peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_dummy.py
import numpy as np | |
import pytest | |
import scipy.sparse as sp | |
from sklearn.base import clone | |
from sklearn.dummy import DummyClassifier, DummyRegressor | |
from sklearn.exceptions import NotFittedError | |
from sklearn.utils._testing import ( | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
ignore_warnings, | |
) | |
from sklearn.utils.fixes import CSC_CONTAINERS | |
from sklearn.utils.stats import _weighted_percentile | |
def _check_predict_proba(clf, X, y): | |
proba = clf.predict_proba(X) | |
# We know that we can have division by zero | |
log_proba = clf.predict_log_proba(X) | |
y = np.atleast_1d(y) | |
if y.ndim == 1: | |
y = np.reshape(y, (-1, 1)) | |
n_outputs = y.shape[1] | |
n_samples = len(X) | |
if n_outputs == 1: | |
proba = [proba] | |
log_proba = [log_proba] | |
for k in range(n_outputs): | |
assert proba[k].shape[0] == n_samples | |
assert proba[k].shape[1] == len(np.unique(y[:, k])) | |
assert_array_almost_equal(proba[k].sum(axis=1), np.ones(len(X))) | |
# We know that we can have division by zero | |
assert_array_almost_equal(np.log(proba[k]), log_proba[k]) | |
def _check_behavior_2d(clf): | |
# 1d case | |
X = np.array([[0], [0], [0], [0]]) # ignored | |
y = np.array([1, 2, 1, 1]) | |
est = clone(clf) | |
est.fit(X, y) | |
y_pred = est.predict(X) | |
assert y.shape == y_pred.shape | |
# 2d case | |
y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) | |
est = clone(clf) | |
est.fit(X, y) | |
y_pred = est.predict(X) | |
assert y.shape == y_pred.shape | |
def _check_behavior_2d_for_constant(clf): | |
# 2d case only | |
X = np.array([[0], [0], [0], [0]]) # ignored | |
y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) | |
est = clone(clf) | |
est.fit(X, y) | |
y_pred = est.predict(X) | |
assert y.shape == y_pred.shape | |
def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): | |
assert_array_almost_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) | |
assert_array_almost_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) | |
def test_most_frequent_and_prior_strategy(): | |
X = [[0], [0], [0], [0]] # ignored | |
y = [1, 2, 1, 1] | |
for strategy in ("most_frequent", "prior"): | |
clf = DummyClassifier(strategy=strategy, random_state=0) | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(X), np.ones(len(X))) | |
_check_predict_proba(clf, X, y) | |
if strategy == "prior": | |
assert_array_almost_equal( | |
clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) | |
) | |
else: | |
assert_array_almost_equal( | |
clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5 | |
) | |
def test_most_frequent_and_prior_strategy_with_2d_column_y(): | |
# non-regression test added in | |
# https://github.com/scikit-learn/scikit-learn/pull/13545 | |
X = [[0], [0], [0], [0]] | |
y_1d = [1, 2, 1, 1] | |
y_2d = [[1], [2], [1], [1]] | |
for strategy in ("most_frequent", "prior"): | |
clf_1d = DummyClassifier(strategy=strategy, random_state=0) | |
clf_2d = DummyClassifier(strategy=strategy, random_state=0) | |
clf_1d.fit(X, y_1d) | |
clf_2d.fit(X, y_2d) | |
assert_array_equal(clf_1d.predict(X), clf_2d.predict(X)) | |
def test_most_frequent_and_prior_strategy_multioutput(): | |
X = [[0], [0], [0], [0]] # ignored | |
y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) | |
n_samples = len(X) | |
for strategy in ("prior", "most_frequent"): | |
clf = DummyClassifier(strategy=strategy, random_state=0) | |
clf.fit(X, y) | |
assert_array_equal( | |
clf.predict(X), | |
np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]), | |
) | |
_check_predict_proba(clf, X, y) | |
_check_behavior_2d(clf) | |
def test_stratified_strategy(global_random_seed): | |
