peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/interchange
/from_dataframe.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
from __future__ import annotations | |
from typing import ( | |
Any, | |
Tuple, | |
) | |
from pyarrow.interchange.column import ( | |
DtypeKind, | |
ColumnBuffers, | |
ColumnNullType, | |
) | |
import pyarrow as pa | |
import re | |
import pyarrow.compute as pc | |
from pyarrow.interchange.column import Dtype | |
# A typing protocol could be added later to let Mypy validate code using | |
# `from_dataframe` better. | |
DataFrameObject = Any | |
ColumnObject = Any | |
BufferObject = Any | |
_PYARROW_DTYPES: dict[DtypeKind, dict[int, Any]] = { | |
DtypeKind.INT: {8: pa.int8(), | |
16: pa.int16(), | |
32: pa.int32(), | |
64: pa.int64()}, | |
DtypeKind.UINT: {8: pa.uint8(), | |
16: pa.uint16(), | |
32: pa.uint32(), | |
64: pa.uint64()}, | |
DtypeKind.FLOAT: {16: pa.float16(), | |
32: pa.float32(), | |
64: pa.float64()}, | |
DtypeKind.BOOL: {1: pa.bool_(), | |
8: pa.uint8()}, | |
DtypeKind.STRING: {8: pa.string()}, | |
} | |
def from_dataframe(df: DataFrameObject, allow_copy=True) -> pa.Table: | |
""" | |
Build a ``pa.Table`` from any DataFrame supporting the interchange protocol. | |
Parameters | |
---------- | |
df : DataFrameObject | |
Object supporting the interchange protocol, i.e. `__dataframe__` | |
method. | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.Table | |
Examples | |
-------- | |
>>> import pyarrow | |
>>> from pyarrow.interchange import from_dataframe | |
Convert a pandas dataframe to a pyarrow table: | |
>>> import pandas as pd | |
>>> df = pd.DataFrame({ | |
... "n_attendees": [100, 10, 1], | |
... "country": ["Italy", "Spain", "Slovenia"], | |
... }) | |
>>> df | |
n_attendees country | |
0 100 Italy | |
1 10 Spain | |
2 1 Slovenia | |
>>> from_dataframe(df) | |
pyarrow.Table | |
n_attendees: int64 | |
country: large_string | |
---- | |
n_attendees: [[100,10,1]] | |
country: [["Italy","Spain","Slovenia"]] | |
""" | |
if isinstance(df, pa.Table): | |
return df | |
elif isinstance(df, pa.RecordBatch): | |
return pa.Table.from_batches([df]) | |
if not hasattr(df, "__dataframe__"): | |
raise ValueError("`df` does not support __dataframe__") | |
return _from_dataframe(df.__dataframe__(allow_copy=allow_copy), | |
allow_copy=allow_copy) | |
def _from_dataframe(df: DataFrameObject, allow_copy=True): | |
""" | |
Build a ``pa.Table`` from the DataFrame interchange object. | |
Parameters | |
---------- | |
df : DataFrameObject | |
Object supporting the interchange protocol, i.e. `__dataframe__` | |
method. | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.Table | |
""" | |
batches = [] | |
for chunk in df.get_chunks(): | |
batch = protocol_df_chunk_to_pyarrow(chunk, allow_copy) | |
batches.append(batch) | |
if not batches: | |
batch = protocol_df_chunk_to_pyarrow(df) | |
batches.append(batch) | |
return pa.Table.from_batches(batches) | |
def protocol_df_chunk_to_pyarrow( | |
df: DataFrameObject, | |
allow_copy: bool = True | |
) -> pa.RecordBatch: | |
""" | |
Convert interchange protocol chunk to ``pa.RecordBatch``. | |
Parameters | |
---------- | |
df : DataFrameObject | |
Object supporting the interchange protocol, i.e. `__dataframe__` | |
method. | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.RecordBatch | |
""" | |
# We need a dict of columns here, with each column being a pa.Array | |
columns: dict[str, pa.Array] = {} | |
for name in df.column_names(): | |
if not isinstance(name, str): | |
raise ValueError(f"Column {name} is not a string") | |
if name in columns: | |
raise ValueError(f"Column {name} is not unique") | |
col = df.get_column_by_name(name) | |
dtype = col.dtype[0] | |
if dtype in ( | |
DtypeKind.INT, | |
DtypeKind.UINT, | |
DtypeKind.FLOAT, | |
DtypeKind.STRING, | |
DtypeKind.DATETIME, | |
): | |
