applied-ai-018's picture
Add files using upload-large-folder tool
ac141ed verified
raw
history blame
130 kB
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections.abc import Iterable
import datetime
import decimal
import hypothesis as h
import hypothesis.strategies as st
import itertools
import pytest
import struct
import subprocess
import sys
import weakref
import numpy as np
import pyarrow as pa
import pyarrow.tests.strategies as past
from pyarrow.vendored.version import Version
def test_total_bytes_allocated():
code = """if 1:
import pyarrow as pa
assert pa.total_allocated_bytes() == 0
"""
res = subprocess.run([sys.executable, "-c", code],
universal_newlines=True, stderr=subprocess.PIPE)
if res.returncode != 0:
print(res.stderr, file=sys.stderr)
res.check_returncode() # fail
assert len(res.stderr.splitlines()) == 0
def test_weakref():
arr = pa.array([1, 2, 3])
wr = weakref.ref(arr)
assert wr() is not None
del arr
assert wr() is None
def test_getitem_NULL():
arr = pa.array([1, None, 2])
assert arr[1].as_py() is None
assert arr[1].is_valid is False
assert isinstance(arr[1], pa.Int64Scalar)
def test_constructor_raises():
# This could happen by wrong capitalization.
# ARROW-2638: prevent calling extension class constructors directly
with pytest.raises(TypeError):
pa.Array([1, 2])
def test_list_format():
arr = pa.array([[1], None, [2, 3, None]])
result = arr.to_string()
expected = """\
[
[
1
],
null,
[
2,
3,
null
]
]"""
assert result == expected
def test_string_format():
arr = pa.array(['', None, 'foo'])
result = arr.to_string()
expected = """\
[
"",
null,
"foo"
]"""
assert result == expected
def test_long_array_format():
arr = pa.array(range(100))
result = arr.to_string(window=2)
expected = """\
[
0,
1,
...
98,
99
]"""
assert result == expected
def test_indented_string_format():
arr = pa.array(['', None, 'foo'])
result = arr.to_string(indent=1)
expected = '[\n "",\n null,\n "foo"\n]'
assert result == expected
def test_top_level_indented_string_format():
arr = pa.array(['', None, 'foo'])
result = arr.to_string(top_level_indent=1)
expected = ' [\n "",\n null,\n "foo"\n ]'
assert result == expected
def test_binary_format():
arr = pa.array([b'\x00', b'', None, b'\x01foo', b'\x80\xff'])
result = arr.to_string()
expected = """\
[
00,
,
null,
01666F6F,
80FF
]"""
assert result == expected
def test_binary_total_values_length():
arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'],
type='binary')
large_arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'],
type='large_binary')
assert arr.total_values_length == 22
assert arr.slice(1, 3).total_values_length == 11
assert large_arr.total_values_length == 22
assert large_arr.slice(1, 3).total_values_length == 11
def test_to_numpy_zero_copy():
arr = pa.array(range(10))
np_arr = arr.to_numpy()
# check for zero copy (both arrays using same memory)
arrow_buf = arr.buffers()[1]
assert arrow_buf.address == np_arr.ctypes.data
arr = None
import gc
gc.collect()
# Ensure base is still valid
assert np_arr.base is not None
expected = np.arange(10)
np.testing.assert_array_equal(np_arr, expected)
def test_chunked_array_to_numpy_zero_copy():
elements = [[2, 2, 4], [4, 5, 100]]
chunked_arr = pa.chunked_array(elements)
msg = "zero_copy_only must be False for pyarrow.ChunkedArray.to_numpy"
with pytest.raises(ValueError, match=msg):
chunked_arr.to_numpy(zero_copy_only=True)
np_arr = chunked_arr.to_numpy()
expected = [2, 2, 4, 4, 5, 100]
np.testing.assert_array_equal(np_arr, expected)
def test_to_numpy_unsupported_types():
# ARROW-2871: Some primitive types are not yet supported in to_numpy
bool_arr = pa.array([True, False, True])
with pytest.raises(ValueError):
bool_arr.to_numpy()
result = bool_arr.to_numpy(zero_copy_only=False)
expected = np.array([True, False, True])
np.testing.assert_array_equal(result, expected)
null_arr = pa.array([None, None, None])
with pytest.raises(ValueError):
null_arr.to_numpy()
result = null_arr.to_numpy(zero_copy_only=False)
expected = np.array([None, None, None], dtype=object)
np.testing.assert_array_equal(result, expected)
arr = pa.array([1, 2, None])
with pytest.raises(ValueError, match="with 1 nulls"):
arr.to_numpy()
def test_to_numpy_writable():
arr = pa.array(range(10))
np_arr = arr.to_numpy()
# by default not writable for zero-copy conversion
with pytest.raises(ValueError):
np_arr[0] = 10
np_arr2 = arr.to_numpy(zero_copy_only=False, writable=True)
np_arr2[0] = 10
assert arr[0].as_py() == 0
# when asking for writable, cannot do zero-copy
with pytest.raises(ValueError):
arr.to_numpy(zero_copy_only=True, writable=True)
@pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns'])
@pytest.mark.parametrize('tz', [None, "UTC"])
def test_to_numpy_datetime64(unit, tz):
arr = pa.array([1, 2, 3], pa.timestamp(unit, tz=tz))
expected = np.array([1, 2, 3], dtype="datetime64[{}]".format(unit))
np_arr = arr.to_numpy()
np.testing.assert_array_equal(np_arr, expected)
@pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns'])
def test_to_numpy_timedelta64(unit):
arr = pa.array([1, 2, 3], pa.duration(unit))
expected = np.array([1, 2, 3], dtype="timedelta64[{}]".format(unit))
np_arr = arr.to_numpy()
np.testing.assert_array_equal(np_arr, expected)
def test_to_numpy_dictionary():
# ARROW-7591
arr = pa.array(["a", "b", "a"]).dictionary_encode()
expected = np.array(["a", "b", "a"], dtype=object)
np_arr = arr.to_numpy(zero_copy_only=False)
np.testing.assert_array_equal(np_arr, expected)
@pytest.mark.pandas
def test_to_pandas_zero_copy():
import gc
arr = pa.array(range(10))
for i in range(10):
series = arr.to_pandas()
assert sys.getrefcount(series) == 2
series = None # noqa
assert sys.getrefcount(arr) == 2
for i in range(10):
arr = pa.array(range(10))
series = arr.to_pandas()
arr = None
gc.collect()
# Ensure base is still valid
# Because of py.test's assert inspection magic, if you put getrefcount
# on the line being examined, it will be 1 higher than you expect
base_refcount = sys.getrefcount(series.values.base)
assert base_refcount == 2
series.sum()
@pytest.mark.nopandas
@pytest.mark.pandas
def test_asarray():
# ensure this is tested both when pandas is present or not (ARROW-6564)
arr = pa.array(range(4))
# The iterator interface gives back an array of Int64Value's
np_arr = np.asarray([_ for _ in arr])
assert np_arr.tolist() == [0, 1, 2, 3]
assert np_arr.dtype == np.dtype('O')
assert isinstance(np_arr[0], pa.lib.Int64Value)
# Calling with the arrow array gives back an array with 'int64' dtype
np_arr = np.asarray(arr)
assert np_arr.tolist() == [0, 1, 2, 3]
assert np_arr.dtype == np.dtype('int64')
# An optional type can be specified when calling np.asarray
np_arr = np.asarray(arr, dtype='str')
assert np_arr.tolist() == ['0', '1', '2', '3']
# If PyArrow array has null values, numpy type will be changed as needed
# to support nulls.
arr = pa.array([0, 1, 2, None])
assert arr.type == pa.int64()
np_arr = np.asarray(arr)
elements = np_arr.tolist()
assert elements[:3] == [0., 1., 2.]