X = [[0]] * 5 # ignored | |
y = [1, 2, 1, 1, 2] | |
clf = DummyClassifier(strategy="stratified", random_state=global_random_seed) | |
clf.fit(X, y) | |
X = [[0]] * 500 | |
y_pred = clf.predict(X) | |
p = np.bincount(y_pred) / float(len(X)) | |
assert_almost_equal(p[1], 3.0 / 5, decimal=1) | |
assert_almost_equal(p[2], 2.0 / 5, decimal=1) | |
_check_predict_proba(clf, X, y) | |
def test_stratified_strategy_multioutput(global_random_seed): | |
X = [[0]] * 5 # ignored | |
y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) | |
clf = DummyClassifier(strategy="stratified", random_state=global_random_seed) | |
clf.fit(X, y) | |
X = [[0]] * 500 | |
y_pred = clf.predict(X) | |
for k in range(y.shape[1]): | |
p = np.bincount(y_pred[:, k]) / float(len(X)) | |
assert_almost_equal(p[1], 3.0 / 5, decimal=1) | |
assert_almost_equal(p[2], 2.0 / 5, decimal=1) | |
_check_predict_proba(clf, X, y) | |
_check_behavior_2d(clf) | |
def test_uniform_strategy(global_random_seed): | |
X = [[0]] * 4 # ignored | |
y = [1, 2, 1, 1] | |
clf = DummyClassifier(strategy="uniform", random_state=global_random_seed) | |
clf.fit(X, y) | |
X = [[0]] * 500 | |
y_pred = clf.predict(X) | |
p = np.bincount(y_pred) / float(len(X)) | |
assert_almost_equal(p[1], 0.5, decimal=1) | |
assert_almost_equal(p[2], 0.5, decimal=1) | |
_check_predict_proba(clf, X, y) | |
def test_uniform_strategy_multioutput(global_random_seed): | |
X = [[0]] * 4 # ignored | |
y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) | |
clf = DummyClassifier(strategy="uniform", random_state=global_random_seed) | |
clf.fit(X, y) | |
X = [[0]] * 500 | |
y_pred = clf.predict(X) | |
for k in range(y.shape[1]): | |
p = np.bincount(y_pred[:, k]) / float(len(X)) | |
assert_almost_equal(p[1], 0.5, decimal=1) | |
assert_almost_equal(p[2], 0.5, decimal=1) | |
_check_predict_proba(clf, X, y) | |
_check_behavior_2d(clf) | |
def test_string_labels(): | |
X = [[0]] * 5 | |
y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] | |
clf = DummyClassifier(strategy="most_frequent") | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(X), ["paris"] * 5) | |
def test_classifier_score_with_None(y, y_test): | |
clf = DummyClassifier(strategy="most_frequent") | |
clf.fit(None, y) | |
assert clf.score(None, y_test) == 0.5 | |
def test_classifier_prediction_independent_of_X(strategy, global_random_seed): | |
y = [0, 2, 1, 1] | |
X1 = [[0]] * 4 | |
clf1 = DummyClassifier( | |
strategy=strategy, random_state=global_random_seed, constant=0 | |
) | |
clf1.fit(X1, y) | |
predictions1 = clf1.predict(X1) | |
X2 = [[1]] * 4 | |
clf2 = DummyClassifier( | |
strategy=strategy, random_state=global_random_seed, constant=0 | |
) | |
clf2.fit(X2, y) | |
predictions2 = clf2.predict(X2) | |
assert_array_equal(predictions1, predictions2) | |
def test_mean_strategy_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X = [[0]] * 4 # ignored | |
y = random_state.randn(4) | |
reg = DummyRegressor() | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) | |
def test_mean_strategy_multioutput_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X_learn = random_state.randn(10, 10) | |
y_learn = random_state.randn(10, 5) | |
mean = np.mean(y_learn, axis=0).reshape((1, -1)) | |
X_test = random_state.randn(20, 10) | |
y_test = random_state.randn(20, 5) | |
# Correctness oracle | |
est = DummyRegressor() | |
est.fit(X_learn, y_learn) | |
y_pred_learn = est.predict(X_learn) | |
y_pred_test = est.predict(X_test) | |
_check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) | |
_check_behavior_2d(est) | |
def test_regressor_exceptions(): | |
reg = DummyRegressor() | |
with pytest.raises(NotFittedError): | |
reg.predict([]) | |
