peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/launcher
/launch.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| """ | |
| DeepSpeed launcher, this is similar to torch's distributed.launch but supports | |
| additional features such as arbitrary gpu exclusion. | |
| deepspeed.launcher.launch is intended to be run on a single worker node and | |
| will spawn several worker sub-processes depending on how many devices/ranks | |
| are on the worker. | |
| """ | |
| import sys | |
| import subprocess | |
| import os | |
| import json | |
| import base64 | |
| import time | |
| import signal | |
| import psutil | |
| from collections import defaultdict | |
| from typing import Dict | |
| from argparse import ArgumentParser, REMAINDER | |
| from deepspeed.accelerator import get_accelerator | |
| from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT | |
| from ..nebula.constants import DLTS_POD_ENV_PATH | |
| from ..utils import logger, get_numactl_cmd | |
| from ..elasticity import is_torch_elastic_compatible | |
| from .constants import ELASTIC_TRAINING_ID_DEFAULT | |
| PID_FILE_BASEPATH = "/tmp" | |
| def parse_args(): | |
| parser = ArgumentParser(description="DeepSpeed distributed training launch" | |
| " utility that creates multiple distributed" | |
| " processes on a single node") | |
| # Optional arguments for the launch helper | |
| parser.add_argument("--node_rank", | |
| type=int, | |
| default=0, | |
| help="The rank of the node for multi-node distributed " | |
| "training") | |
| parser.add_argument("--master_addr", | |
| default="127.0.0.1", | |
| type=str, | |
| help="Master node (rank 0)'s address, should be either" | |
| " the IP address or the hostname of node 0, for" | |
| " single node multi-proc training, the" | |
| " --master_addr can simply be 127.0.0.1") | |
| parser.add_argument("--master_port", | |
| default=TORCH_DISTRIBUTED_DEFAULT_PORT, | |
| type=int, | |
| help="Master node (rank 0)'s free port that needs to " | |
| "be used for communication during distributed " | |
| "training") | |
| parser.add_argument("--world_info", default="None", type=str, help="world info base64 encoded dictionary") | |
| parser.add_argument("--module", | |
| action="store_true", | |
| help="Change each process to interpret the launch " | |
| "script as a Python module, executing with the same " | |
| "behavior as 'python -m'.") | |
| parser.add_argument("--no_python", | |
| action="store_true", | |
| help="Skip prepending the training script with " | |
| "'python' - just execute it directly.") | |
| parser.add_argument("--enable_elastic_training", action="store_true", help="Enable elastic training support.") | |
| parser.add_argument("--min_elastic_nodes", type=int, default=-1, help="Min number of nodes in elastic training.") | |
| parser.add_argument("--max_elastic_nodes", type=int, default=-1, help="Max number of nodes in elastic training.") | |
| parser.add_argument("--no_local_rank", | |
| action="store_true", | |
| help="Do not pass local_rank as an argument when calling " | |
| "the user's training script.") | |
| parser.add_argument("--save_pid", | |
| type=int, | |
| default=0, | |
| help="main launching process pid, for internal pid tracking") | |
| parser.add_argument("--enable_each_rank_log", | |
| default="None", | |
| type=str, | |
| help="redirect the stdout and stderr from each rank into different log files") | |
| parser.add_argument("--bind_cores_to_rank", | |
| action="store_true", | |
| help="Bind each rank to different cores of the host. " | |
| "This improves host efficiency especially for CPU backend") | |
| parser.add_argument("--bind_core_list", | |
| type=str, | |
| default=None, | |
| help="List of cores to bind to with comma separated list of " | |
| "numbers and range. i.e. 1,3-5,7 => [1,3,4,5,7]. When not " | |
| "specified, all cores on system would be used rank binding") | |
| # positional | |
| parser.add_argument("training_script", | |
| type=str, | |
| help="The full path to the single GPU training " | |
| "program/script to be launched in parallel, " | |
| "followed by all the arguments for the " | |
| "training script") | |
| # rest from the training program | |
| parser.add_argument('training_script_args', nargs=REMAINDER) | |
| return parser.parse_args() | |
| # Adapted from https://psutil.readthedocs.io/en/latest/#kill-process-tree | |
| def terminate_process_tree(pid): | |