assert np.isnan(elements[3])
assert np_arr.dtype == np.dtype('float64')
# DictionaryType data will be converted to dense numpy array
arr = pa.DictionaryArray.from_arrays(
pa.array([0, 1, 2, 0, 1]), pa.array(['a', 'b', 'c']))
np_arr = np.asarray(arr)
assert np_arr.dtype == np.dtype('object')
assert np_arr.tolist() == ['a', 'b', 'c', 'a', 'b']
@pytest.mark.parametrize('ty', [
None,
pa.null(),
pa.int8(),
pa.string()
])
def test_nulls(ty):
arr = pa.nulls(3, type=ty)
expected = pa.array([None, None, None], type=ty)
assert len(arr) == 3
assert arr.equals(expected)
if ty is None:
assert arr.type == pa.null()
else:
assert arr.type == ty
def test_array_from_scalar():
pytz = pytest.importorskip("pytz")
today = datetime.date.today()
now = datetime.datetime.now()
now_utc = now.replace(tzinfo=pytz.utc)
now_with_tz = now_utc.astimezone(pytz.timezone('US/Eastern'))
oneday = datetime.timedelta(days=1)
cases = [
(None, 1, pa.array([None])),
(None, 10, pa.nulls(10)),
(-1, 3, pa.array([-1, -1, -1], type=pa.int64())),
(2.71, 2, pa.array([2.71, 2.71], type=pa.float64())),
("string", 4, pa.array(["string"] * 4)),
(
pa.scalar(8, type=pa.uint8()),
17,
pa.array([8] * 17, type=pa.uint8())
),
(pa.scalar(None), 3, pa.array([None, None, None])),
(pa.scalar(True), 11, pa.array([True] * 11)),
(today, 2, pa.array([today] * 2)),
(now, 10, pa.array([now] * 10)),
(
now_with_tz,
2,
pa.array(
[now_utc] * 2,
type=pa.timestamp('us', tz=pytz.timezone('US/Eastern'))
)
),
(now.time(), 9, pa.array([now.time()] * 9)),
(oneday, 4, pa.array([oneday] * 4)),
(False, 9, pa.array([False] * 9)),
([1, 2], 2, pa.array([[1, 2], [1, 2]])),
(
pa.scalar([-1, 3], type=pa.large_list(pa.int8())),
5,
pa.array([[-1, 3]] * 5, type=pa.large_list(pa.int8()))
),
({'a': 1, 'b': 2}, 3, pa.array([{'a': 1, 'b': 2}] * 3))
]
for value, size, expected in cases:
arr = pa.repeat(value, size)
assert len(arr) == size
assert arr.type.equals(expected.type)
assert arr.equals(expected)
if expected.type == pa.null():
assert arr.null_count == size
else:
assert arr.null_count == 0
def test_array_from_dictionary_scalar():
dictionary = ['foo', 'bar', 'baz']
arr = pa.DictionaryArray.from_arrays([2, 1, 2, 0], dictionary=dictionary)
result = pa.repeat(arr[0], 5)
expected = pa.DictionaryArray.from_arrays([2] * 5, dictionary=dictionary)
assert result.equals(expected)
result = pa.repeat(arr[3], 5)
expected = pa.DictionaryArray.from_arrays([0] * 5, dictionary=dictionary)
assert result.equals(expected)
def test_array_getitem():
arr = pa.array(range(10, 15))
lst = arr.to_pylist()
for idx in range(-len(arr), len(arr)):
assert arr[idx].as_py() == lst[idx]
for idx in range(-2 * len(arr), -len(arr)):
with pytest.raises(IndexError):
arr[idx]
for idx in range(len(arr), 2 * len(arr)):
with pytest.raises(IndexError):
arr[idx]
# check that numpy scalars are supported
for idx in range(-len(arr), len(arr)):
assert arr[np.int32(idx)].as_py() == lst[idx]
def test_array_slice():
arr = pa.array(range(10))
sliced = arr.slice(2)
expected = pa.array(range(2, 10))
assert sliced.equals(expected)
sliced2 = arr.slice(2, 4)
expected2 = pa.array(range(2, 6))
assert sliced2.equals(expected2)
# 0 offset
assert arr.slice(0).equals(arr)
# Slice past end of array
assert len(arr.slice(len(arr))) == 0
assert len(arr.slice(len(arr) + 2)) == 0
assert len(arr.slice(len(arr) + 2, 100)) == 0
with pytest.raises(IndexError):
arr.slice(-1)
with pytest.raises(ValueError):
arr.slice(2, -1)
# Test slice notation
assert arr[2:].equals(arr.slice(2))
assert arr[2:5].equals(arr.slice(2, 3))
assert arr[-5:].equals(arr.slice(len(arr) - 5))
n = len(arr)
for start in range(-n * 2, n * 2):
for stop in range(-n * 2, n * 2):
res = arr[start:stop]
res.validate()
expected = arr.to_pylist()[start:stop]
assert res.to_pylist() == expected
assert res.to_numpy().tolist() == expected
def test_array_slice_negative_step():
# ARROW-2714
np_arr = np.arange(20)
arr = pa.array(np_arr)
chunked_arr = pa.chunked_array([arr])
cases = [
slice(None, None, -1),
slice(None, 6, -2),
slice(10, 6, -2),
slice(8, None, -2),
slice(2, 10, -2),
slice(10, 2, -2),
slice(None, None, 2),
slice(0, 10, 2),
slice(15, -25, -1), # GH-38768
slice(-22, -22, -1), # GH-40642
]
for case in cases:
result = arr[case]
expected = pa.array(np_arr[case])
assert result.equals(expected)
result = pa.record_batch([arr], names=['f0'])[case]
expected = pa.record_batch([expected], names=['f0'])
assert result.equals(expected)
result = chunked_arr[case]
expected = pa.chunked_array([np_arr[case]])
assert result.equals(expected)
def test_array_diff():
# ARROW-6252
arr1 = pa.array(['foo'], type=pa.utf8())
arr2 = pa.array(['foo', 'bar', None], type=pa.utf8())
arr3 = pa.array([1, 2, 3])
arr4 = pa.array([[], [1], None], type=pa.list_(pa.int64()))
assert arr1.diff(arr1) == ''
assert arr1.diff(arr2) == '''
@@ -1, +1 @@
+"bar"
+null
'''
assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64'
assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64'
assert arr1.diff(arr4).strip() == ('# Array types differed: string vs '
'list<item: int64>')
def test_array_iter():
arr = pa.array(range(10))
for i, j in zip(range(10), arr):
assert i == j.as_py()
assert isinstance(arr, Iterable)
def test_struct_array_slice():
# ARROW-2311: slicing nested arrays needs special care
ty = pa.struct([pa.field('a', pa.int8()),
pa.field('b', pa.float32())])
arr = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
assert arr[1:].to_pylist() == [{'a': 3, 'b': 4.5},
{'a': 5, 'b': 6.5}]
def test_array_factory_invalid_type():
class MyObject:
pass
arr = np.array([MyObject()])
with pytest.raises(ValueError):
pa.array(arr)
def test_array_ref_to_ndarray_base():
arr = np.array([1, 2, 3])
refcount = sys.getrefcount(arr)
arr2 = pa.array(arr) # noqa
assert sys.getrefcount(arr) == (refcount + 1)
def test_array_eq():
# ARROW-2150 / ARROW-9445: we define the __eq__ behavior to be
# data equality (not element-wise equality)
arr1 = pa.array([1, 2, 3], type=pa.int32())
arr2 = pa.array([1, 2, 3], type=pa.int32())
arr3 = pa.array([1, 2, 3], type=pa.int64())
assert (arr1 == arr2) is True
assert (arr1 != arr2) is False
assert (arr1 == arr3) is False
assert (arr1 != arr3) is True
assert (arr1 == 1) is False
assert (arr1 == None) is False # noqa: E711
def test_array_from_buffers():
values_buf = pa.py_buffer(np.int16([4, 5, 6, 7]))
nulls_buf = pa.py_buffer(np.uint8([0b00001101]))
arr = pa.Array.from_buffers(pa.int16(), 4, [nulls_buf, values_buf])
assert arr.type == pa.int16()
assert arr.to_pylist() == [4, None, 6, 7]
arr = pa.Array.from_buffers(pa.int16(), 4, [None, values_buf])
assert arr.type == pa.int16()
assert arr.to_pylist() == [4, 5, 6, 7]
arr = pa.Array.from_buffers(pa.int16(), 3, [nulls_buf, values_buf],
offset=1)
assert arr.type == pa.int16()
assert arr.to_pylist() == [None, 6, 7]
with pytest.raises(TypeError):
pa.Array.from_buffers(pa.int16(), 3, ['', ''], offset=1)
def test_string_binary_from_buffers():
array = pa.array(["a", None, "b", "c"])
buffers = array.buffers()
copied = pa.StringArray.from_buffers(
len(array), buffers[1], buffers[2], buffers[0], array.null_count,
array.offset)
assert copied.to_pylist() == ["a", None, "b", "c"]
binary_copy = pa.Array.from_buffers(pa.binary(), len(array),
array.buffers(), array.null_count,
array.offset)
assert binary_copy.to_pylist() == [b"a", None, b"b", b"c"]
copied = pa.StringArray.from_buffers(
len(array), buffers[1], buffers[2], buffers[0])
assert copied.to_pylist() == ["a", None, "b", "c"]
sliced = array[1:]
buffers = sliced.buffers()
copied = pa.StringArray.from_buffers(
len(sliced), buffers[1], buffers[2], buffers[0], -1, sliced.offset)
assert copied.to_pylist() == [None, "b", "c"]
assert copied.null_count == 1
# Slice but exclude all null entries so that we don't need to pass
# the null bitmap.
sliced = array[2:]
buffers = sliced.buffers()
copied = pa.StringArray.from_buffers(
len(sliced), buffers[1], buffers[2], None, -1, sliced.offset)
assert copied.to_pylist() == ["b", "c"]
assert copied.null_count == 0
@pytest.mark.parametrize('list_type_factory', [
pa.list_, pa.large_list, pa.list_view, pa.large_list_view])
def test_list_from_buffers(list_type_factory):
ty = list_type_factory(pa.int16())
array = pa.array([[0, 1, 2], None, [], [3, 4, 5]], type=ty)
assert array.type == ty
buffers = array.buffers()
with pytest.raises(ValueError):
# No children
pa.Array.from_buffers(ty, 4, buffers[:ty.num_buffers])
child = pa.Array.from_buffers(pa.int16(), 6, buffers[ty.num_buffers:])
copied = pa.Array.from_buffers(ty, 4, buffers[:ty.num_buffers], children=[child])
assert copied.equals(array)
with pytest.raises(ValueError):
# too many children
pa.Array.from_buffers(ty, 4, buffers[:ty.num_buffers],
children=[child, child])
def test_struct_from_buffers():
ty = pa.struct([pa.field('a', pa.int16()), pa.field('b', pa.utf8())])
array = pa.array([{'a': 0, 'b': 'foo'}, None, {'a': 5, 'b': ''}],
type=ty)
buffers = array.buffers()
with pytest.raises(ValueError):
# No children
pa.Array.from_buffers(ty, 3, [None, buffers[1]])
children = [pa.Array.from_buffers(pa.int16(), 3, buffers[1:3]),
pa.Array.from_buffers(pa.utf8(), 3, buffers[3:])]
copied = pa.Array.from_buffers(ty, 3, buffers[:1], children=children)
assert copied.equals(array)
with pytest.raises(ValueError):
# not enough many children
pa.Array.from_buffers(ty, 3, [buffers[0]],
children=children[:1])
def test_struct_from_arrays():
a = pa.array([4, 5, 6], type=pa.int64())
b = pa.array(["bar", None, ""])
c = pa.array([[1, 2], None, [3, None]])
expected_list = [
{'a': 4, 'b': 'bar', 'c': [1, 2]},
{'a': 5, 'b': None, 'c': None},
{'a': 6, 'b': '', 'c': [3, None]},
]
# From field names
arr = pa.StructArray.from_arrays([a, b, c], ["a", "b", "c"])
assert arr.type == pa.struct(
[("a", a.type), ("b", b.type), ("c", c.type)])
assert arr.to_pylist() == expected_list
with pytest.raises(ValueError):
pa.StructArray.from_arrays([a, b, c], ["a", "b"])
arr = pa.StructArray.from_arrays([], [])
assert arr.type == pa.struct([])
assert arr.to_pylist() == []
# From fields
fa = pa.field("a", a.type, nullable=False)
fb = pa.field("b", b.type)
fc = pa.field("c", c.type)
arr = pa.StructArray.from_arrays([a, b, c], fields=[fa, fb, fc])
assert arr.type == pa.struct([fa, fb, fc])
assert not arr.type[0].nullable
assert arr.to_pylist() == expected_list
with pytest.raises(ValueError):
pa.StructArray.from_arrays([a, b, c], fields=[fa, fb])
arr = pa.StructArray.from_arrays([], fields=[])
assert arr.type == pa.struct([])
assert arr.to_pylist() == []
# Inconsistent fields
fa2 = pa.field("a", pa.int32())
with pytest.raises(ValueError, match="int64 vs int32"):
pa.StructArray.from_arrays([a, b, c], fields=[fa2, fb, fc])
arrays = [a, b, c]
fields = [fa, fb, fc]
# With mask
mask = pa.array([True, False, False])
arr = pa.StructArray.from_arrays(arrays, fields=fields, mask=mask)
assert arr.to_pylist() == [None] + expected_list[1:]
arr = pa.StructArray.from_arrays(arrays, names=['a', 'b', 'c'], mask=mask)
assert arr.to_pylist() == [None] + expected_list[1:]
# Bad masks
with pytest.raises(TypeError, match='Mask must be'):
pa.StructArray.from_arrays(arrays, fields, mask=[True, False, False])
with pytest.raises(ValueError, match='not contain nulls'):
pa.StructArray.from_arrays(
arrays, fields, mask=pa.array([True, False, None]))
with pytest.raises(TypeError, match='Mask must be'):
pa.StructArray.from_arrays(
arrays, fields, mask=pa.chunked_array([mask]))
# Non-empty array with no fields https://github.com/apache/arrow/issues/15109
arr = pa.StructArray.from_arrays([], [], mask=mask)
assert arr.is_null() == mask
assert arr.to_pylist() == [None, {}, {}]
def test_struct_array_from_chunked():