def test_median_strategy_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X = [[0]] * 5 # ignored | |
y = random_state.randn(5) | |
reg = DummyRegressor(strategy="median") | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) | |
def test_median_strategy_multioutput_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X_learn = random_state.randn(10, 10) | |
y_learn = random_state.randn(10, 5) | |
median = np.median(y_learn, axis=0).reshape((1, -1)) | |
X_test = random_state.randn(20, 10) | |
y_test = random_state.randn(20, 5) | |
# Correctness oracle | |
est = DummyRegressor(strategy="median") | |
est.fit(X_learn, y_learn) | |
y_pred_learn = est.predict(X_learn) | |
y_pred_test = est.predict(X_test) | |
_check_equality_regressor(median, y_learn, y_pred_learn, y_test, y_pred_test) | |
_check_behavior_2d(est) | |
def test_quantile_strategy_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X = [[0]] * 5 # ignored | |
y = random_state.randn(5) | |
reg = DummyRegressor(strategy="quantile", quantile=0.5) | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) | |
reg = DummyRegressor(strategy="quantile", quantile=0) | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) | |
reg = DummyRegressor(strategy="quantile", quantile=1) | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) | |
reg = DummyRegressor(strategy="quantile", quantile=0.3) | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) | |
def test_quantile_strategy_multioutput_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X_learn = random_state.randn(10, 10) | |
y_learn = random_state.randn(10, 5) | |
median = np.median(y_learn, axis=0).reshape((1, -1)) | |
quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) | |
X_test = random_state.randn(20, 10) | |
y_test = random_state.randn(20, 5) | |
# Correctness oracle | |
est = DummyRegressor(strategy="quantile", quantile=0.5) | |
est.fit(X_learn, y_learn) | |
y_pred_learn = est.predict(X_learn) | |
y_pred_test = est.predict(X_test) | |
_check_equality_regressor(median, y_learn, y_pred_learn, y_test, y_pred_test) | |
_check_behavior_2d(est) | |
# Correctness oracle | |
est = DummyRegressor(strategy="quantile", quantile=0.8) | |
est.fit(X_learn, y_learn) | |
y_pred_learn = est.predict(X_learn) | |
y_pred_test = est.predict(X_test) | |
_check_equality_regressor( | |
quantile_values, y_learn, y_pred_learn, y_test, y_pred_test | |
) | |
_check_behavior_2d(est) | |
def test_quantile_invalid(): | |
X = [[0]] * 5 # ignored | |
y = [0] * 5 # ignored | |
est = DummyRegressor(strategy="quantile", quantile=None) | |
err_msg = ( | |
"When using `strategy='quantile', you have to specify the desired quantile" | |
) | |
with pytest.raises(ValueError, match=err_msg): | |
est.fit(X, y) | |
def test_quantile_strategy_empty_train(): | |
est = DummyRegressor(strategy="quantile", quantile=0.4) | |
with pytest.raises(ValueError): | |
est.fit([], []) | |
def test_constant_strategy_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X = [[0]] * 5 # ignored | |
y = random_state.randn(5) | |
reg = DummyRegressor(strategy="constant", constant=[43]) | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [43] * len(X)) | |
reg = DummyRegressor(strategy="constant", constant=43) | |
reg.fit(X, y) | |
assert_array_equal(reg.predict(X), [43] * len(X)) | |
# non-regression test for #22478 | |
assert not isinstance(reg.constant, np.ndarray) | |
def test_constant_strategy_multioutput_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X_learn = random_state.randn(10, 10) | |
y_learn = random_state.randn(10, 5) | |
# test with 2d array | |
constants = random_state.randn(5) | |
X_test = random_state.randn(20, 10) | |
y_test = random_state.randn(20, 5) | |