| process = psutil.Process(pid) | |
| children = process.children(recursive=True) | |
| children.append(process) | |
| for child in children: | |
| try: | |
| child.terminate() | |
| except psutil.NoSuchProcess: | |
| pass | |
| gone, alive = psutil.wait_procs(children, timeout=30) | |
| for p in alive: | |
| p.kill() | |
| def main(): | |
| args = parse_args() | |
| current_env = os.environ.copy() | |
| for k in current_env.keys(): | |
| if "NCCL" in k: | |
| logger.info(f"{args.node_rank} {k}={current_env[k]}") | |
| if args.world_info == "None": | |
| raise ValueError("world_info can not be None") | |
| world_info = base64.urlsafe_b64decode(args.world_info) | |
| world_info = json.loads(world_info) | |
| logger.info(f"WORLD INFO DICT: {world_info}") | |
| node_list = list(world_info.keys()) | |
| args.nnodes = len(node_list) | |
| local_node = node_list[args.node_rank] | |
| local_accelerator_ids = world_info[local_node] | |
| num_local_procs = len(local_accelerator_ids) | |
| logger.info(f"nnodes={args.nnodes}, num_local_procs={num_local_procs}, node_rank={args.node_rank}") | |
| global_rank_mapping = defaultdict(list) | |
| curr_global_rank = 0 | |
| dist_world_size = 0 | |
| for node_id in node_list: | |
| gids = world_info[node_id] | |
| dist_world_size += len(gids) | |
| for gid in gids: | |
| global_rank_mapping[node_id].append(curr_global_rank) | |
| curr_global_rank += 1 | |
| logger.info(f"global_rank_mapping={global_rank_mapping}") | |
| logger.info(f"dist_world_size={dist_world_size}") | |
| get_accelerator().set_visible_devices_envs(current_env, local_accelerator_ids) | |
| for env in get_accelerator().visible_devices_envs(): | |
| logger.info(f"Setting {env}={current_env[env]}") | |
| # set PyTorch distributed related environmental variables | |
| current_env["MASTER_ADDR"] = args.master_addr | |
| current_env["MASTER_PORT"] = str(args.master_port) | |
| current_env["WORLD_SIZE"] = str(dist_world_size) | |
| current_env["CROSS_RANK"] = str(args.node_rank) | |
| current_env["CROSS_SIZE"] = str(args.nnodes) | |
| current_env["LOCAL_SIZE"] = str(num_local_procs) | |
| if args.save_pid: | |
| print(f"launcher pid: {os.getpid()}") | |
| pid_file = None | |
| if args.save_pid: | |
| launcher_pid = os.getpid() | |
| pid_file = os.path.join(PID_FILE_BASEPATH, f"{args.save_pid}.deepspeed") | |
| assert not os.path.isfile(pid_file), "pid file exists but shouldn't" | |
| with open(pid_file, 'w') as fd: | |
| fd.write(f"{launcher_pid}") | |
| if not is_torch_elastic_compatible(): | |
| if args.enable_elastic_training: | |
| logger.info(f"Disabling elastic training support as \ | |
| PyTorch version should be greater than 1.11.x") | |
| args.enable_elastic_training = False | |
| if os.path.exists(DLTS_POD_ENV_PATH): | |
| with open(DLTS_POD_ENV_PATH) as file: | |
| lines = file.readlines() | |
| lines = [line.rstrip() for line in lines] | |
| for line in lines: | |
| if line.startswith('export FC_TASKROLE_NAME') or line.startswith('export FC_TASK_INDEX'): | |
| key_val = line.split()[1] | |
| key, val = key_val.split('=') | |
| current_env[key] = val | |
| processes = [] | |
| cmd = [] | |
| if not args.enable_elastic_training: | |
| if args.enable_each_rank_log != "None": | |
| # prepare the log path and the file name prefix | |
| if os.path.isfile(args.enable_each_rank_log): | |
| raise ValueError(f"{args.enable_each_rank_log} should not be a file, it should be a directory.") | |
| if not os.path.exists(args.enable_each_rank_log): | |
| try: | |
| os.makedirs(args.enable_each_rank_log) | |
| except Exception as e: | |
| print(e) | |
| raise ValueError(f"unable to create directory {args.enable_each_rank_log} for each rank log.") | |
| log_name_prefix = time.strftime("%Y%m%d%H%M%S", time.localtime()) | |
| for local_proc in range(0, num_local_procs): | |
| # each process's rank | |
| dist_rank = global_rank_mapping[local_node][local_proc] | |
| local_rank = dist_rank % num_local_procs | |
| current_env["RANK"] = str(dist_rank) | |
| current_env["LOCAL_RANK"] = str(local_rank) | |
| # spawn the processes | |
| cmd = [] | |
| if args.bind_cores_to_rank: | |
| cores_per_rank, numactl_cmd = get_numactl_cmd(args.bind_core_list, num_local_procs, local_rank) | |
| current_env["OMP_NUM_THREADS"] = f"{cores_per_rank}" | |
| cmd = cmd + numactl_cmd | |
| if not args.no_python: | |
| cmd.append(sys.executable) | |
