 5 | |
C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2) | |
C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2) | |
C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2) | |
C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2) | |
C5 = [3, -2] + 0.6 * rng.randn(n_points_per_cluster, 2) | |
C6 = [5, 6] + 0.2 * rng.randn(n_points_per_cluster, 2) | |
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6)).astype( | |
global_dtype, copy=False | |
) | |
expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5, -1, [4] * 5] | |
X, expected_labels = shuffle(X, expected_labels, random_state=rng) | |
clust = OPTICS( | |
min_samples=3, min_cluster_size=2, max_eps=20, cluster_method="xi", xi=0.4 | |
).fit(X) | |
assert_array_equal(clust.labels_, expected_labels) | |
# check float min_samples and min_cluster_size | |
clust = OPTICS( | |
min_samples=0.1, min_cluster_size=0.08, max_eps=20, cluster_method="xi", xi=0.4 | |
).fit(X) | |
assert_array_equal(clust.labels_, expected_labels) | |
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6)).astype( | |
global_dtype, copy=False | |
) | |
expected_labels = np.r_[ | |
[1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5, -1, -1, [4] * 5 | |
] | |
X, expected_labels = shuffle(X, expected_labels, random_state=rng) | |
clust = OPTICS( | |
min_samples=3, min_cluster_size=3, max_eps=20, cluster_method="xi", xi=0.3 | |
).fit(X) | |
# this may fail if the predecessor correction is not at work! | |
assert_array_equal(clust.labels_, expected_labels) | |
C1 = [[0, 0], [0, 0.1], [0, -0.1], [0.1, 0]] | |
C2 = [[10, 10], [10, 9], [10, 11], [9, 10]] | |
C3 = [[100, 100], [100, 90], [100, 110], [90, 100]] | |
X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False) | |
expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4] | |
X, expected_labels = shuffle(X, expected_labels, random_state=rng) | |
clust = OPTICS( | |
min_samples=2, min_cluster_size=2, max_eps=np.inf, cluster_method="xi", xi=0.04 | |
).fit(X) | |
assert_array_equal(clust.labels_, expected_labels) | |
def test_cluster_hierarchy_(global_dtype): | |
rng = np.random.RandomState(0) | |
n_points_per_cluster = 100 | |
C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2).astype( | |
global_dtype, copy=False | |
) | |
C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2).astype( | |
global_dtype, copy=False | |
) | |
X = np.vstack((C1, C2)) | |
X = shuffle(X, random_state=0) | |
clusters = OPTICS(min_samples=20, xi=0.1).fit(X).cluster_hierarchy_ | |
assert clusters.shape == (2, 2) | |
diff = np.sum(clusters - np.array([[0, 99], [0, 199]])) | |
assert diff / len(X) < 0.05 | |
def test_correct_number_of_clusters(metric, csr_container): | |
# in 'auto' mode | |
n_clusters = 3 | |
X = generate_clustered_data(n_clusters=n_clusters) | |
# Parameters chosen specifically for this task. | |
# Compute OPTICS | |
clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=0.1, metric=metric) | |
clust.fit(csr_container(X) if csr_container is not None else X) | |
# number of clusters, ignoring noise if present | |
n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_) | |
assert n_clusters_1 == n_clusters | |
# check attribute types and sizes | |
assert clust.labels_.shape == (len(X),) | |
assert clust.labels_.dtype.kind == "i" | |
assert clust.reachability_.shape == (len(X),) | |
assert clust.reachability_.dtype.kind == "f" | |
assert clust.core_distances_.shape == (len(X),) | |
assert clust.core_distances_.dtype.kind == "f" | |
assert clust.ordering_.shape == (len(X),) | |