columns[name] = column_to_array(col, allow_copy) | |
elif dtype == DtypeKind.BOOL: | |
columns[name] = bool_column_to_array(col, allow_copy) | |
elif dtype == DtypeKind.CATEGORICAL: | |
columns[name] = categorical_column_to_dictionary(col, allow_copy) | |
else: | |
raise NotImplementedError(f"Data type {dtype} not handled yet") | |
return pa.RecordBatch.from_pydict(columns) | |
def column_to_array( | |
col: ColumnObject, | |
allow_copy: bool = True, | |
) -> pa.Array: | |
""" | |
Convert a column holding one of the primitive dtypes to a PyArrow array. | |
A primitive type is one of: int, uint, float, bool (1 bit). | |
Parameters | |
---------- | |
col : ColumnObject | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.Array | |
""" | |
buffers = col.get_buffers() | |
data_type = col.dtype | |
data = buffers_to_array(buffers, data_type, | |
col.size(), | |
col.describe_null, | |
col.offset, | |
allow_copy) | |
return data | |
def bool_column_to_array( | |
col: ColumnObject, | |
allow_copy: bool = True, | |
) -> pa.Array: | |
""" | |
Convert a column holding boolean dtype to a PyArrow array. | |
Parameters | |
---------- | |
col : ColumnObject | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.Array | |
""" | |
buffers = col.get_buffers() | |
size = buffers["data"][1][1] | |
# If booleans are byte-packed a copy to bit-packed will be made | |
if size == 8 and not allow_copy: | |
raise RuntimeError( | |
"Boolean column will be casted from uint8 and a copy " | |
"is required which is forbidden by allow_copy=False" | |
) | |
data_type = col.dtype | |
data = buffers_to_array(buffers, data_type, | |
col.size(), | |
col.describe_null, | |
col.offset) | |
if size == 8: | |
data = pc.cast(data, pa.bool_()) | |
return data | |
def categorical_column_to_dictionary( | |
col: ColumnObject, | |
allow_copy: bool = True, | |
) -> pa.DictionaryArray: | |
""" | |
Convert a column holding categorical data to a pa.DictionaryArray. | |
Parameters | |
---------- | |
col : ColumnObject | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.DictionaryArray | |
""" | |
if not allow_copy: | |
raise RuntimeError( | |
"Categorical column will be casted from uint8 and a copy " | |
"is required which is forbidden by allow_copy=False" | |
) | |
categorical = col.describe_categorical | |
if not categorical["is_dictionary"]: | |
raise NotImplementedError( | |
"Non-dictionary categoricals not supported yet") | |
# We need to first convert the dictionary column | |
cat_column = categorical["categories"] | |
dictionary = column_to_array(cat_column) | |
# Then we need to convert the indices | |
# Here we need to use the buffer data type! | |
buffers = col.get_buffers() | |
_, data_type = buffers["data"] | |
indices = buffers_to_array(buffers, data_type, | |
col.size(), | |
col.describe_null, | |
col.offset) | |
# Constructing a pa.DictionaryArray | |
dict_array = pa.DictionaryArray.from_arrays(indices, dictionary) | |
return dict_array | |
def parse_datetime_format_str(format_str): | |
"""Parse datetime `format_str` to interpret the `data`.""" | |
# timestamp 'ts{unit}:tz' | |
timestamp_meta = re.match(r"ts([smun]):(.*)", format_str) | |
if timestamp_meta: | |
unit, tz = timestamp_meta.group(1), timestamp_meta.group(2) | |
if unit != "s": | |
# the format string describes only a first letter of the unit, so | |
# add one extra letter to convert the unit to numpy-style: | |
# 'm' -> 'ms', 'u' -> 'us', 'n' -> 'ns' | |
unit += "s" | |
return unit, tz | |
raise NotImplementedError(f"DateTime kind is not supported: {format_str}") | |
def map_date_type(data_type): | |
"""Map column date type to pyarrow date type. """ | |
kind, bit_width, f_string, _ = data_type | |
if kind == DtypeKind.DATETIME: | |
unit, tz = parse_datetime_format_str(f_string) | |
return pa.timestamp(unit, tz=tz) | |
else: | |
pa_dtype = _PYARROW_DTYPES.get(kind, {}).get(bit_width, None) | |