# Correctness oracle | |
est = DummyRegressor(strategy="constant", constant=constants) | |
est.fit(X_learn, y_learn) | |
y_pred_learn = est.predict(X_learn) | |
y_pred_test = est.predict(X_test) | |
_check_equality_regressor(constants, y_learn, y_pred_learn, y_test, y_pred_test) | |
_check_behavior_2d_for_constant(est) | |
def test_y_mean_attribute_regressor(): | |
X = [[0]] * 5 | |
y = [1, 2, 4, 6, 8] | |
# when strategy = 'mean' | |
est = DummyRegressor(strategy="mean") | |
est.fit(X, y) | |
assert est.constant_ == np.mean(y) | |
def test_constants_not_specified_regressor(): | |
X = [[0]] * 5 | |
y = [1, 2, 4, 6, 8] | |
est = DummyRegressor(strategy="constant") | |
err_msg = "Constant target value has to be specified" | |
with pytest.raises(TypeError, match=err_msg): | |
est.fit(X, y) | |
def test_constant_size_multioutput_regressor(global_random_seed): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X = random_state.randn(10, 10) | |
y = random_state.randn(10, 5) | |
est = DummyRegressor(strategy="constant", constant=[1, 2, 3, 4]) | |
err_msg = r"Constant target value should have shape \(5, 1\)." | |
with pytest.raises(ValueError, match=err_msg): | |
est.fit(X, y) | |
def test_constant_strategy(): | |
X = [[0], [0], [0], [0]] # ignored | |
y = [2, 1, 2, 2] | |
clf = DummyClassifier(strategy="constant", random_state=0, constant=1) | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(X), np.ones(len(X))) | |
_check_predict_proba(clf, X, y) | |
X = [[0], [0], [0], [0]] # ignored | |
y = ["two", "one", "two", "two"] | |
clf = DummyClassifier(strategy="constant", random_state=0, constant="one") | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(X), np.array(["one"] * 4)) | |
_check_predict_proba(clf, X, y) | |
def test_constant_strategy_multioutput(): | |
X = [[0], [0], [0], [0]] # ignored | |
y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) | |
n_samples = len(X) | |
clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) | |
clf.fit(X, y) | |
assert_array_equal( | |
clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) | |
) | |
_check_predict_proba(clf, X, y) | |
def test_constant_strategy_exceptions(y, params, err_msg): | |
X = [[0], [0], [0], [0]] | |
clf = DummyClassifier(strategy="constant", **params) | |
with pytest.raises(ValueError, match=err_msg): | |
clf.fit(X, y) | |
def test_classification_sample_weight(): | |
X = [[0], [0], [1]] | |
y = [0, 1, 0] | |
sample_weight = [0.1, 1.0, 0.1] | |
clf = DummyClassifier(strategy="stratified").fit(X, y, sample_weight) | |
assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1.0 / 1.2]) | |
def test_constant_strategy_sparse_target(csc_container): | |
X = [[0]] * 5 # ignored | |
y = csc_container(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) | |
n_samples = len(X) | |
clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) | |
clf.fit(X, y) | |
y_pred = clf.predict(X) | |
assert sp.issparse(y_pred) | |
assert_array_equal( | |
y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) | |
) | |
def test_uniform_strategy_sparse_target_warning(global_random_seed, csc_container): | |
X = [[0]] * 5 # ignored | |
y = csc_container(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) | |
clf = DummyClassifier(strategy="uniform", random_state=global_random_seed) | |
with pytest.warns(UserWarning, match="the uniform strategy would not save memory"): | |
clf.fit(X, y) | |
X = [[0]] * 500 | |
y_pred = clf.predict(X) | |
for k in range(y.shape[1]): | |
p = np.bincount(y_pred[:, k]) / float(len(X)) | |
assert_almost_equal(p[1], 1 / 3, decimal=1) | |
assert_almost_equal(p[2], 1 / 3, decimal=1) | |
assert_almost_equal(p[4], 1 / 3, decimal=1) | |