assert clust.ordering_.dtype.kind == "i" | |
assert set(clust.ordering_) == set(range(len(X))) | |
def test_minimum_number_of_sample_check(): | |
# test that we check a minimum number of samples | |
msg = "min_samples must be no greater than" | |
# Compute OPTICS | |
X = [[1, 1]] | |
clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1.0) | |
# Run the fit | |
with pytest.raises(ValueError, match=msg): | |
clust.fit(X) | |
def test_bad_extract(): | |
# Test an extraction of eps too close to original eps | |
msg = "Specify an epsilon smaller than 0.15. Got 0.3." | |
centers = [[1, 1], [-1, -1], [1, -1]] | |
X, labels_true = make_blobs( | |
n_samples=750, centers=centers, cluster_std=0.4, random_state=0 | |
) | |
# Compute OPTICS | |
clust = OPTICS(max_eps=5.0 * 0.03, cluster_method="dbscan", eps=0.3, min_samples=10) | |
with pytest.raises(ValueError, match=msg): | |
clust.fit(X) | |
def test_bad_reachability(): | |
msg = "All reachability values are inf. Set a larger max_eps." | |
centers = [[1, 1], [-1, -1], [1, -1]] | |
X, labels_true = make_blobs( | |
n_samples=750, centers=centers, cluster_std=0.4, random_state=0 | |
) | |
with pytest.warns(UserWarning, match=msg): | |
clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015) | |
clust.fit(X) | |
def test_nowarn_if_metric_bool_data_bool(): | |
# make sure no warning is raised if metric and data are both boolean | |
# non-regression test for | |
# https://github.com/scikit-learn/scikit-learn/issues/18996 | |
pairwise_metric = "rogerstanimoto" | |
X = np.random.randint(2, size=(5, 2), dtype=bool) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", DataConversionWarning) | |
OPTICS(metric=pairwise_metric).fit(X) | |
def test_warn_if_metric_bool_data_no_bool(): | |
# make sure a *single* conversion warning is raised if metric is boolean | |
# but data isn't | |
# non-regression test for | |
# https://github.com/scikit-learn/scikit-learn/issues/18996 | |
pairwise_metric = "rogerstanimoto" | |
X = np.random.randint(2, size=(5, 2), dtype=np.int32) | |
msg = f"Data will be converted to boolean for metric {pairwise_metric}" | |
with pytest.warns(DataConversionWarning, match=msg) as warn_record: | |
OPTICS(metric=pairwise_metric).fit(X) | |
assert len(warn_record) == 1 | |
def test_nowarn_if_metric_no_bool(): | |
# make sure no conversion warning is raised if | |
# metric isn't boolean, no matter what the data type is | |
pairwise_metric = "minkowski" | |
X_bool = np.random.randint(2, size=(5, 2), dtype=bool) | |
X_num = np.random.randint(2, size=(5, 2), dtype=np.int32) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", DataConversionWarning) | |
# fit boolean data | |
OPTICS(metric=pairwise_metric).fit(X_bool) | |
# fit numeric data | |
OPTICS(metric=pairwise_metric).fit(X_num) | |
def test_close_extract(): | |
# Test extract where extraction eps is close to scaled max_eps | |
centers = [[1, 1], [-1, -1], [1, -1]] | |
X, labels_true = make_blobs( | |
n_samples=750, centers=centers, cluster_std=0.4, random_state=0 | |
) | |
# Compute OPTICS | |
clust = OPTICS(max_eps=1.0, cluster_method="dbscan", eps=0.3, min_samples=10).fit(X) | |
# Cluster ordering starts at 0; max cluster label = 2 is 3 clusters | |
assert max(clust.labels_) == 2 | |
def test_dbscan_optics_parity(eps, min_samples, metric, global_dtype, csr_container): | |
# Test that OPTICS clustering labels are <= 5% difference of DBSCAN | |
centers = [[1, 1], [-1, -1], [1, -1]] | |
X, labels_true = make_blobs( | |