# ARROW-11780
# Check that we don't segfault when trying to build
# a StructArray from a chunked array.
chunked_arr = pa.chunked_array([[1, 2, 3], [4, 5, 6]])
with pytest.raises(TypeError, match="Expected Array"):
pa.StructArray.from_arrays([chunked_arr], ["foo"])
@pytest.mark.parametrize("offset", (0, 1))
def test_dictionary_from_buffers(offset):
a = pa.array(["one", "two", "three", "two", "one"]).dictionary_encode()
b = pa.DictionaryArray.from_buffers(a.type, len(a)-offset,
a.indices.buffers(), a.dictionary,
offset=offset)
assert a[offset:] == b
def test_dictionary_from_numpy():
indices = np.repeat([0, 1, 2], 2)
dictionary = np.array(['foo', 'bar', 'baz'], dtype=object)
mask = np.array([False, False, True, False, False, False])
d1 = pa.DictionaryArray.from_arrays(indices, dictionary)
d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask)
assert d1.indices.to_pylist() == indices.tolist()
assert d1.indices.to_pylist() == indices.tolist()
assert d1.dictionary.to_pylist() == dictionary.tolist()
assert d2.dictionary.to_pylist() == dictionary.tolist()
for i in range(len(indices)):
assert d1[i].as_py() == dictionary[indices[i]]
if mask[i]:
assert d2[i].as_py() is None
else:
assert d2[i].as_py() == dictionary[indices[i]]
def test_dictionary_to_numpy():
expected = pa.array(
["foo", "bar", None, "foo"]
).to_numpy(zero_copy_only=False)
a = pa.DictionaryArray.from_arrays(
pa.array([0, 1, None, 0]),
pa.array(['foo', 'bar'])
)
np.testing.assert_array_equal(a.to_numpy(zero_copy_only=False),
expected)
with pytest.raises(pa.ArrowInvalid):
# If this would be changed to no longer raise in the future,
# ensure to test the actual result because, currently, to_numpy takes
# for granted that when zero_copy_only=True there will be no nulls
# (it's the decoding of the DictionaryArray that handles the nulls and
# this is only activated with zero_copy_only=False)
a.to_numpy(zero_copy_only=True)
anonulls = pa.DictionaryArray.from_arrays(
pa.array([0, 1, 1, 0]),
pa.array(['foo', 'bar'])
)
expected = pa.array(
["foo", "bar", "bar", "foo"]
).to_numpy(zero_copy_only=False)
np.testing.assert_array_equal(anonulls.to_numpy(zero_copy_only=False),
expected)
with pytest.raises(pa.ArrowInvalid):
anonulls.to_numpy(zero_copy_only=True)
afloat = pa.DictionaryArray.from_arrays(
pa.array([0, 1, 1, 0]),
pa.array([13.7, 11.0])
)
expected = pa.array([13.7, 11.0, 11.0, 13.7]).to_numpy()
np.testing.assert_array_equal(afloat.to_numpy(zero_copy_only=True),
expected)
np.testing.assert_array_equal(afloat.to_numpy(zero_copy_only=False),
expected)
afloat2 = pa.DictionaryArray.from_arrays(
pa.array([0, 1, None, 0]),
pa.array([13.7, 11.0])
)
expected = pa.array(
[13.7, 11.0, None, 13.7]
).to_numpy(zero_copy_only=False)
np.testing.assert_allclose(
afloat2.to_numpy(zero_copy_only=False),
expected,
equal_nan=True
)
# Testing for integers can reveal problems related to dealing
# with None values, as a numpy array of int dtype
# can't contain NaN nor None.
aints = pa.DictionaryArray.from_arrays(
pa.array([0, 1, None, 0]),
pa.array([7, 11])
)
expected = pa.array([7, 11, None, 7]).to_numpy(zero_copy_only=False)
np.testing.assert_allclose(
aints.to_numpy(zero_copy_only=False),
expected,
equal_nan=True
)
def test_dictionary_from_boxed_arrays():
indices = np.repeat([0, 1, 2], 2)
dictionary = np.array(['foo', 'bar', 'baz'], dtype=object)
iarr = pa.array(indices)
darr = pa.array(dictionary)
d1 = pa.DictionaryArray.from_arrays(iarr, darr)
assert d1.indices.to_pylist() == indices.tolist()
assert d1.dictionary.to_pylist() == dictionary.tolist()
for i in range(len(indices)):
assert d1[i].as_py() == dictionary[indices[i]]
def test_dictionary_from_arrays_boundscheck():
indices1 = pa.array([0, 1, 2, 0, 1, 2])
indices2 = pa.array([0, -1, 2])
indices3 = pa.array([0, 1, 2, 3])
dictionary = pa.array(['foo', 'bar', 'baz'])
# Works fine
pa.DictionaryArray.from_arrays(indices1, dictionary)
with pytest.raises(pa.ArrowException):
pa.DictionaryArray.from_arrays(indices2, dictionary)
with pytest.raises(pa.ArrowException):
pa.DictionaryArray.from_arrays(indices3, dictionary)
# If we are confident that the indices are "safe" we can pass safe=False to
# disable the boundschecking
pa.DictionaryArray.from_arrays(indices2, dictionary, safe=False)
def test_dictionary_indices():
# https://issues.apache.org/jira/browse/ARROW-6882
indices = pa.array([0, 1, 2, 0, 1, 2])
dictionary = pa.array(['foo', 'bar', 'baz'])
arr = pa.DictionaryArray.from_arrays(indices, dictionary)
arr.indices.validate(full=True)
@pytest.mark.parametrize(('list_array_type', 'list_type_factory'),
[(pa.ListArray, pa.list_),
(pa.LargeListArray, pa.large_list)])
def test_list_from_arrays(list_array_type, list_type_factory):
offsets_arr = np.array([0, 2, 5, 8], dtype='i4')
offsets = pa.array(offsets_arr, type='int32')
pyvalues = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h']
values = pa.array(pyvalues, type='binary')
result = list_array_type.from_arrays(offsets, values)
expected = pa.array([pyvalues[:2], pyvalues[2:5], pyvalues[5:8]],
type=list_type_factory(pa.binary()))
assert result.equals(expected)
# With specified type
typ = list_type_factory(pa.field("name", pa.binary()))
result = list_array_type.from_arrays(offsets, values, typ)
assert result.type == typ
assert result.type.value_field.name == "name"
# With nulls
offsets = [0, None, 2, 6]
values = [b'a', b'b', b'c', b'd', b'e', b'f']
result = list_array_type.from_arrays(offsets, values)
expected = pa.array([values[:2], None, values[2:]],
type=list_type_factory(pa.binary()))
assert result.equals(expected)
# Another edge case
offsets2 = [0, 2, None, 6]
result = list_array_type.from_arrays(offsets2, values)
expected = pa.array([values[:2], values[2:], None],
type=list_type_factory(pa.binary()))
assert result.equals(expected)
# raise on invalid array
offsets = [1, 3, 10]
values = np.arange(5)
with pytest.raises(ValueError):
list_array_type.from_arrays(offsets, values)
# Non-monotonic offsets
offsets = [0, 3, 2, 6]
values = list(range(6))
result = list_array_type.from_arrays(offsets, values)
with pytest.raises(ValueError):
result.validate(full=True)
# mismatching type
typ = list_type_factory(pa.binary())
with pytest.raises(TypeError):
list_array_type.from_arrays(offsets, values, type=typ)
@pytest.mark.parametrize(('list_array_type', 'list_type_factory'), (
(pa.ListArray, pa.list_),
(pa.LargeListArray, pa.large_list)
))
@pytest.mark.parametrize("arr", (
[None, [0]],
[None, [0, None], [0]],
[[0], [1]],
))
def test_list_array_types_from_arrays(
list_array_type, list_type_factory, arr
):
arr = pa.array(arr, list_type_factory(pa.int8()))
reconstructed_arr = list_array_type.from_arrays(
arr.offsets, arr.values, mask=arr.is_null())
assert arr == reconstructed_arr
@pytest.mark.parametrize(('list_array_type', 'list_type_factory'), (
(pa.ListArray, pa.list_),
(pa.LargeListArray, pa.large_list)
))
def test_list_array_types_from_arrays_fail(list_array_type, list_type_factory):
# Fail when manual offsets include nulls and mask passed
# ListArray.offsets doesn't report nulls.
# This test case arr.offsets == [0, 1, 1, 3, 4]
arr = pa.array([[0], None, [0, None], [0]], list_type_factory(pa.int8()))
offsets = pa.array([0, None, 1, 3, 4])
# Using array's offset has no nulls; gives empty lists on top level
reconstructed_arr = list_array_type.from_arrays(arr.offsets, arr.values)
assert reconstructed_arr.to_pylist() == [[0], [], [0, None], [0]]
# Manually specifying offsets (with nulls) is same as mask at top level
reconstructed_arr = list_array_type.from_arrays(offsets, arr.values)
assert arr == reconstructed_arr
reconstructed_arr = list_array_type.from_arrays(arr.offsets,
arr.values,
mask=arr.is_null())
assert arr == reconstructed_arr
# But using both is ambiguous, in this case `offsets` has nulls
with pytest.raises(ValueError, match="Ambiguous to specify both "):
list_array_type.from_arrays(offsets, arr.values, mask=arr.is_null())
# Not supported to reconstruct from a slice.
arr_slice = arr[1:]
msg = "Null bitmap with offsets slice not supported."