def test_stratified_strategy_sparse_target(global_random_seed, csc_container): | |
X = [[0]] * 5 # ignored | |
y = csc_container(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) | |
clf = DummyClassifier(strategy="stratified", random_state=global_random_seed) | |
clf.fit(X, y) | |
X = [[0]] * 500 | |
y_pred = clf.predict(X) | |
assert sp.issparse(y_pred) | |
y_pred = y_pred.toarray() | |
for k in range(y.shape[1]): | |
p = np.bincount(y_pred[:, k]) / float(len(X)) | |
assert_almost_equal(p[1], 3.0 / 5, decimal=1) | |
assert_almost_equal(p[0], 1.0 / 5, decimal=1) | |
assert_almost_equal(p[4], 1.0 / 5, decimal=1) | |
def test_most_frequent_and_prior_strategy_sparse_target(csc_container): | |
X = [[0]] * 5 # ignored | |
y = csc_container(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) | |
n_samples = len(X) | |
y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) | |
for strategy in ("most_frequent", "prior"): | |
clf = DummyClassifier(strategy=strategy, random_state=0) | |
clf.fit(X, y) | |
y_pred = clf.predict(X) | |
assert sp.issparse(y_pred) | |
assert_array_equal(y_pred.toarray(), y_expected) | |
def test_dummy_regressor_sample_weight(global_random_seed, n_samples=10): | |
random_state = np.random.RandomState(seed=global_random_seed) | |
X = [[0]] * n_samples | |
y = random_state.rand(n_samples) | |
sample_weight = random_state.rand(n_samples) | |
est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) | |
assert est.constant_ == np.average(y, weights=sample_weight) | |
est = DummyRegressor(strategy="median").fit(X, y, sample_weight) | |
assert est.constant_ == _weighted_percentile(y, sample_weight, 50.0) | |
est = DummyRegressor(strategy="quantile", quantile=0.95).fit(X, y, sample_weight) | |
assert est.constant_ == _weighted_percentile(y, sample_weight, 95.0) | |
def test_dummy_regressor_on_3D_array(): | |
X = np.array([[["foo"]], [["bar"]], [["baz"]]]) | |
y = np.array([2, 2, 2]) | |
y_expected = np.array([2, 2, 2]) | |
cls = DummyRegressor() | |
cls.fit(X, y) | |
y_pred = cls.predict(X) | |
assert_array_equal(y_pred, y_expected) | |
def test_dummy_classifier_on_3D_array(): | |
X = np.array([[["foo"]], [["bar"]], [["baz"]]]) | |
y = [2, 2, 2] | |
y_expected = [2, 2, 2] | |
y_proba_expected = [[1], [1], [1]] | |
cls = DummyClassifier(strategy="stratified") | |
cls.fit(X, y) | |
y_pred = cls.predict(X) | |
y_pred_proba = cls.predict_proba(X) | |
assert_array_equal(y_pred, y_expected) | |
assert_array_equal(y_pred_proba, y_proba_expected) | |
def test_dummy_regressor_return_std(): | |
X = [[0]] * 3 # ignored | |
y = np.array([2, 2, 2]) | |
y_std_expected = np.array([0, 0, 0]) | |
cls = DummyRegressor() | |
cls.fit(X, y) | |
y_pred_list = cls.predict(X, return_std=True) | |
# there should be two elements when return_std is True | |
assert len(y_pred_list) == 2 | |
# the second element should be all zeros | |
assert_array_equal(y_pred_list[1], y_std_expected) | |
def test_regressor_score_with_None(y, y_test): | |
reg = DummyRegressor() | |
reg.fit(None, y) | |
assert reg.score(None, y_test) == 1.0 | |
def test_regressor_prediction_independent_of_X(strategy): | |
y = [0, 2, 1, 1] | |
X1 = [[0]] * 4 | |
reg1 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7) | |
reg1.fit(X1, y) | |
predictions1 = reg1.predict(X1) | |
X2 = [[1]] * 4 | |
reg2 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7) | |
reg2.fit(X2, y) | |
predictions2 = reg2.predict(X2) | |
assert_array_equal(predictions1, predictions2) | |
def test_dtype_of_classifier_probas(strategy): | |
y = [0, 2, 1, 1] | |
X = np.zeros(4) | |
model = DummyClassifier(strategy=strategy, random_state=0, constant=0) | |
probas = model.fit(X, y).predict_proba(X) | |
assert probas.dtype == np.float64 | |