n_samples=150, centers=centers, cluster_std=0.4, random_state=0 | |
) | |
X = csr_container(X) if csr_container is not None else X | |
X = X.astype(global_dtype, copy=False) | |
# calculate optics with dbscan extract at 0.3 epsilon | |
op = OPTICS( | |
min_samples=min_samples, cluster_method="dbscan", eps=eps, metric=metric | |
).fit(X) | |
# calculate dbscan labels | |
db = DBSCAN(eps=eps, min_samples=min_samples).fit(X) | |
contingency = contingency_matrix(db.labels_, op.labels_) | |
agree = min( | |
np.sum(np.max(contingency, axis=0)), np.sum(np.max(contingency, axis=1)) | |
) | |
disagree = X.shape[0] - agree | |
percent_mismatch = np.round((disagree - 1) / X.shape[0], 2) | |
# verify label mismatch is <= 5% labels | |
assert percent_mismatch <= 0.05 | |
def test_min_samples_edge_case(global_dtype): | |
C1 = [[0, 0], [0, 0.1], [0, -0.1]] | |
C2 = [[10, 10], [10, 9], [10, 11]] | |
C3 = [[100, 100], [100, 96], [100, 106]] | |
X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False) | |
expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3] | |
clust = OPTICS(min_samples=3, max_eps=7, cluster_method="xi", xi=0.04).fit(X) | |
assert_array_equal(clust.labels_, expected_labels) | |
expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3] | |
clust = OPTICS(min_samples=3, max_eps=3, cluster_method="xi", xi=0.04).fit(X) | |
assert_array_equal(clust.labels_, expected_labels) | |
expected_labels = np.r_[[-1] * 9] | |
with pytest.warns(UserWarning, match="All reachability values"): | |
clust = OPTICS(min_samples=4, max_eps=3, cluster_method="xi", xi=0.04).fit(X) | |
assert_array_equal(clust.labels_, expected_labels) | |
# try arbitrary minimum sizes | |
def test_min_cluster_size(min_cluster_size, global_dtype): | |
redX = X[::2].astype(global_dtype, copy=False) # reduce for speed | |
clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX) | |
cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1]) | |
if cluster_sizes.size: | |
assert min(cluster_sizes) >= min_cluster_size | |
# check behaviour is the same when min_cluster_size is a fraction | |
clust_frac = OPTICS( | |
min_samples=9, | |
min_cluster_size=min_cluster_size / redX.shape[0], | |
) | |
clust_frac.fit(redX) | |
assert_array_equal(clust.labels_, clust_frac.labels_) | |
def test_min_cluster_size_invalid2(csr_container): | |
clust = OPTICS(min_cluster_size=len(X) + 1) | |
with pytest.raises(ValueError, match="must be no greater than the "): | |
clust.fit(X) | |
clust = OPTICS(min_cluster_size=len(X) + 1, metric="euclidean") | |
with pytest.raises(ValueError, match="must be no greater than the "): | |
clust.fit(csr_container(X)) | |
def test_processing_order(): | |
# Ensure that we consider all unprocessed points, | |
# not only direct neighbors. when picking the next point. | |
Y = [[0], [10], [-10], [25]] | |
clust = OPTICS(min_samples=3, max_eps=15).fit(Y) | |
assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15]) | |
assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf]) | |
assert_array_equal(clust.ordering_, [0, 1, 2, 3]) | |
def test_compare_to_ELKI(): | |
# Expected values, computed with (future) ELKI 0.7.5 using: | |
# java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter | |
# -algorithm clustering.optics.OPTICSHeap -optics.minpts 5 | |
# where the FixedDBIDsFilter gives 0-indexed ids. | |
r1 = [ | |
np.inf, | |
1.0574896366427478, | |
0.7587934993548423, | |
0.7290174038973836, | |
0.7290174038973836, | |
0.7290174038973836, | |
0.6861627576116127, | |
0.7587934993548423, | |
0.9280118450166668, | |