with pytest.raises(NotImplementedError, match=msg):
list_array_type.from_arrays(
arr_slice.offsets, arr_slice.values, mask=arr_slice.is_null())
def test_map_labelled():
# ARROW-13735
t = pa.map_(pa.field("name", "string", nullable=False), "int64")
arr = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], type=t)
assert arr.type.key_field == pa.field("name", pa.utf8(), nullable=False)
assert arr.type.item_field == pa.field("value", pa.int64())
assert len(arr) == 2
def test_map_from_dict():
# ARROW-17832
tup_arr = pa.array([[('a', 1), ('b', 2)], [('c', 3)]],
pa.map_(pa.string(), pa.int64()))
dict_arr = pa.array([{'a': 1, 'b': 2}, {'c': 3}],
pa.map_(pa.string(), pa.int64()))
assert tup_arr.equals(dict_arr)
def test_map_from_arrays():
offsets_arr = np.array([0, 2, 5, 8], dtype='i4')
offsets = pa.array(offsets_arr, type='int32')
pykeys = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h']
pyitems = list(range(len(pykeys)))
pypairs = list(zip(pykeys, pyitems))
pyentries = [pypairs[:2], pypairs[2:5], pypairs[5:8]]
keys = pa.array(pykeys, type='binary')
items = pa.array(pyitems, type='i4')
result = pa.MapArray.from_arrays(offsets, keys, items)
expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32()))
assert result.equals(expected)
# With nulls
offsets = [0, None, 2, 6]
pykeys = [b'a', b'b', b'c', b'd', b'e', b'f']
pyitems = [1, 2, 3, None, 4, 5]
pypairs = list(zip(pykeys, pyitems))
pyentries = [pypairs[:2], None, pypairs[2:]]
keys = pa.array(pykeys, type='binary')
items = pa.array(pyitems, type='i4')
result = pa.MapArray.from_arrays(offsets, keys, items)
expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32()))
assert result.equals(expected)
# pass in the type explicitly
result = pa.MapArray.from_arrays(offsets, keys, items, pa.map_(
keys.type,
items.type
))
assert result.equals(expected)
# pass in invalid types
with pytest.raises(pa.ArrowTypeError, match='Expected map type, got string'):
pa.MapArray.from_arrays(offsets, keys, items, pa.string())
with pytest.raises(pa.ArrowTypeError, match='Mismatching map items type'):
pa.MapArray.from_arrays(offsets, keys, items, pa.map_(
keys.type,
# Larger than the original i4
pa.int64()
))
# check invalid usage
offsets = [0, 1, 3, 5]
keys = np.arange(5)
items = np.arange(5)
_ = pa.MapArray.from_arrays(offsets, keys, items)
# raise on invalid offsets
with pytest.raises(ValueError):
pa.MapArray.from_arrays(offsets + [6], keys, items)
# raise on length of keys != items
with pytest.raises(ValueError):
pa.MapArray.from_arrays(offsets, keys, np.concatenate([items, items]))
# raise on keys with null
keys_with_null = list(keys)[:-1] + [None]
assert len(keys_with_null) == len(items)
with pytest.raises(ValueError):
pa.MapArray.from_arrays(offsets, keys_with_null, items)
def test_fixed_size_list_from_arrays():
values = pa.array(range(12), pa.int64())
result = pa.FixedSizeListArray.from_arrays(values, 4)
assert result.to_pylist() == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
assert result.type.equals(pa.list_(pa.int64(), 4))
typ = pa.list_(pa.field("name", pa.int64()), 4)
result = pa.FixedSizeListArray.from_arrays(values, type=typ)
assert result.to_pylist() == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
assert result.type.equals(typ)
assert result.type.value_field.name == "name"
result = pa.FixedSizeListArray.from_arrays(values,
type=typ,
mask=pa.array([False, True, False]))
assert result.to_pylist() == [[0, 1, 2, 3], None, [8, 9, 10, 11]]
result = pa.FixedSizeListArray.from_arrays(values,
list_size=4,
mask=pa.array([False, True, False]))
assert result.to_pylist() == [[0, 1, 2, 3], None, [8, 9, 10, 11]]
# raise on invalid values / list_size
with pytest.raises(ValueError):
pa.FixedSizeListArray.from_arrays(values, -4)
with pytest.raises(ValueError):
# array with list size 0 cannot be constructed with from_arrays
pa.FixedSizeListArray.from_arrays(pa.array([], pa.int64()), 0)
with pytest.raises(ValueError):
# length of values not multiple of 5
pa.FixedSizeListArray.from_arrays(values, 5)
typ = pa.list_(pa.int64(), 5)
with pytest.raises(ValueError):
pa.FixedSizeListArray.from_arrays(values, type=typ)
# raise on mismatching values type
typ = pa.list_(pa.float64(), 4)
with pytest.raises(TypeError):
pa.FixedSizeListArray.from_arrays(values, type=typ)
# raise on specifying none or both of list_size / type
with pytest.raises(ValueError):
pa.FixedSizeListArray.from_arrays(values)
typ = pa.list_(pa.int64(), 4)
with pytest.raises(ValueError):
pa.FixedSizeListArray.from_arrays(values, list_size=4, type=typ)
def test_variable_list_from_arrays():
values = pa.array([1, 2, 3, 4], pa.int64())
offsets = pa.array([0, 2, 4])
result = pa.ListArray.from_arrays(offsets, values)
assert result.to_pylist() == [[1, 2], [3, 4]]
assert result.type.equals(pa.list_(pa.int64()))
offsets = pa.array([0, None, 2, 4])
result = pa.ListArray.from_arrays(offsets, values)
assert result.to_pylist() == [[1, 2], None, [3, 4]]
# raise if offset out of bounds
with pytest.raises(ValueError):
pa.ListArray.from_arrays(pa.array([-1, 2, 4]), values)
with pytest.raises(ValueError):
pa.ListArray.from_arrays(pa.array([0, 2, 5]), values)
def test_union_from_dense():
binary = pa.array([b'a', b'b', b'c', b'd'], type='binary')
int64 = pa.array([1, 2, 3], type='int64')
types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8')
logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8')
value_offsets = pa.array([0, 0, 1, 2, 1, 2, 3], type='int32')
py_value = [b'a', 1, b'b', b'c', 2, 3, b'd']
def check_result(result, expected_field_names, expected_type_codes,
expected_type_code_values):
result.validate(full=True)
actual_field_names = [result.type[i].name
for i in range(result.type.num_fields)]
assert actual_field_names == expected_field_names
assert result.type.mode == "dense"
assert result.type.type_codes == expected_type_codes
assert result.to_pylist() == py_value
assert expected_type_code_values.equals(result.type_codes)
assert value_offsets.equals(result.offsets)
assert result.field(0).equals(binary)
assert result.field(1).equals(int64)
with pytest.raises(KeyError):
result.field(-1)
with pytest.raises(KeyError):
result.field(2)
# without field names and type codes
check_result(pa.UnionArray.from_dense(types, value_offsets,
[binary, int64]),
expected_field_names=['0', '1'],
expected_type_codes=[0, 1],
expected_type_code_values=types)
# with field names
check_result(pa.UnionArray.from_dense(types, value_offsets,
[binary, int64],
['bin', 'int']),
expected_field_names=['bin', 'int'],
expected_type_codes=[0, 1],
expected_type_code_values=types)
# with type codes
check_result(pa.UnionArray.from_dense(logical_types, value_offsets,
[binary, int64],
type_codes=[11, 13]),
expected_field_names=['0', '1'],
expected_type_codes=[11, 13],
expected_type_code_values=logical_types)
# with field names and type codes
check_result(pa.UnionArray.from_dense(logical_types, value_offsets,
[binary, int64],
['bin', 'int'], [11, 13]),
expected_field_names=['bin', 'int'],
expected_type_codes=[11, 13],
expected_type_code_values=logical_types)
# Bad type ids
arr = pa.UnionArray.from_dense(logical_types, value_offsets,
[binary, int64])
with pytest.raises(pa.ArrowInvalid):
arr.validate(full=True)
arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64],
type_codes=[11, 13])
with pytest.raises(pa.ArrowInvalid):
arr.validate(full=True)
# Offset larger than child size
bad_offsets = pa.array([0, 0, 1, 2, 1, 2, 4], type='int32')
arr = pa.UnionArray.from_dense(types, bad_offsets, [binary, int64])
with pytest.raises(pa.ArrowInvalid):
arr.validate(full=True)
def test_union_from_sparse():
binary = pa.array([b'a', b' ', b'b', b'c', b' ', b' ', b'd'],
type='binary')
int64 = pa.array([0, 1, 0, 0, 2, 3, 0], type='int64')
types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8')
logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8')
py_value = [b'a', 1, b'b', b'c', 2, 3, b'd']
def check_result(result, expected_field_names, expected_type_codes,
expected_type_code_values):
result.validate(full=True)
assert result.to_pylist() == py_value
actual_field_names = [result.type[i].name
for i in range(result.type.num_fields)]
assert actual_field_names == expected_field_names
assert result.type.mode == "sparse"
assert result.type.type_codes == expected_type_codes
assert expected_type_code_values.equals(result.type_codes)
assert result.field(0).equals(binary)
assert result.field(1).equals(int64)
with pytest.raises(pa.ArrowTypeError):
result.offsets
with pytest.raises(KeyError):
result.field(-1)
with pytest.raises(KeyError):
result.field(2)
# without field names and type codes
check_result(pa.UnionArray.from_sparse(types, [binary, int64]),
expected_field_names=['0', '1'],
expected_type_codes=[0, 1],
expected_type_code_values=types)
# with field names
check_result(pa.UnionArray.from_sparse(types, [binary, int64],
['bin', 'int']),
expected_field_names=['bin', 'int'],
expected_type_codes=[0, 1],
expected_type_code_values=types)
# with type codes
check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64],
type_codes=[11, 13]),
expected_field_names=['0', '1'],
expected_type_codes=[11, 13],
expected_type_code_values=logical_types)
# with field names and type codes
check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64],
['bin', 'int'],
[11, 13]),
expected_field_names=['bin', 'int'],
expected_type_codes=[11, 13],
expected_type_code_values=logical_types)
# Bad type ids
arr = pa.UnionArray.from_sparse(logical_types, [binary, int64])
with pytest.raises(pa.ArrowInvalid):
arr.validate(full=True)
arr = pa.UnionArray.from_sparse(types, [binary, int64],
type_codes=[11, 13])
with pytest.raises(pa.ArrowInvalid):
arr.validate(full=True)
# Invalid child length
with pytest.raises(pa.ArrowInvalid):
arr = pa.UnionArray.from_sparse(logical_types, [binary, int64[1:]])
def test_union_array_to_pylist_with_nulls():
# ARROW-9556
arr = pa.UnionArray.from_sparse(
pa.array([0, 1, 0, 0, 1], type=pa.int8()),
[
pa.array([0.0, 1.1, None, 3.3, 4.4]),
pa.array([True, None, False, True, False]),
]
)
assert arr.to_pylist() == [0.0, None, None, 3.3, False]
arr = pa.UnionArray.from_dense(
pa.array([0, 1, 0, 0, 0, 1, 1], type=pa.int8()),
pa.array([0, 0, 1, 2, 3, 1, 2], type=pa.int32()),
[
pa.array([0.0, 1.1, None, 3.3]),
pa.array([True, None, False])
]
)
assert arr.to_pylist() == [0.0, True, 1.1, None, 3.3, None, False]
def test_union_array_slice():
# ARROW-2314
arr = pa.UnionArray.from_sparse(pa.array([0, 0, 1, 1], type=pa.int8()),
[pa.array(["a", "b", "c", "d"]),
pa.array([1, 2, 3, 4])])
assert arr[1:].to_pylist() == ["b", 3, 4]
binary = pa.array([b'a', b'b', b'c', b'd'], type='binary')
int64 = pa.array([1, 2, 3], type='int64')
types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8')
value_offsets = pa.array([0, 0, 2, 1, 1, 2, 3], type='int32')
arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64])
lst = arr.to_pylist()
for i in range(len(arr)):
for j in range(i, len(arr)):
assert arr[i:j].to_pylist() == lst[i:j]
def _check_cast_case(case, *, safe=True, check_array_construction=True):
in_data, in_type, out_data, out_type = case
if isinstance(out_data, pa.Array):
assert out_data.type == out_type
expected = out_data
else:
expected = pa.array(out_data, type=out_type)
# check casting an already created array
if isinstance(in_data, pa.Array):
assert in_data.type == in_type
in_arr = in_data
else:
in_arr = pa.array(in_data, type=in_type)
casted = in_arr.cast(out_type, safe=safe)
casted.validate(full=True)
assert casted.equals(expected)
# constructing an array with out type which optionally involves casting
# for more see ARROW-1949
if check_array_construction:
in_arr = pa.array(in_data, type=out_type, safe=safe)
assert in_arr.equals(expected)
def test_cast_integers_safe():
safe_cases = [
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='i4'), pa.int32()),
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='u4'), pa.uint16()),
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()),
(np.array([0, 1, 2, 3], dtype='i1'), 'int8',
np.array([0, 1, 2, 3], dtype='f8'), pa.float64())
]
for case in safe_cases:
_check_cast_case(case)
unsafe_cases = [
(np.array([50000], dtype='i4'), 'int32', 'int16'),
(np.array([70000], dtype='i4'), 'int32', 'uint16'),
(np.array([-1], dtype='i4'), 'int32', 'uint16'),
(np.array([50000], dtype='u2'), 'uint16', 'int16')
]
for in_data, in_type, out_type in unsafe_cases:
in_arr = pa.array(in_data, type=in_type)
with pytest.raises(pa.ArrowInvalid):
in_arr.cast(out_type)
def test_cast_none():