# Error if dtype is not supported | |
if pa_dtype: | |
return pa_dtype | |
else: | |
raise NotImplementedError( | |
f"Conversion for {data_type} is not yet supported.") | |
def buffers_to_array( | |
buffers: ColumnBuffers, | |
data_type: Tuple[DtypeKind, int, str, str], | |
length: int, | |
describe_null: ColumnNullType, | |
offset: int = 0, | |
allow_copy: bool = True, | |
) -> pa.Array: | |
""" | |
Build a PyArrow array from the passed buffer. | |
Parameters | |
---------- | |
buffer : ColumnBuffers | |
Dictionary containing tuples of underlying buffers and | |
their associated dtype. | |
data_type : Tuple[DtypeKind, int, str, str], | |
Dtype description of the column as a tuple ``(kind, bit-width, format string, | |
endianness)``. | |
length : int | |
The number of values in the array. | |
describe_null: ColumnNullType | |
Null representation the column dtype uses, | |
as a tuple ``(kind, value)`` | |
offset : int, default: 0 | |
Number of elements to offset from the start of the buffer. | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.Array | |
Notes | |
----- | |
The returned array doesn't own the memory. The caller of this function | |
is responsible for keeping the memory owner object alive as long as | |
the returned PyArrow array is being used. | |
""" | |
data_buff, _ = buffers["data"] | |
try: | |
validity_buff, validity_dtype = buffers["validity"] | |
except TypeError: | |
validity_buff = None | |
try: | |
offset_buff, offset_dtype = buffers["offsets"] | |
except TypeError: | |
offset_buff = None | |
# Construct a pyarrow Buffer | |
data_pa_buffer = pa.foreign_buffer(data_buff.ptr, data_buff.bufsize, | |
base=data_buff) | |
# Construct a validity pyarrow Buffer, if applicable | |
if validity_buff: | |
validity_pa_buff = validity_buffer_from_mask(validity_buff, | |
validity_dtype, | |
describe_null, | |
length, | |
offset, | |
allow_copy) | |
else: | |
validity_pa_buff = validity_buffer_nan_sentinel(data_pa_buffer, | |
data_type, | |
describe_null, | |
length, | |
offset, | |
allow_copy) | |
# Construct a pyarrow Array from buffers | |
data_dtype = map_date_type(data_type) | |
if offset_buff: | |
_, offset_bit_width, _, _ = offset_dtype | |
# If an offset buffer exists, construct an offset pyarrow Buffer | |
# and add it to the construction of an array | |
offset_pa_buffer = pa.foreign_buffer(offset_buff.ptr, | |
offset_buff.bufsize, | |
base=offset_buff) | |
if data_type[2] == 'U': | |
string_type = pa.large_string() | |
else: | |
if offset_bit_width == 64: | |
string_type = pa.large_string() | |
else: | |
string_type = pa.string() | |
array = pa.Array.from_buffers( | |
string_type, | |
length, | |
[validity_pa_buff, offset_pa_buffer, data_pa_buffer], | |
offset=offset, | |
) | |
else: | |
array = pa.Array.from_buffers( | |
data_dtype, | |
length, | |
[validity_pa_buff, data_pa_buffer], | |
offset=offset, | |
) | |
return array | |
def validity_buffer_from_mask( | |
validity_buff: BufferObject, | |
validity_dtype: Dtype, | |
describe_null: ColumnNullType, | |
length: int, | |
offset: int = 0, | |
allow_copy: bool = True, | |
) -> pa.Buffer: | |
""" | |
Build a PyArrow buffer from the passed mask buffer. | |
Parameters | |
---------- | |
validity_buff : BufferObject | |
Tuple of underlying validity buffer and associated dtype. | |
validity_dtype : Dtype | |
Dtype description as a tuple ``(kind, bit-width, format string, | |
endianness)``. | |
describe_null : ColumnNullType | |
Null representation the column dtype uses, | |
as a tuple ``(kind, value)`` | |
length : int | |
The number of values in the array. | |
offset : int, default: 0 | |
Number of elements to offset from the start of the buffer. | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.Buffer | |
""" | |
null_kind, sentinel_val = describe_null | |
validity_kind, _, _, _ = validity_dtype | |