1.1748022534146194, | |
3.3355455741292257, | |
0.49618389254482587, | |
0.2552805046961355, | |
0.2552805046961355, | |
0.24944622248445714, | |
0.24944622248445714, | |
0.24944622248445714, | |
0.2552805046961355, | |
0.2552805046961355, | |
0.3086779122185853, | |
4.163024452756142, | |
1.623152630340929, | |
0.45315840475822655, | |
0.25468325192031926, | |
0.2254004358159971, | |
0.18765711877083036, | |
0.1821471333893275, | |
0.1821471333893275, | |
0.18765711877083036, | |
0.18765711877083036, | |
0.2240202988740153, | |
1.154337614548715, | |
1.342604473837069, | |
1.323308536402633, | |
0.8607514948648837, | |
0.27219111215810565, | |
0.13260875220533205, | |
0.13260875220533205, | |
0.09890587675958984, | |
0.09890587675958984, | |
0.13548790801634494, | |
0.1575483940837384, | |
0.17515137170530226, | |
0.17575920159442388, | |
0.27219111215810565, | |
0.6101447895405373, | |
1.3189208094864302, | |
1.323308536402633, | |
2.2509184159764577, | |
2.4517810628594527, | |
3.675977064404973, | |
3.8264795626020365, | |
2.9130735341510614, | |
2.9130735341510614, | |
2.9130735341510614, | |
2.9130735341510614, | |
2.8459300127258036, | |
2.8459300127258036, | |
2.8459300127258036, | |
3.0321982337972537, | |
] | |
o1 = [ | |
0, | |
3, | |
6, | |
4, | |
7, | |
8, | |
2, | |
9, | |
5, | |
1, | |
31, | |
30, | |
32, | |
34, | |
33, | |
38, | |
39, | |
35, | |
37, | |
36, | |
44, | |
21, | |
23, | |
24, | |
22, | |
25, | |
27, | |
29, | |
26, | |
28, | |
20, | |
40, | |
45, | |
46, | |
10, | |
15, | |
11, | |
13, | |
17, | |
19, | |
18, | |
12, | |
16, | |
14, | |
47, | |
49, | |
43, | |
48, | |
42, | |
41, | |
53, | |
57, | |
51, | |
52, | |
56, | |
59, | |
54, | |
55, | |
58, | |
50, | |
] | |
p1 = [ | |
-1, | |
0, | |
3, | |
6, | |
6, | |
6, | |
8, | |
3, | |
7, | |
5, | |
1, | |
31, | |
30, | |
30, | |
34, | |
34, | |
34, | |
32, | |
32, | |
37, | |
36, | |
44, | |
21, | |
23, | |
24, | |
22, | |
25, | |
25, | |
22, | |
22, | |
22, | |
21, | |
40, | |
45, | |
46, | |
10, | |
15, | |
15, | |
13, | |
13, | |
15, | |
11, | |
19, | |
15, | |
10, | |
47, | |
12, | |
45, | |
14, | |
43, | |
42, | |
53, | |
57, | |
57, | |
57, | |
57, | |
59, | |
59, | |
59, | |
58, | |
] | |
# Tests against known extraction array | |
# Does NOT work with metric='euclidean', because sklearn euclidean has | |
# worse numeric precision. 'minkowski' is slower but more accurate. | |
clust1 = OPTICS(min_samples=5).fit(X) | |
assert_array_equal(clust1.ordering_, np.array(o1)) | |
assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1)) | |
assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1)) | |
# ELKI currently does not print the core distances (which are not used much | |
# in literature, but we can at least ensure to have this consistency: | |
for i in clust1.ordering_[1:]: | |
assert clust1.reachability_[i] >= clust1.core_distances_[clust1.predecessor_[i]] | |
# Expected values, computed with (future) ELKI 0.7.5 using | |
r2 = [ | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
0.27219111215810565, | |
0.13260875220533205, | |
0.13260875220533205, | |
0.09890587675958984, | |
0.09890587675958984, | |
0.13548790801634494, | |
0.1575483940837384, | |
0.17515137170530226, | |
0.17575920159442388, | |
0.27219111215810565, | |
0.4928068613197889, | |
np.inf, | |
0.2666183922512113, | |
0.18765711877083036, | |
0.1821471333893275, | |
0.1821471333893275, | |
0.1821471333893275, | |
0.18715928772277457, | |
0.18765711877083036, | |
0.18765711877083036, | |
0.25468325192031926, | |