# ARROW-3735: Ensure that calling cast(None) doesn't segfault.
arr = pa.array([1, 2, 3])
with pytest.raises(TypeError):
arr.cast(None)
def test_cast_list_to_primitive():
# ARROW-8070: cast segfaults on unsupported cast from list<binary> to utf8
arr = pa.array([[1, 2], [3, 4]])
with pytest.raises(NotImplementedError):
arr.cast(pa.int8())
arr = pa.array([[b"a", b"b"], [b"c"]], pa.list_(pa.binary()))
with pytest.raises(NotImplementedError):
arr.cast(pa.binary())
def test_slice_chunked_array_zero_chunks():
# ARROW-8911
arr = pa.chunked_array([], type='int8')
assert arr.num_chunks == 0
result = arr[:]
assert result.equals(arr)
# Do not crash
arr[:5]
def test_cast_chunked_array():
arrays = [pa.array([1, 2, 3]), pa.array([4, 5, 6])]
carr = pa.chunked_array(arrays)
target = pa.float64()
casted = carr.cast(target)
expected = pa.chunked_array([x.cast(target) for x in arrays])
assert casted.equals(expected)
def test_cast_chunked_array_empty():
# ARROW-8142
for typ1, typ2 in [(pa.dictionary(pa.int8(), pa.string()), pa.string()),
(pa.int64(), pa.int32())]:
arr = pa.chunked_array([], type=typ1)
result = arr.cast(typ2)
expected = pa.chunked_array([], type=typ2)
assert result.equals(expected)
def test_chunked_array_data_warns():
with pytest.warns(FutureWarning):
res = pa.chunked_array([[]]).data
assert isinstance(res, pa.ChunkedArray)
def test_cast_integers_unsafe():
# We let NumPy do the unsafe casting.
# Note that NEP50 in the NumPy spec no longer allows
# the np.array() constructor to pass the dtype directly
# if it results in an unsafe cast.
unsafe_cases = [
(np.array([50000], dtype='i4'), 'int32',
np.array([50000]).astype(dtype='i2'), pa.int16()),
(np.array([70000], dtype='i4'), 'int32',
np.array([70000]).astype(dtype='u2'), pa.uint16()),
(np.array([-1], dtype='i4'), 'int32',
np.array([-1]).astype(dtype='u2'), pa.uint16()),
(np.array([50000], dtype='u2'), pa.uint16(),
np.array([50000]).astype(dtype='i2'), pa.int16())
]
for case in unsafe_cases:
_check_cast_case(case, safe=False)
def test_floating_point_truncate_safe():
safe_cases = [
(np.array([1.0, 2.0, 3.0], dtype='float32'), 'float32',
np.array([1, 2, 3], dtype='i4'), pa.int32()),
(np.array([1.0, 2.0, 3.0], dtype='float64'), 'float64',
np.array([1, 2, 3], dtype='i4'), pa.int32()),
(np.array([-10.0, 20.0, -30.0], dtype='float64'), 'float64',
np.array([-10, 20, -30], dtype='i4'), pa.int32()),
]
for case in safe_cases:
_check_cast_case(case, safe=True)
def test_floating_point_truncate_unsafe():
unsafe_cases = [
(np.array([1.1, 2.2, 3.3], dtype='float32'), 'float32',
np.array([1, 2, 3], dtype='i4'), pa.int32()),
(np.array([1.1, 2.2, 3.3], dtype='float64'), 'float64',
np.array([1, 2, 3], dtype='i4'), pa.int32()),
(np.array([-10.1, 20.2, -30.3], dtype='float64'), 'float64',
np.array([-10, 20, -30], dtype='i4'), pa.int32()),
]
for case in unsafe_cases:
# test safe casting raises
with pytest.raises(pa.ArrowInvalid, match='truncated'):
_check_cast_case(case, safe=True)
# test unsafe casting truncates
_check_cast_case(case, safe=False)
def test_decimal_to_int_safe():
safe_cases = [
(
[decimal.Decimal("123456"), None, decimal.Decimal("-912345")],
pa.decimal128(32, 5),
[123456, None, -912345],
pa.int32()
),
(
[decimal.Decimal("1234"), None, decimal.Decimal("-9123")],
pa.decimal128(19, 10),
[1234, None, -9123],
pa.int16()
),
(
[decimal.Decimal("123"), None, decimal.Decimal("-91")],
pa.decimal128(19, 10),
[123, None, -91],
pa.int8()
),
]
for case in safe_cases:
_check_cast_case(case)
_check_cast_case(case, safe=True)
def test_decimal_to_int_value_out_of_bounds():
out_of_bounds_cases = [
(
np.array([
decimal.Decimal("1234567890123"),
None,
decimal.Decimal("-912345678901234")
]),
pa.decimal128(32, 5),
[1912276171, None, -135950322],
pa.int32()
),
(
[decimal.Decimal("123456"), None, decimal.Decimal("-912345678")],
pa.decimal128(32, 5),
[-7616, None, -19022],
pa.int16()
),
(
[decimal.Decimal("1234"), None, decimal.Decimal("-9123")],
pa.decimal128(32, 5),
[-46, None, 93],
pa.int8()
),
]
for case in out_of_bounds_cases:
# test safe casting raises
with pytest.raises(pa.ArrowInvalid,
match='Integer value out of bounds'):
_check_cast_case(case)
# XXX `safe=False` can be ignored when constructing an array
# from a sequence of Python objects (ARROW-8567)
_check_cast_case(case, safe=False, check_array_construction=False)
def test_decimal_to_int_non_integer():
non_integer_cases = [
(
[
decimal.Decimal("123456.21"),
None,
decimal.Decimal("-912345.13")
],
pa.decimal128(32, 5),
[123456, None, -912345],
pa.int32()
),
(
[decimal.Decimal("1234.134"), None, decimal.Decimal("-9123.1")],
pa.decimal128(19, 10),
[1234, None, -9123],
pa.int16()
),
(
[decimal.Decimal("123.1451"), None, decimal.Decimal("-91.21")],
pa.decimal128(19, 10),
[123, None, -91],
pa.int8()
),
]
for case in non_integer_cases:
# test safe casting raises
msg_regexp = 'Rescaling Decimal128 value would cause data loss'
with pytest.raises(pa.ArrowInvalid, match=msg_regexp):
_check_cast_case(case)
_check_cast_case(case, safe=False)
def test_decimal_to_decimal():
arr = pa.array(
[decimal.Decimal("1234.12"), None],
type=pa.decimal128(19, 10)
)
result = arr.cast(pa.decimal128(15, 6))
expected = pa.array(
[decimal.Decimal("1234.12"), None],
type=pa.decimal128(15, 6)
)
assert result.equals(expected)
msg_regexp = 'Rescaling Decimal128 value would cause data loss'
with pytest.raises(pa.ArrowInvalid, match=msg_regexp):
result = arr.cast(pa.decimal128(9, 1))
result = arr.cast(pa.decimal128(9, 1), safe=False)
expected = pa.array(
[decimal.Decimal("1234.1"), None],
type=pa.decimal128(9, 1)
)
assert result.equals(expected)
with pytest.raises(pa.ArrowInvalid,
match='Decimal value does not fit in precision'):
result = arr.cast(pa.decimal128(5, 2))
def test_safe_cast_nan_to_int_raises():
arr = pa.array([np.nan, 1.])