| cmd.append("-u") | |
| if args.module: | |
| cmd.append("-m") | |
| else: | |
| if args.module: | |
| raise ValueError("Don't use both the '--no_python' flag" | |
| " and the '--module' flag at the same time.") | |
| cmd.append(args.training_script) | |
| # A user may not want to pass local_rank as a keyword arg so we make this optional. | |
| if not args.no_local_rank: | |
| cmd.append(f"--local_rank={local_rank}") | |
| cmd += args.training_script_args | |
| if args.enable_each_rank_log != "None": | |
| log_file = os.path.join(args.enable_each_rank_log, f"{log_name_prefix}_rank{dist_rank}.log") | |
| log_fd = open(log_file, 'w') | |
| process = subprocess.Popen(cmd, env=current_env, stdout=log_fd, stderr=log_fd) | |
| else: | |
| process = subprocess.Popen(cmd, env=current_env) | |
| # logs the command from processes | |
| logger.info(f"process {process.pid} spawned with command: {cmd}") | |
| processes.append(process) | |
| else: | |
| from ..elasticity import DSElasticAgent | |
| from torch.distributed.elastic.rendezvous import RendezvousParameters | |
| from torch.distributed.elastic.agent.server.api import WorkerSpec | |
| import torch.distributed.elastic.rendezvous.registry as rdzv_registry | |
| from torch.distributed.elastic.multiprocessing import Std | |
| if args.min_elastic_nodes == -1: | |
| args.min_elastic_nodes = 1 | |
| if args.max_elastic_nodes == -1: | |
| args.max_elastic_nodes = args.nnodes | |
| assert args.max_elastic_nodes > 0 and args.min_elastic_nodes > 0, "Max and Min nodes should be positive" | |
| current_env["NCCL_ASYNC_ERROR_HANDLING"] = str(1) | |
| # Get config and arguments | |
| cmd = [] | |
| if not args.no_python: | |
| cmd = [sys.executable, "-u"] | |
| if args.module: | |
| cmd.append("-m") | |
| else: | |
| if args.module: | |
| raise ValueError("Don't use both the '--no_python' flag" | |
| " and the '--module' flag at the same time.") | |
| cmd.append(args.training_script) | |
| cmd += args.training_script_args | |
| cmd_args = cmd[1:] | |
| rdzv_configs: Dict[str, str] = {'timeout': 100} | |
| run_id = os.environ.get("ELASTIC_RUN_ID", ELASTIC_TRAINING_ID_DEFAULT) | |
| # Creating config for rendezvous class | |
| rdzv_parameters = RendezvousParameters(backend='c10d', | |
| endpoint=args.master_addr + ":" + str(args.master_port), | |
| run_id=run_id, | |
| min_nodes=args.min_elastic_nodes, | |
| max_nodes=args.max_elastic_nodes, | |
| **rdzv_configs) | |
| spec = WorkerSpec( | |
| role='trainer', | |
| local_world_size=num_local_procs, | |
| entrypoint=cmd[0], | |
| args=cmd[1:], | |
| rdzv_handler=rdzv_registry.get_rendezvous_handler(rdzv_parameters), | |
| max_restarts=100, | |
| monitor_interval=5, | |
| redirects=Std.from_str("0"), | |
| tee=Std.from_str("0"), | |
| master_addr=None, | |
| master_port=None, | |
| ) | |
| agent = DSElasticAgent(spec, current_env) | |
| agent.run() | |
| sig_names = {2: "SIGINT", 15: "SIGTERM"} | |
| last_return_code = None | |
| def sigkill_handler(signum, frame): | |
| for process in processes: | |
| logger.info(f"Killing subprocess {process.pid}") | |
| try: | |
| terminate_process_tree(process.pid) | |
| except Exception: | |
| pass | |
| if last_return_code is not None: | |
| logger.error(f"{cmd} exits with return code = {last_return_code}") | |
| sys.exit(last_return_code) | |
| if signum in sig_names: | |
| logger.info(f"Main process received {sig_names[signum]}, exiting") | |
| if args.save_pid: | |
| if os.path.isfile(pid_file): | |
| os.remove(pid_file) | |
| sys.exit(1) | |
| # pass SIGINT/SIGTERM to children if the parent is being terminated | |
| signal.signal(signal.SIGINT, sigkill_handler) | |
| signal.signal(signal.SIGTERM, sigkill_handler) | |
| alive_processes = set(processes) | |
| while len(alive_processes): | |
| finished_processes = [] | |
| for process in alive_processes: | |
| if process.poll() is None: | |
| # the process is still running | |
| continue | |
| else: | |
| if process.returncode != 0: | |
| last_return_code = process.returncode # for sigkill_handler | |
| sigkill_handler(signal.SIGTERM, None) # not coming back | |
| else: | |
| # exited cleanly | |
| logger.info(f"Process {process.pid} exits successfully.") | |
| finished_processes.append(process) | |
| alive_processes = set(alive_processes) - set(finished_processes) | |
| time.sleep(1) | |
| if __name__ == "__main__": | |
| main() | |