peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/huggingface_hub
/utils
/endpoint_helpers.py
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Helpful utility functions and classes in relation to exploring API endpoints | |
| with the aim for a user-friendly interface. | |
| """ | |
| import math | |
| import re | |
| import warnings | |
| from dataclasses import dataclass | |
| from typing import TYPE_CHECKING, List, Optional, Union | |
| from ..repocard_data import ModelCardData | |
| if TYPE_CHECKING: | |
| from ..hf_api import ModelInfo | |
| def _is_emission_within_treshold(model_info: "ModelInfo", minimum_threshold: float, maximum_threshold: float) -> bool: | |
| """Checks if a model's emission is within a given threshold. | |
| Args: | |
| model_info (`ModelInfo`): | |
| A model info object containing the model's emission information. | |
| minimum_threshold (`float`): | |
| A minimum carbon threshold to filter by, such as 1. | |
| maximum_threshold (`float`): | |
| A maximum carbon threshold to filter by, such as 10. | |
| Returns: | |
| `bool`: Whether the model's emission is within the given threshold. | |
| """ | |
| if minimum_threshold is None and maximum_threshold is None: | |
| raise ValueError("Both `minimum_threshold` and `maximum_threshold` cannot both be `None`") | |
| if minimum_threshold is None: | |
| minimum_threshold = -1 | |
| if maximum_threshold is None: | |
| maximum_threshold = math.inf | |
| card_data = getattr(model_info, "card_data", None) | |
| if card_data is None or not isinstance(card_data, (dict, ModelCardData)): | |
| return False | |
| # Get CO2 emission metadata | |
| emission = card_data.get("co2_eq_emissions", None) | |
| if isinstance(emission, dict): | |
| emission = emission["emissions"] | |
| if not emission: | |
| return False | |
| # Filter out if value is missing or out of range | |
| matched = re.search(r"\d+\.\d+|\d+", str(emission)) | |
| if matched is None: | |
| return False | |
| emission_value = float(matched.group(0)) | |
| return minimum_threshold <= emission_value <= maximum_threshold | |
| class DatasetFilter: | |
| """ | |
| A class that converts human-readable dataset search parameters into ones | |
| compatible with the REST API. For all parameters capitalization does not | |
| matter. | |
| <Tip warning={true}> | |
| The `DatasetFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_datasets`]. | |
| </Tip> | |
| Args: | |
| author (`str`, *optional*): | |
| A string that can be used to identify datasets on | |
| the Hub by the original uploader (author or organization), such as | |
| `facebook` or `huggingface`. | |
| benchmark (`str` or `List`, *optional*): | |
| A string or list of strings that can be used to identify datasets on | |
| the Hub by their official benchmark. | |
| dataset_name (`str`, *optional*): | |
| A string or list of strings that can be used to identify datasets on | |
| the Hub by its name, such as `SQAC` or `wikineural` | |
| language_creators (`str` or `List`, *optional*): | |
| A string or list of strings that can be used to identify datasets on | |
| the Hub with how the data was curated, such as `crowdsourced` or | |
| `machine_generated`. | |
| language (`str` or `List`, *optional*): | |
| A string or list of strings representing a two-character language to | |
| filter datasets by on the Hub. | |
| multilinguality (`str` or `List`, *optional*): | |
| A string or list of strings representing a filter for datasets that | |
| contain multiple languages. | |
| size_categories (`str` or `List`, *optional*): | |
| A string or list of strings that can be used to identify datasets on | |
| the Hub by the size of the dataset such as `100K<n<1M` or | |
| `1M<n<10M`. | |
| task_categories (`str` or `List`, *optional*): | |
| A string or list of strings that can be used to identify datasets on | |
| the Hub by the designed task, such as `audio_classification` or | |
| `named_entity_recognition`. | |
| task_ids (`str` or `List`, *optional*): | |
| A string or list of strings that can be used to identify datasets on | |
| the Hub by the specific task such as `speech_emotion_recognition` or | |
| `paraphrase`. | |
| Examples: | |
| ```py | |
| >>> from huggingface_hub import DatasetFilter | |
| >>> # Using author | |
| >>> new_filter = DatasetFilter(author="facebook") | |