assert validity_kind == DtypeKind.BOOL | |
if null_kind == ColumnNullType.NON_NULLABLE: | |
# Sliced array can have a NON_NULLABLE ColumnNullType due | |
# to no missing values in that slice of an array though the bitmask | |
# exists and validity_buff must be set to None in this case | |
return None | |
elif null_kind == ColumnNullType.USE_BYTEMASK or ( | |
null_kind == ColumnNullType.USE_BITMASK and sentinel_val == 1 | |
): | |
buff = pa.foreign_buffer(validity_buff.ptr, | |
validity_buff.bufsize, | |
base=validity_buff) | |
if null_kind == ColumnNullType.USE_BYTEMASK: | |
if not allow_copy: | |
raise RuntimeError( | |
"To create a bitmask a copy of the data is " | |
"required which is forbidden by allow_copy=False" | |
) | |
mask = pa.Array.from_buffers(pa.int8(), length, | |
[None, buff], | |
offset=offset) | |
mask_bool = pc.cast(mask, pa.bool_()) | |
else: | |
mask_bool = pa.Array.from_buffers(pa.bool_(), length, | |
[None, buff], | |
offset=offset) | |
if sentinel_val == 1: | |
mask_bool = pc.invert(mask_bool) | |
return mask_bool.buffers()[1] | |
elif null_kind == ColumnNullType.USE_BITMASK and sentinel_val == 0: | |
return pa.foreign_buffer(validity_buff.ptr, | |
validity_buff.bufsize, | |
base=validity_buff) | |
else: | |
raise NotImplementedError( | |
f"{describe_null} null representation is not yet supported.") | |
def validity_buffer_nan_sentinel( | |
data_pa_buffer: BufferObject, | |
data_type: Dtype, | |
describe_null: ColumnNullType, | |
length: int, | |
offset: int = 0, | |
allow_copy: bool = True, | |
) -> pa.Buffer: | |
""" | |
Build a PyArrow buffer from NaN or sentinel values. | |
Parameters | |
---------- | |
data_pa_buffer : pa.Buffer | |
PyArrow buffer for the column data. | |
data_type : Dtype | |
Dtype description as a tuple ``(kind, bit-width, format string, | |
endianness)``. | |
describe_null : ColumnNullType | |
Null representation the column dtype uses, | |
as a tuple ``(kind, value)`` | |
length : int | |
The number of values in the array. | |
offset : int, default: 0 | |
Number of elements to offset from the start of the buffer. | |
allow_copy : bool, default: True | |
Whether to allow copying the memory to perform the conversion | |
(if false then zero-copy approach is requested). | |
Returns | |
------- | |
pa.Buffer | |
""" | |
kind, bit_width, _, _ = data_type | |
data_dtype = map_date_type(data_type) | |
null_kind, sentinel_val = describe_null | |
# Check for float NaN values | |
if null_kind == ColumnNullType.USE_NAN: | |
if not allow_copy: | |
raise RuntimeError( | |
"To create a bitmask a copy of the data is " | |
"required which is forbidden by allow_copy=False" | |
) | |
if kind == DtypeKind.FLOAT and bit_width == 16: | |
# 'pyarrow.compute.is_nan' kernel not yet implemented | |
# for float16 | |
raise NotImplementedError( | |
f"{data_type} with {null_kind} is not yet supported.") | |
else: | |
pyarrow_data = pa.Array.from_buffers( | |
data_dtype, | |
length, | |
[None, data_pa_buffer], | |
offset=offset, | |
) | |
mask = pc.is_nan(pyarrow_data) | |
mask = pc.invert(mask) | |
return mask.buffers()[1] | |
# Check for sentinel values | |
elif null_kind == ColumnNullType.USE_SENTINEL: | |
if not allow_copy: | |
raise RuntimeError( | |
"To create a bitmask a copy of the data is " | |
"required which is forbidden by allow_copy=False" | |
) | |
if kind == DtypeKind.DATETIME: | |
sentinel_dtype = pa.int64() | |
else: | |
sentinel_dtype = data_dtype | |
pyarrow_data = pa.Array.from_buffers(sentinel_dtype, | |
length, | |
[None, data_pa_buffer], | |
offset=offset) | |
sentinel_arr = pc.equal(pyarrow_data, sentinel_val) | |
mask_bool = pc.invert(sentinel_arr) | |
return mask_bool.buffers()[1] | |
elif null_kind == ColumnNullType.NON_NULLABLE: | |
pass | |
else: | |
raise NotImplementedError( | |
f"{describe_null} null representation is not yet supported.") | |