peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/compose
/_target.py
# Authors: Andreas Mueller <[email protected]> | |
# Guillaume Lemaitre <[email protected]> | |
# License: BSD 3 clause | |
import warnings | |
import numpy as np | |
from ..base import BaseEstimator, RegressorMixin, _fit_context, clone | |
from ..exceptions import NotFittedError | |
from ..preprocessing import FunctionTransformer | |
from ..utils import _safe_indexing, check_array | |
from ..utils._param_validation import HasMethods | |
from ..utils._tags import _safe_tags | |
from ..utils.metadata_routing import ( | |
_raise_for_unsupported_routing, | |
_RoutingNotSupportedMixin, | |
) | |
from ..utils.validation import check_is_fitted | |
__all__ = ["TransformedTargetRegressor"] | |
class TransformedTargetRegressor( | |
_RoutingNotSupportedMixin, RegressorMixin, BaseEstimator | |
): | |
"""Meta-estimator to regress on a transformed target. | |
Useful for applying a non-linear transformation to the target `y` in | |
regression problems. This transformation can be given as a Transformer | |
such as the :class:`~sklearn.preprocessing.QuantileTransformer` or as a | |
function and its inverse such as `np.log` and `np.exp`. | |
The computation during :meth:`fit` is:: | |
regressor.fit(X, func(y)) | |
or:: | |
regressor.fit(X, transformer.transform(y)) | |
The computation during :meth:`predict` is:: | |
inverse_func(regressor.predict(X)) | |
or:: | |
transformer.inverse_transform(regressor.predict(X)) | |
Read more in the :ref:`User Guide <transformed_target_regressor>`. | |
.. versionadded:: 0.20 | |
Parameters | |
---------- | |
regressor : object, default=None | |
Regressor object such as derived from | |
:class:`~sklearn.base.RegressorMixin`. This regressor will | |
automatically be cloned each time prior to fitting. If `regressor is | |
None`, :class:`~sklearn.linear_model.LinearRegression` is created and used. | |
transformer : object, default=None | |
Estimator object such as derived from | |
:class:`~sklearn.base.TransformerMixin`. Cannot be set at the same time | |
as `func` and `inverse_func`. If `transformer is None` as well as | |
`func` and `inverse_func`, the transformer will be an identity | |
transformer. Note that the transformer will be cloned during fitting. | |
Also, the transformer is restricting `y` to be a numpy array. | |
func : function, default=None | |
Function to apply to `y` before passing to :meth:`fit`. Cannot be set | |
at the same time as `transformer`. The function needs to return a | |
2-dimensional array. If `func is None`, the function used will be the | |
identity function. | |
inverse_func : function, default=None | |
Function to apply to the prediction of the regressor. Cannot be set at | |
the same time as `transformer`. The function needs to return a | |
2-dimensional array. The inverse function is used to return | |
predictions to the same space of the original training labels. | |
check_inverse : bool, default=True | |
Whether to check that `transform` followed by `inverse_transform` | |
or `func` followed by `inverse_func` leads to the original targets. | |
Attributes | |
---------- | |
regressor_ : object | |
Fitted regressor. | |
transformer_ : object | |
Transformer used in :meth:`fit` and :meth:`predict`. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. Only defined if the | |
underlying regressor exposes such an attribute when fit. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
sklearn.preprocessing.FunctionTransformer : Construct a transformer from an | |
arbitrary callable. | |
Notes | |
----- | |
Internally, the target `y` is always converted into a 2-dimensional array | |
to be used by scikit-learn transformers. At the time of prediction, the | |
output will be reshaped to a have the same number of dimensions as `y`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.linear_model import LinearRegression | |
>>> from sklearn.compose import TransformedTargetRegressor | |
>>> tt = TransformedTargetRegressor(regressor=LinearRegression(), | |
... func=np.log, inverse_func=np.exp) | |
>>> X = np.arange(4).reshape(-1, 1) | |
>>> y = np.exp(2 * X).ravel() | |
>>> tt.fit(X, y) | |
TransformedTargetRegressor(...) | |
>>> tt.score(X, y) | |
1.0 | |
>>> tt.regressor_.coef_ | |
array([2.]) | |
For a more detailed example use case refer to | |
:ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py`. | |
""" | |
_parameter_constraints: dict = { | |
"regressor": [HasMethods(["fit", "predict"]), None], | |
"transformer": [HasMethods("transform"), None], | |
"func": [callable, None], | |
"inverse_func": [callable, None], | |
"check_inverse": ["boolean"], | |
} | |
def __init__( | |
self, | |
regressor=None, | |
*, | |
transformer=None, | |
func=None, | |
inverse_func=None, | |
check_inverse=True, | |
): | |
self.regressor = regressor | |
self.transformer = transformer | |
self.func = func | |
self.inverse_func = inverse_func | |
self.check_inverse = check_inverse | |
def _fit_transformer(self, y): | |
"""Check transformer and fit transformer. | |