| >>> # Using benchmark | |
| >>> new_filter = DatasetFilter(benchmark="raft") | |
| >>> # Using dataset_name | |
| >>> new_filter = DatasetFilter(dataset_name="wikineural") | |
| >>> # Using language_creator | |
| >>> new_filter = DatasetFilter(language_creator="crowdsourced") | |
| >>> # Using language | |
| >>> new_filter = DatasetFilter(language="en") | |
| >>> # Using multilinguality | |
| >>> new_filter = DatasetFilter(multilinguality="multilingual") | |
| >>> # Using size_categories | |
| >>> new_filter = DatasetFilter(size_categories="100K<n<1M") | |
| >>> # Using task_categories | |
| >>> new_filter = DatasetFilter(task_categories="audio_classification") | |
| >>> # Using task_ids | |
| >>> new_filter = DatasetFilter(task_ids="paraphrase") | |
| ``` | |
| """ | |
| author: Optional[str] = None | |
| benchmark: Optional[Union[str, List[str]]] = None | |
| dataset_name: Optional[str] = None | |
| language_creators: Optional[Union[str, List[str]]] = None | |
| language: Optional[Union[str, List[str]]] = None | |
| multilinguality: Optional[Union[str, List[str]]] = None | |
| size_categories: Optional[Union[str, List[str]]] = None | |
| task_categories: Optional[Union[str, List[str]]] = None | |
| task_ids: Optional[Union[str, List[str]]] = None | |
| def __post_init__(self): | |
| warnings.warn( | |
| "'DatasetFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_datasets` method.", | |
| category=FutureWarning, | |
| ) | |
| class ModelFilter: | |
| """ | |
| A class that converts human-readable model search parameters into ones | |
| compatible with the REST API. For all parameters capitalization does not | |
| matter. | |
| <Tip warning={true}> | |
| The `ModelFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_models`]. | |
| </Tip> | |
| Args: | |
| author (`str`, *optional*): | |
| A string that can be used to identify models on the Hub by the | |
| original uploader (author or organization), such as `facebook` or | |
| `huggingface`. | |
| library (`str` or `List`, *optional*): | |
| A string or list of strings of foundational libraries models were | |
| originally trained from, such as pytorch, tensorflow, or allennlp. | |
| language (`str` or `List`, *optional*): | |
| A string or list of strings of languages, both by name and country | |
| code, such as "en" or "English" | |
| model_name (`str`, *optional*): | |
| A string that contain complete or partial names for models on the | |
| Hub, such as "bert" or "bert-base-cased" | |
| task (`str` or `List`, *optional*): | |
| A string or list of strings of tasks models were designed for, such | |
| as: "fill-mask" or "automatic-speech-recognition" | |
| tags (`str` or `List`, *optional*): | |
| A string tag or a list of tags to filter models on the Hub by, such | |
| as `text-generation` or `spacy`. | |
| trained_dataset (`str` or `List`, *optional*): | |
| A string tag or a list of string tags of the trained dataset for a | |
| model on the Hub. | |
| Examples: | |
| ```python | |
| >>> from huggingface_hub import ModelFilter | |
| >>> # For the author_or_organization | |
| >>> new_filter = ModelFilter(author_or_organization="facebook") | |
| >>> # For the library | |
| >>> new_filter = ModelFilter(library="pytorch") | |
| >>> # For the language | |
| >>> new_filter = ModelFilter(language="french") | |
| >>> # For the model_name | |
| >>> new_filter = ModelFilter(model_name="bert") | |
| >>> # For the task | |
| >>> new_filter = ModelFilter(task="text-classification") | |
| >>> from huggingface_hub import HfApi | |
| >>> api = HfApi() | |
| # To list model tags | |
| >>> new_filter = ModelFilter(tags="benchmark:raft") | |
| >>> # Related to the dataset | |
| >>> new_filter = ModelFilter(trained_dataset="common_voice") | |
| ``` | |
| """ | |
| author: Optional[str] = None | |
| library: Optional[Union[str, List[str]]] = None | |
| language: Optional[Union[str, List[str]]] = None | |
| model_name: Optional[str] = None | |
| task: Optional[Union[str, List[str]]] = None | |
| trained_dataset: Optional[Union[str, List[str]]] = None | |
| tags: Optional[Union[str, List[str]]] = None | |
| def __post_init__(self): | |
| warnings.warn( | |
| "'ModelFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_models` method.", | |
| FutureWarning, | |
| ) | |