np.inf, | |
0.2552805046961355, | |
0.2552805046961355, | |
0.24944622248445714, | |
0.24944622248445714, | |
0.24944622248445714, | |
0.2552805046961355, | |
0.2552805046961355, | |
0.3086779122185853, | |
0.34466409325984865, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
np.inf, | |
] | |
o2 = [ | |
0, | |
1, | |
2, | |
3, | |
4, | |
5, | |
6, | |
7, | |
8, | |
9, | |
10, | |
15, | |
11, | |
13, | |
17, | |
19, | |
18, | |
12, | |
16, | |
14, | |
47, | |
46, | |
20, | |
22, | |
25, | |
23, | |
27, | |
29, | |
24, | |
26, | |
28, | |
21, | |
30, | |
32, | |
34, | |
33, | |
38, | |
39, | |
35, | |
37, | |
36, | |
31, | |
40, | |
41, | |
42, | |
43, | |
44, | |
45, | |
48, | |
49, | |
50, | |
51, | |
52, | |
53, | |
54, | |
55, | |
56, | |
57, | |
58, | |
59, | |
] | |
p2 = [ | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
10, | |
15, | |
15, | |
13, | |
13, | |
15, | |
11, | |
19, | |
15, | |
10, | |
47, | |
-1, | |
20, | |
22, | |
25, | |
25, | |
25, | |
25, | |
22, | |
22, | |
23, | |
-1, | |
30, | |
30, | |
34, | |
34, | |
34, | |
32, | |
32, | |
37, | |
38, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
-1, | |
] | |
clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X) | |
assert_array_equal(clust2.ordering_, np.array(o2)) | |
assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2)) | |
assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2)) | |
index = np.where(clust1.core_distances_ <= 0.5)[0] | |
assert_allclose(clust1.core_distances_[index], clust2.core_distances_[index]) | |
def test_extract_dbscan(global_dtype): | |
# testing an easy dbscan case. Not including clusters with different | |
# densities. | |
rng = np.random.RandomState(0) | |
n_points_per_cluster = 20 | |
C1 = [-5, -2] + 0.2 * rng.randn(n_points_per_cluster, 2) | |
C2 = [4, -1] + 0.2 * rng.randn(n_points_per_cluster, 2) | |
C3 = [1, 2] + 0.2 * rng.randn(n_points_per_cluster, 2) | |
C4 = [-2, 3] + 0.2 * rng.randn(n_points_per_cluster, 2) | |
X = np.vstack((C1, C2, C3, C4)).astype(global_dtype, copy=False) | |
clust = OPTICS(cluster_method="dbscan", eps=0.5).fit(X) | |
assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3]) | |
def test_precomputed_dists(global_dtype, csr_container): | |
redX = X[::2].astype(global_dtype, copy=False) | |
dists = pairwise_distances(redX, metric="euclidean") | |
dists = csr_container(dists) if csr_container is not None else dists | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore", EfficiencyWarning) | |
clust1 = OPTICS(min_samples=10, algorithm="brute", metric="precomputed").fit( | |
dists | |
) | |
clust2 = OPTICS(min_samples=10, algorithm="brute", metric="euclidean").fit(redX) | |
assert_allclose(clust1.reachability_, clust2.reachability_) | |
assert_array_equal(clust1.labels_, clust2.labels_) | |
def test_optics_predecessor_correction_ordering(): | |
"""Check that cluster correction using predecessor is working as expected. | |
In the following example, the predecessor correction was not working properly | |
since it was not using the right indices. | |
This non-regression test check that reordering the data does not change the results. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/26324 | |
""" | |
X_1 = np.array([1, 2, 3, 1, 8, 8, 7, 100]).reshape(-1, 1) | |
reorder = [0, 1, 2, 4, 5, 6, 7, 3] | |
X_2 = X_1[reorder] | |
optics_1 = OPTICS(min_samples=3, metric="euclidean").fit(X_1) | |
optics_2 = OPTICS(min_samples=3, metric="euclidean").fit(X_2) | |
assert_array_equal(optics_1.labels_[reorder], optics_2.labels_) | |