Create the default transformer, fit it and make additional inverse | |
check on a subset (optional). | |
""" | |
if self.transformer is not None and ( | |
self.func is not None or self.inverse_func is not None | |
): | |
raise ValueError( | |
"'transformer' and functions 'func'/'inverse_func' cannot both be set." | |
) | |
elif self.transformer is not None: | |
self.transformer_ = clone(self.transformer) | |
else: | |
if self.func is not None and self.inverse_func is None: | |
raise ValueError( | |
"When 'func' is provided, 'inverse_func' must also be provided" | |
) | |
self.transformer_ = FunctionTransformer( | |
func=self.func, | |
inverse_func=self.inverse_func, | |
validate=True, | |
check_inverse=self.check_inverse, | |
) | |
# XXX: sample_weight is not currently passed to the | |
# transformer. However, if transformer starts using sample_weight, the | |
# code should be modified accordingly. At the time to consider the | |
# sample_prop feature, it is also a good use case to be considered. | |
self.transformer_.fit(y) | |
if self.check_inverse: | |
idx_selected = slice(None, None, max(1, y.shape[0] // 10)) | |
y_sel = _safe_indexing(y, idx_selected) | |
y_sel_t = self.transformer_.transform(y_sel) | |
if not np.allclose(y_sel, self.transformer_.inverse_transform(y_sel_t)): | |
warnings.warn( | |
( | |
"The provided functions or transformer are" | |
" not strictly inverse of each other. If" | |
" you are sure you want to proceed regardless" | |
", set 'check_inverse=False'" | |
), | |
UserWarning, | |
) | |
def fit(self, X, y, **fit_params): | |
"""Fit the model according to the given training data. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Training vector, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : array-like of shape (n_samples,) | |
Target values. | |
**fit_params : dict | |
Parameters passed to the `fit` method of the underlying | |
regressor. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
_raise_for_unsupported_routing(self, "fit", **fit_params) | |
if y is None: | |
raise ValueError( | |
f"This {self.__class__.__name__} estimator " | |
"requires y to be passed, but the target y is None." | |
) | |
y = check_array( | |
y, | |
input_name="y", | |
accept_sparse=False, | |
force_all_finite=True, | |
ensure_2d=False, | |
dtype="numeric", | |
allow_nd=True, | |
) | |
# store the number of dimension of the target to predict an array of | |
# similar shape at predict | |
self._training_dim = y.ndim | |
# transformers are designed to modify X which is 2d dimensional, we | |
# need to modify y accordingly. | |
if y.ndim == 1: | |
y_2d = y.reshape(-1, 1) | |
else: | |
y_2d = y | |
self._fit_transformer(y_2d) | |
# transform y and convert back to 1d array if needed | |
y_trans = self.transformer_.transform(y_2d) | |
# FIXME: a FunctionTransformer can return a 1D array even when validate | |
# is set to True. Therefore, we need to check the number of dimension | |
# first. | |
if y_trans.ndim == 2 and y_trans.shape[1] == 1: | |
y_trans = y_trans.squeeze(axis=1) | |
if self.regressor is None: | |
from ..linear_model import LinearRegression | |
self.regressor_ = LinearRegression() | |
else: | |
self.regressor_ = clone(self.regressor) | |
self.regressor_.fit(X, y_trans, **fit_params) | |
if hasattr(self.regressor_, "feature_names_in_"): | |
self.feature_names_in_ = self.regressor_.feature_names_in_ | |
return self | |
def predict(self, X, **predict_params): | |
"""Predict using the base regressor, applying inverse. | |
The regressor is used to predict and the `inverse_func` or | |
`inverse_transform` is applied before returning the prediction. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Samples. | |
**predict_params : dict of str -> object | |
Parameters passed to the `predict` method of the underlying | |
regressor. | |
Returns | |
------- | |
y_hat : ndarray of shape (n_samples,) | |
Predicted values. | |
""" | |
check_is_fitted(self) | |
pred = self.regressor_.predict(X, **predict_params) | |
if pred.ndim == 1: | |
pred_trans = self.transformer_.inverse_transform(pred.reshape(-1, 1)) | |
else: | |
pred_trans = self.transformer_.inverse_transform(pred) | |
if ( | |
self._training_dim == 1 | |
and pred_trans.ndim == 2 | |
and pred_trans.shape[1] == 1 | |
): | |
pred_trans = pred_trans.squeeze(axis=1) | |
return pred_trans | |
def _more_tags(self): | |
regressor = self.regressor | |
if regressor is None: | |
from ..linear_model import LinearRegression | |
regressor = LinearRegression() | |
return { | |
"poor_score": True, | |
"multioutput": _safe_tags(regressor, key="multioutput"), | |
} | |
def n_features_in_(self): | |
"""Number of features seen during :term:`fit`.""" | |
# For consistency with other estimators we raise a AttributeError so | |
# that hasattr() returns False the estimator isn't fitted. | |
try: | |
check_is_fitted(self) | |
except NotFittedError as nfe: | |
raise AttributeError( | |
"{} object has no n_features_in_ attribute.".format( | |
self.__class__.__name__ | |
) | |
) from nfe | |
return self.regressor_.n_features_in_ | |