with pytest.raises(pa.ArrowInvalid, match='truncated'):
arr.cast(pa.int64(), safe=True)
def test_cast_signed_to_unsigned():
safe_cases = [
(np.array([0, 1, 2, 3], dtype='i1'), pa.uint8(),
np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()),
(np.array([0, 1, 2, 3], dtype='i2'), pa.uint16(),
np.array([0, 1, 2, 3], dtype='u2'), pa.uint16())
]
for case in safe_cases:
_check_cast_case(case)
def test_cast_from_null():
in_data = [None] * 3
in_type = pa.null()
out_types = [
pa.null(),
pa.uint8(),
pa.float16(),
pa.utf8(),
pa.binary(),
pa.binary(10),
pa.list_(pa.int16()),
pa.list_(pa.int32(), 4),
pa.large_list(pa.uint8()),
pa.decimal128(19, 4),
pa.timestamp('us'),
pa.timestamp('us', tz='UTC'),
pa.timestamp('us', tz='Europe/Paris'),
pa.duration('us'),
pa.month_day_nano_interval(),
pa.struct([pa.field('a', pa.int32()),
pa.field('b', pa.list_(pa.int8())),
pa.field('c', pa.string())]),
pa.dictionary(pa.int32(), pa.string()),
]
for out_type in out_types:
_check_cast_case((in_data, in_type, in_data, out_type))
out_types = [
pa.union([pa.field('a', pa.binary(10)),
pa.field('b', pa.string())], mode=pa.lib.UnionMode_DENSE),
pa.union([pa.field('a', pa.binary(10)),
pa.field('b', pa.string())], mode=pa.lib.UnionMode_SPARSE),
]
in_arr = pa.array(in_data, type=pa.null())
for out_type in out_types:
with pytest.raises(NotImplementedError):
in_arr.cast(out_type)
def test_cast_string_to_number_roundtrip():
cases = [
(pa.array(["1", "127", "-128"]),
pa.array([1, 127, -128], type=pa.int8())),
(pa.array([None, "18446744073709551615"]),
pa.array([None, 18446744073709551615], type=pa.uint64())),
]
for in_arr, expected in cases:
casted = in_arr.cast(expected.type, safe=True)
casted.validate(full=True)
assert casted.equals(expected)
casted_back = casted.cast(in_arr.type, safe=True)
casted_back.validate(full=True)
assert casted_back.equals(in_arr)
def test_cast_dictionary():
# cast to the value type
arr = pa.array(
["foo", "bar", None],
type=pa.dictionary(pa.int64(), pa.string())
)
expected = pa.array(["foo", "bar", None])
assert arr.type == pa.dictionary(pa.int64(), pa.string())
assert arr.cast(pa.string()) == expected
# cast to a different key type
for key_type in [pa.int8(), pa.int16(), pa.int32()]:
typ = pa.dictionary(key_type, pa.string())
expected = pa.array(
["foo", "bar", None],
type=pa.dictionary(key_type, pa.string())
)
assert arr.cast(typ) == expected
# shouldn't crash (ARROW-7077)
with pytest.raises(pa.ArrowInvalid):
arr.cast(pa.int32())
def test_view():
# ARROW-5992
arr = pa.array(['foo', 'bar', 'baz'], type=pa.utf8())
expected = pa.array(['foo', 'bar', 'baz'], type=pa.binary())
assert arr.view(pa.binary()).equals(expected)
assert arr.view('binary').equals(expected)
def test_unique_simple():
cases = [
(pa.array([1, 2, 3, 1, 2, 3]), pa.array([1, 2, 3])),
(pa.array(['foo', None, 'bar', 'foo']),
pa.array(['foo', None, 'bar'])),
(pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()),
pa.array(['foo', None, 'bar'], pa.large_binary())),
]
for arr, expected in cases:
result = arr.unique()
assert result.equals(expected)
result = pa.chunked_array([arr]).unique()
assert result.equals(expected)
def test_value_counts_simple():
cases = [
(pa.array([1, 2, 3, 1, 2, 3]),
pa.array([1, 2, 3]),
pa.array([2, 2, 2], type=pa.int64())),
(pa.array(['foo', None, 'bar', 'foo']),
pa.array(['foo', None, 'bar']),
pa.array([2, 1, 1], type=pa.int64())),
(pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()),
pa.array(['foo', None, 'bar'], pa.large_binary()),
pa.array([2, 1, 1], type=pa.int64())),
]
for arr, expected_values, expected_counts in cases:
for arr_in in (arr, pa.chunked_array([arr])):
result = arr_in.value_counts()
assert result.type.equals(
pa.struct([pa.field("values", arr.type),
pa.field("counts", pa.int64())]))
assert result.field("values").equals(expected_values)
assert result.field("counts").equals(expected_counts)
def test_unique_value_counts_dictionary_type():
indices = pa.array([3, 0, 0, 0, 1, 1, 3, 0, 1, 3, 0, 1])
dictionary = pa.array(['foo', 'bar', 'baz', 'qux'])
arr = pa.DictionaryArray.from_arrays(indices, dictionary)
unique_result = arr.unique()
expected = pa.DictionaryArray.from_arrays(indices.unique(), dictionary)
assert unique_result.equals(expected)
result = arr.value_counts()
assert result.field('values').equals(unique_result)
assert result.field('counts').equals(pa.array([3, 5, 4], type='int64'))
arr = pa.DictionaryArray.from_arrays(
pa.array([], type='int64'), dictionary)
unique_result = arr.unique()
expected = pa.DictionaryArray.from_arrays(pa.array([], type='int64'),
pa.array([], type='utf8'))
assert unique_result.equals(expected)
result = arr.value_counts()
assert result.field('values').equals(unique_result)
assert result.field('counts').equals(pa.array([], type='int64'))
def test_dictionary_encode_simple():
cases = [
(pa.array([1, 2, 3, None, 1, 2, 3]),
pa.DictionaryArray.from_arrays(
pa.array([0, 1, 2, None, 0, 1, 2], type='int32'),
[1, 2, 3])),
(pa.array(['foo', None, 'bar', 'foo']),
pa.DictionaryArray.from_arrays(
pa.array([0, None, 1, 0], type='int32'),
['foo', 'bar'])),
(pa.array(['foo', None, 'bar', 'foo'], type=pa.large_binary()),
pa.DictionaryArray.from_arrays(
pa.array([0, None, 1, 0], type='int32'),
pa.array(['foo', 'bar'], type=pa.large_binary()))),
]
for arr, expected in cases:
result = arr.dictionary_encode()
assert result.equals(expected)
result = pa.chunked_array([arr]).dictionary_encode()
assert result.num_chunks == 1
assert result.chunk(0).equals(expected)
result = pa.chunked_array([], type=arr.type).dictionary_encode()
assert result.num_chunks == 0
assert result.type == expected.type
def test_dictionary_encode_sliced():
cases = [
(pa.array([1, 2, 3, None, 1, 2, 3])[1:-1],
pa.DictionaryArray.from_arrays(
pa.array([0, 1, None, 2, 0], type='int32'),
[2, 3, 1])),
(pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'])[1:-1],
pa.DictionaryArray.from_arrays(
pa.array([0, 1, 0], type='int32'),
['foo', 'bar'])),
(pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'],
type=pa.large_string())[1:-1],
pa.DictionaryArray.from_arrays(
pa.array([0, 1, 0], type='int32'),
pa.array(['foo', 'bar'], type=pa.large_string()))),
]
for arr, expected in cases:
result = arr.dictionary_encode()
assert result.equals(expected)
result = pa.chunked_array([arr]).dictionary_encode()
assert result.num_chunks == 1
assert result.type == expected.type
assert result.chunk(0).equals(expected)
result = pa.chunked_array([], type=arr.type).dictionary_encode()
assert result.num_chunks == 0
assert result.type == expected.type
# ARROW-9143 dictionary_encode after slice was segfaulting
array = pa.array(['foo', 'bar', 'baz'])
array.slice(1).dictionary_encode()
def test_dictionary_encode_zero_length():
# User-facing experience of ARROW-7008
arr = pa.array([], type=pa.string())
encoded = arr.dictionary_encode()
assert len(encoded.dictionary) == 0
encoded.validate(full=True)
def test_dictionary_decode():
cases = [
(pa.array([1, 2, 3, None, 1, 2, 3]),
pa.DictionaryArray.from_arrays(
pa.array([0, 1, 2, None, 0, 1, 2], type='int32'),
[1, 2, 3])),
(pa.array(['foo', None, 'bar', 'foo']),
pa.DictionaryArray.from_arrays(
pa.array([0, None, 1, 0], type='int32'),
['foo', 'bar'])),
(pa.array(['foo', None, 'bar', 'foo'], type=pa.large_binary()),
pa.DictionaryArray.from_arrays(
pa.array([0, None, 1, 0], type='int32'),
pa.array(['foo', 'bar'], type=pa.large_binary()))),
]
for expected, arr in cases:
result = arr.dictionary_decode()
assert result.equals(expected)
def test_cast_time32_to_int():
arr = pa.array(np.array([0, 1, 2], dtype='int32'),
type=pa.time32('s'))
expected = pa.array([0, 1, 2], type='i4')
result = arr.cast('i4')
assert result.equals(expected)
def test_cast_time64_to_int():
arr = pa.array(np.array([0, 1, 2], dtype='int64'),
type=pa.time64('us'))
expected = pa.array([0, 1, 2], type='i8')
result = arr.cast('i8')
assert result.equals(expected)
def test_cast_timestamp_to_int():
arr = pa.array(np.array([0, 1, 2], dtype='int64'),
type=pa.timestamp('us'))
expected = pa.array([0, 1, 2], type='i8')
result = arr.cast('i8')
assert result.equals(expected)
def test_cast_date32_to_int():
arr = pa.array([0, 1, 2], type='i4')
result1 = arr.cast('date32')
result2 = result1.cast('i4')
expected1 = pa.array([
datetime.date(1970, 1, 1),
datetime.date(1970, 1, 2),
datetime.date(1970, 1, 3)
]).cast('date32')
assert result1.equals(expected1)
assert result2.equals(arr)
def test_cast_duration_to_int():
arr = pa.array(np.array([0, 1, 2], dtype='int64'),
type=pa.duration('us'))
expected = pa.array([0, 1, 2], type='i8')
result = arr.cast('i8')
assert result.equals(expected)
def test_cast_binary_to_utf8():
binary_arr = pa.array([b'foo', b'bar', b'baz'], type=pa.binary())
utf8_arr = binary_arr.cast(pa.utf8())
expected = pa.array(['foo', 'bar', 'baz'], type=pa.utf8())
assert utf8_arr.equals(expected)
non_utf8_values = [('mañana').encode('utf-16-le')]
non_utf8_binary = pa.array(non_utf8_values)
assert non_utf8_binary.type == pa.binary()
with pytest.raises(ValueError):
non_utf8_binary.cast(pa.string())
non_utf8_all_null = pa.array(non_utf8_values, mask=np.array([True]),
type=pa.binary())
# No error
casted = non_utf8_all_null.cast(pa.string())
assert casted.null_count == 1
def test_cast_date64_to_int():
arr = pa.array(np.array([0, 1, 2], dtype='int64'),
type=pa.date64())
expected = pa.array([0, 1, 2], type='i8')
result = arr.cast('i8')
assert result.equals(expected)
def test_date64_from_builtin_datetime():
val1 = datetime.datetime(2000, 1, 1, 12, 34, 56, 123456)
val2 = datetime.datetime(2000, 1, 1)
result = pa.array([val1, val2], type='date64')
result2 = pa.array([val1.date(), val2.date()], type='date64')
assert result.equals(result2)
as_i8 = result.view('int64')
assert as_i8[0].as_py() == as_i8[1].as_py()
@pytest.mark.parametrize(('ty', 'values'), [
('bool', [True, False, True]),
('uint8', range(0, 255)),
('int8', range(0, 128)),
('uint16', range(0, 10)),
('int16', range(0, 10)),
('uint32', range(0, 10)),
('int32', range(0, 10)),
('uint64', range(0, 10)),
('int64', range(0, 10)),
('float', [0.0, 0.1, 0.2]),
('double', [0.0, 0.1, 0.2]),
('string', ['a', 'b', 'c']),
('binary', [b'a', b'b', b'c']),
(pa.binary(3), [b'abc', b'bcd', b'cde'])
])
def test_cast_identities(ty, values):
arr = pa.array(values, type=ty)
assert arr.cast(ty).equals(arr)
pickle_test_parametrize = pytest.mark.parametrize(
('data', 'typ'),
[
([True, False, True, True], pa.bool_()),
([1, 2, 4, 6], pa.int64()),
([1.0, 2.5, None], pa.float64()),
(['a', None, 'b'], pa.string()),
([], None),
([[1, 2], [3]], pa.list_(pa.int64())),
([[4, 5], [6]], pa.large_list(pa.int16())),
([['a'], None, ['b', 'c']], pa.list_(pa.string())),
([[1, 2], [3]], pa.list_view(pa.int64())),
([[4, 5], [6]], pa.large_list_view(pa.int16())),
([['a'], None, ['b', 'c']], pa.list_view(pa.string())),
([(1, 'a'), (2, 'c'), None],
pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string())]))
]
)
@pickle_test_parametrize
def test_array_pickle(data, typ, pickle_module):
# Allocate here so that we don't have any Arrow data allocated.
# This is needed to ensure that allocator tests can be reliable.
array = pa.array(data, type=typ)
for proto in range(0, pickle_module.HIGHEST_PROTOCOL + 1):
result = pickle_module.loads(pickle_module.dumps(array, proto))
assert array.equals(result)
def test_array_pickle_dictionary(pickle_module):
# not included in the above as dictionary array cannot be created with
# the pa.array function
array = pa.DictionaryArray.from_arrays([0, 1, 2, 0, 1], ['a', 'b', 'c'])
for proto in range(0, pickle_module.HIGHEST_PROTOCOL + 1):
result = pickle_module.loads(pickle_module.dumps(array, proto))
assert array.equals(result)
@h.settings(suppress_health_check=(h.HealthCheck.too_slow,))
@h.given(
past.arrays(
past.all_types,
size=st.integers(min_value=0, max_value=10)
)
)
def test_pickling(pickle_module, arr):
data = pickle_module.dumps(arr)
restored = pickle_module.loads(data)
assert arr.equals(restored)
@pickle_test_parametrize
def test_array_pickle_protocol5(data, typ, pickle_module):
# Test zero-copy pickling with protocol 5 (PEP 574)
array = pa.array(data, type=typ)
addresses = [buf.address if buf is not None else 0
for buf in array.buffers()]
for proto in range(5, pickle_module.HIGHEST_PROTOCOL + 1):
buffers = []
pickled = pickle_module.dumps(array, proto, buffer_callback=buffers.append)
result = pickle_module.loads(pickled, buffers=buffers)
assert array.equals(result)
result_addresses = [buf.address if buf is not None else 0
for buf in result.buffers()]
assert result_addresses == addresses
@pytest.mark.parametrize(
'narr',
[
np.arange(10, dtype=np.int64),
np.arange(10, dtype=np.int32),
np.arange(10, dtype=np.int16),
np.arange(10, dtype=np.int8),
np.arange(10, dtype=np.uint64),
np.arange(10, dtype=np.uint32),
np.arange(10, dtype=np.uint16),
np.arange(10, dtype=np.uint8),
np.arange(10, dtype=np.float64),
np.arange(10, dtype=np.float32),
np.arange(10, dtype=np.float16),
]
)
def test_to_numpy_roundtrip(narr):
arr = pa.array(narr)
assert narr.dtype == arr.to_numpy().dtype
np.testing.assert_array_equal(narr, arr.to_numpy())
np.testing.assert_array_equal(narr[:6], arr[:6].to_numpy())
np.testing.assert_array_equal(narr[2:], arr[2:].to_numpy())
np.testing.assert_array_equal(narr[2:6], arr[2:6].to_numpy())
def test_array_uint64_from_py_over_range():
arr = pa.array([2 ** 63], type=pa.uint64())
expected = pa.array(np.array([2 ** 63], dtype='u8'))
assert arr.equals(expected)
def test_array_conversions_no_sentinel_values():
arr = np.array([1, 2, 3, 4], dtype='int8')
refcount = sys.getrefcount(arr)
arr2 = pa.array(arr) # noqa
assert sys.getrefcount(arr) == (refcount + 1)
assert arr2.type == 'int8'
arr3 = pa.array(np.array([1, np.nan, 2, 3, np.nan, 4], dtype='float32'),
type='float32')
assert arr3.type == 'float32'
assert arr3.null_count == 0
def test_time32_time64_from_integer():
# ARROW-4111
result = pa.array([1, 2, None], type=pa.time32('s'))
expected = pa.array([datetime.time(second=1),
datetime.time(second=2), None],
type=pa.time32('s'))
assert result.equals(expected)
result = pa.array([1, 2, None], type=pa.time32('ms'))
expected = pa.array([datetime.time(microsecond=1000),
datetime.time(microsecond=2000), None],
type=pa.time32('ms'))
assert result.equals(expected)
result = pa.array([1, 2, None], type=pa.time64('us'))
expected = pa.array([datetime.time(microsecond=1),
datetime.time(microsecond=2), None],
type=pa.time64('us'))
assert result.equals(expected)
result = pa.array([1000, 2000, None], type=pa.time64('ns'))
expected = pa.array([datetime.time(microsecond=1),
datetime.time(microsecond=2), None],
type=pa.time64('ns'))
assert result.equals(expected)
def test_binary_string_pandas_null_sentinels():
# ARROW-6227
def _check_case(ty):
arr = pa.array(['string', np.nan], type=ty, from_pandas=True)
expected = pa.array(['string', None], type=ty)
assert arr.equals(expected)
_check_case('binary')
_check_case('utf8')
def test_pandas_null_sentinels_raise_error():
# ARROW-6227
cases = [
([None, np.nan], 'null'),
(['string', np.nan], 'binary'),
(['string', np.nan], 'utf8'),
(['string', np.nan], 'large_binary'),
(['string', np.nan], 'large_utf8'),
([b'string', np.nan], pa.binary(6)),
([True, np.nan], pa.bool_()),
([decimal.Decimal('0'), np.nan], pa.decimal128(12, 2)),
([0, np.nan], pa.date32()),
([0, np.nan], pa.date32()),
([0, np.nan], pa.date64()),
([0, np.nan], pa.time32('s')),
([0, np.nan], pa.time64('us')),
([0, np.nan], pa.timestamp('us')),
([0, np.nan], pa.duration('us')),
]
for case, ty in cases:
# Both types of exceptions are raised. May want to clean that up
with pytest.raises((ValueError, TypeError)):
pa.array(case, type=ty)
# from_pandas option suppresses failure
result = pa.array(case, type=ty, from_pandas=True)
assert result.null_count == (1 if ty != 'null' else 2)
@pytest.mark.pandas
def test_pandas_null_sentinels_index():
# ARROW-7023 - ensure that when passing a pandas Index, "from_pandas"
# semantics are used
import pandas as pd
idx = pd.Index([1, 2, np.nan], dtype=object)
result = pa.array(idx)
expected = pa.array([1, 2, np.nan], from_pandas=True)
assert result.equals(expected)
def test_array_roundtrip_from_numpy_datetimeD():
arr = np.array([None, datetime.date(2017, 4, 4)], dtype='datetime64[D]')
result = pa.array(arr)
expected = pa.array([None, datetime.date(2017, 4, 4)], type=pa.date32())
assert result.equals(expected)
result = result.to_numpy(zero_copy_only=False)
np.testing.assert_array_equal(result, arr)
assert result.dtype == arr.dtype
def test_array_from_naive_datetimes():
arr = pa.array([
None,
datetime.datetime(2017, 4, 4, 12, 11, 10),
datetime.datetime(2018, 1, 1, 0, 2, 0)
])
assert arr.type == pa.timestamp('us', tz=None)
@pytest.mark.parametrize(('dtype', 'type'), [
('datetime64[s]', pa.timestamp('s')),
('datetime64[ms]', pa.timestamp('ms')),
('datetime64[us]', pa.timestamp('us')),
('datetime64[ns]', pa.timestamp('ns'))
])
def test_array_from_numpy_datetime(dtype, type):
data = [
None,
datetime.datetime(2017, 4, 4, 12, 11, 10),
datetime.datetime(2018, 1, 1, 0, 2, 0)
]
# from numpy array
arr = pa.array(np.array(data, dtype=dtype))
expected = pa.array(data, type=type)
assert arr.equals(expected)
# from list of numpy scalars
arr = pa.array(list(np.array(data, dtype=dtype)))
assert arr.equals(expected)
def test_array_from_different_numpy_datetime_units_raises():
data = [
None,
datetime.datetime(2017, 4, 4, 12, 11, 10),
datetime.datetime(2018, 1, 1, 0, 2, 0)
]
s = np.array(data, dtype='datetime64[s]')
ms = np.array(data, dtype='datetime64[ms]')
data = list(s[:2]) + list(ms[2:])
with pytest.raises(pa.ArrowNotImplementedError):
pa.array(data)
@pytest.mark.parametrize('unit', ['ns', 'us', 'ms', 's'])
def test_array_from_list_of_timestamps(unit):
n = np.datetime64('NaT', unit)
x = np.datetime64('2017-01-01 01:01:01.111111111', unit)
y = np.datetime64('2018-11-22 12:24:48.111111111', unit)
a1 = pa.array([n, x, y])
a2 = pa.array([n, x, y], type=pa.timestamp(unit))
assert a1.type == a2.type
assert a1.type.unit == unit
assert a1[0] == a2[0]
def test_array_from_timestamp_with_generic_unit():
n = np.datetime64('NaT')
x = np.datetime64('2017-01-01 01:01:01.111111111')
y = np.datetime64('2018-11-22 12:24:48.111111111')
with pytest.raises(pa.ArrowNotImplementedError,
match='Unbound or generic datetime64 time unit'):
pa.array([n, x, y])
@pytest.mark.parametrize(('dtype', 'type'), [
('timedelta64[s]', pa.duration('s')),
('timedelta64[ms]', pa.duration('ms')),
('timedelta64[us]', pa.duration('us')),
('timedelta64[ns]', pa.duration('ns'))
])
def test_array_from_numpy_timedelta(dtype, type):
data = [
None,
datetime.timedelta(1),
datetime.timedelta(0, 1)
]
# from numpy array
np_arr = np.array(data, dtype=dtype)
arr = pa.array(np_arr)
assert isinstance(arr, pa.DurationArray)
assert arr.type == type
expected = pa.array(data, type=type)
assert arr.equals(expected)
assert arr.to_pylist() == data
# from list of numpy scalars
arr = pa.array(list(np.array(data, dtype=dtype)))
assert arr.equals(expected)
assert arr.to_pylist() == data
def test_array_from_numpy_timedelta_incorrect_unit():
# generic (no unit)
td = np.timedelta64(1)
for data in [[td], np.array([td])]:
with pytest.raises(NotImplementedError):
pa.array(data)
# unsupported unit
td = np.timedelta64(1, 'M')
for data in [[td], np.array([td])]:
with pytest.raises(NotImplementedError):
pa.array(data)
def test_array_from_numpy_ascii():
arr = np.array(['abcde', 'abc', ''], dtype='|S5')
arrow_arr = pa.array(arr)
assert arrow_arr.type == 'binary'
expected = pa.array(['abcde', 'abc', ''], type='binary')
assert arrow_arr.equals(expected)
mask = np.array([False, True, False])
arrow_arr = pa.array(arr, mask=mask)
expected = pa.array(['abcde', None, ''], type='binary')
assert arrow_arr.equals(expected)
# Strided variant
arr = np.array(['abcde', 'abc', ''] * 5, dtype='|S5')[::2]
mask = np.array([False, True, False] * 5)[::2]
arrow_arr = pa.array(arr, mask=mask)
expected = pa.array(['abcde', '', None, 'abcde', '', None, 'abcde', ''],
type='binary')
assert arrow_arr.equals(expected)
# 0 itemsize
arr = np.array(['', '', ''], dtype='|S0')
arrow_arr = pa.array(arr)
expected = pa.array(['', '', ''], type='binary')
assert arrow_arr.equals(expected)
def test_interval_array_from_timedelta():
data = [
None,
datetime.timedelta(days=1, seconds=1, microseconds=1,
milliseconds=1, minutes=1, hours=1, weeks=1)]
# From timedelta (explicit type required)
arr = pa.array(data, pa.month_day_nano_interval())
assert isinstance(arr, pa.MonthDayNanoIntervalArray)
assert arr.type == pa.month_day_nano_interval()
expected_list = [
None,
pa.MonthDayNano([0, 8,
(datetime.timedelta(seconds=1, microseconds=1,
milliseconds=1, minutes=1,
hours=1) //
datetime.timedelta(microseconds=1)) * 1000])]
expected = pa.array(expected_list)
assert arr.equals(expected)
assert arr.to_pylist() == expected_list
@pytest.mark.pandas
def test_interval_array_from_relativedelta():
# dateutil is dependency of pandas
from dateutil.relativedelta import relativedelta
from pandas import DateOffset
data = [
None,
relativedelta(years=1, months=1,
days=1, seconds=1, microseconds=1,
minutes=1, hours=1, weeks=1, leapdays=1)]
# Note leapdays are ignored.
# From relativedelta
arr = pa.array(data)
assert isinstance(arr, pa.MonthDayNanoIntervalArray)
assert arr.type == pa.month_day_nano_interval()
expected_list = [
None,
pa.MonthDayNano([13, 8,
(datetime.timedelta(seconds=1, microseconds=1,
minutes=1, hours=1) //
datetime.timedelta(microseconds=1)) * 1000])]
expected = pa.array(expected_list)
assert arr.equals(expected)
assert arr.to_pandas().tolist() == [
None, DateOffset(months=13, days=8,
microseconds=(
datetime.timedelta(seconds=1, microseconds=1,
minutes=1, hours=1) //
datetime.timedelta(microseconds=1)),
nanoseconds=0)]
with pytest.raises(ValueError):
pa.array([DateOffset(years=((1 << 32) // 12), months=100)])
with pytest.raises(ValueError):
pa.array([DateOffset(weeks=((1 << 32) // 7), days=100)])
with pytest.raises(ValueError):
pa.array([DateOffset(seconds=((1 << 64) // 1000000000),
nanoseconds=1)])
with pytest.raises(ValueError):
pa.array([DateOffset(microseconds=((1 << 64) // 100))])
def test_interval_array_from_tuple():
data = [None, (1, 2, -3)]
# From timedelta (explicit type required)
arr = pa.array(data, pa.month_day_nano_interval())
assert isinstance(arr, pa.MonthDayNanoIntervalArray)
assert arr.type == pa.month_day_nano_interval()
expected_list = [
None,
pa.MonthDayNano([1, 2, -3])]
expected = pa.array(expected_list)
assert arr.equals(expected)
assert arr.to_pylist() == expected_list
@pytest.mark.pandas
def test_interval_array_from_dateoffset():
from pandas.tseries.offsets import DateOffset
data = [
None,
DateOffset(years=1, months=1,
days=1, seconds=1, microseconds=1,
minutes=1, hours=1, weeks=1, nanoseconds=1),
DateOffset()]
arr = pa.array(data)
assert isinstance(arr, pa.MonthDayNanoIntervalArray)
assert arr.type == pa.month_day_nano_interval()
expected_list = [
None,
pa.MonthDayNano([13, 8, 3661000001001]),
pa.MonthDayNano([0, 0, 0])]
expected = pa.array(expected_list)
assert arr.equals(expected)
expected_from_pandas = [
None, DateOffset(months=13, days=8,
microseconds=(
datetime.timedelta(seconds=1, microseconds=1,
minutes=1, hours=1) //
datetime.timedelta(microseconds=1)),
nanoseconds=1),
DateOffset(months=0, days=0, microseconds=0, nanoseconds=0)]
assert arr.to_pandas().tolist() == expected_from_pandas
# nested list<interval> array conversion
actual_list = pa.array([data]).to_pandas().tolist()
assert len(actual_list) == 1
assert list(actual_list[0]) == expected_from_pandas
def test_array_from_numpy_unicode():
dtypes = ['<U5', '>U5']
for dtype in dtypes:
arr = np.array(['abcde', 'abc', ''], dtype=dtype)
arrow_arr = pa.array(arr)
assert arrow_arr.type == 'utf8'
expected = pa.array(['abcde', 'abc', ''], type='utf8')
assert arrow_arr.equals(expected)
mask = np.array([False, True, False])
arrow_arr = pa.array(arr, mask=mask)
expected = pa.array(['abcde', None, ''], type='utf8')
assert arrow_arr.equals(expected)
# Strided variant
arr = np.array(['abcde', 'abc', ''] * 5, dtype=dtype)[::2]
mask = np.array([False, True, False] * 5)[::2]
arrow_arr = pa.array(arr, mask=mask)
expected = pa.array(['abcde', '', None, 'abcde', '', None,
'abcde', ''], type='utf8')
assert arrow_arr.equals(expected)
# 0 itemsize
arr = np.array(['', '', ''], dtype='<U0')
arrow_arr = pa.array(arr)
expected = pa.array(['', '', ''], type='utf8')
assert arrow_arr.equals(expected)
def test_array_string_from_non_string():
# ARROW-5682 - when converting to string raise on non string-like dtype
with pytest.raises(TypeError):
pa.array(np.array([1, 2, 3]), type=pa.string())
def test_array_string_from_all_null():
# ARROW-5682
vals = np.array([None, None], dtype=object)
arr = pa.array(vals, type=pa.string())
assert arr.null_count == 2
vals = np.array([np.nan, np.nan], dtype='float64')
# by default raises, but accept as all-null when from_pandas=True
with pytest.raises(TypeError):
pa.array(vals, type=pa.string())
arr = pa.array(vals, type=pa.string(), from_pandas=True)
assert arr.null_count == 2
def test_array_from_masked():
ma = np.ma.array([1, 2, 3, 4], dtype='int64',
mask=[False, False, True, False])
result = pa.array(ma)
expected = pa.array([1, 2, None, 4], type='int64')
assert expected.equals(result)
with pytest.raises(ValueError, match="Cannot pass a numpy masked array"):
pa.array(ma, mask=np.array([True, False, False, False]))
def test_array_from_shrunken_masked():
ma = np.ma.array([0], dtype='int64')
result = pa.array(ma)
expected = pa.array([0], type='int64')
assert expected.equals(result)
def test_array_from_invalid_dim_raises():
msg = "only handle 1-dimensional arrays"
arr2d = np.array([[1, 2, 3], [4, 5, 6]])
with pytest.raises(ValueError, match=msg):
pa.array(arr2d)
arr0d = np.array(0)
with pytest.raises(ValueError, match=msg):
pa.array(arr0d)
def test_array_from_strided_bool():
# ARROW-6325
arr = np.ones((3, 2), dtype=bool)
result = pa.array(arr[:, 0])
expected = pa.array([True, True, True])
assert result.equals(expected)
result = pa.array(arr[0, :])
expected = pa.array([True, True])
assert result.equals(expected)
def test_array_from_strided():
pydata = [
([b"ab", b"cd", b"ef"], (pa.binary(), pa.binary(2))),
([1, 2, 3], (pa.int8(), pa.int16(), pa.int32(), pa.int64())),
([1.0, 2.0, 3.0], (pa.float32(), pa.float64())),
(["ab", "cd", "ef"], (pa.utf8(), ))
]
for values, dtypes in pydata:
nparray = np.array(values)
for patype in dtypes:
for mask in (None, np.array([False, False])):
arrow_array = pa.array(nparray[::2], patype,
mask=mask)
assert values[::2] == arrow_array.to_pylist()
def test_boolean_true_count_false_count():
# ARROW-9145
arr = pa.array([True, True, None, False, None, True] * 1000)
assert arr.true_count == 3000
assert arr.false_count == 1000
def test_buffers_primitive():
a = pa.array([1, 2, None, 4], type=pa.int16())
buffers = a.buffers()
assert len(buffers) == 2
null_bitmap = buffers[0].to_pybytes()
assert 1 <= len(null_bitmap) <= 64 # XXX this is varying
assert bytearray(null_bitmap)[0] == 0b00001011
# Slicing does not affect the buffers but the offset
a_sliced = a[1:]
buffers = a_sliced.buffers()
a_sliced.offset == 1
assert len(buffers) == 2
null_bitmap = buffers[0].to_pybytes()
assert 1 <= len(null_bitmap) <= 64 # XXX this is varying
assert bytearray(null_bitmap)[0] == 0b00001011
assert struct.unpack('hhxxh', buffers[1].to_pybytes()) == (1, 2, 4)
a = pa.array(np.int8([4, 5, 6]))
buffers = a.buffers()
assert len(buffers) == 2
# No null bitmap from Numpy int array
assert buffers[0] is None
assert struct.unpack('3b', buffers[1].to_pybytes()) == (4, 5, 6)
a = pa.array([b'foo!', None, b'bar!!'])
buffers = a.buffers()
assert len(buffers) == 3
null_bitmap = buffers[0].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000101
offsets = buffers[1].to_pybytes()
assert struct.unpack('4i', offsets) == (0, 4, 4, 9)
values = buffers[2].to_pybytes()
assert values == b'foo!bar!!'
def test_buffers_nested():
a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64()))
buffers = a.buffers()
assert len(buffers) == 4
# The parent buffers
null_bitmap = buffers[0].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000101
offsets = buffers[1].to_pybytes()
assert struct.unpack('4i', offsets) == (0, 2, 2, 6)
# The child buffers
null_bitmap = buffers[2].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00110111
values = buffers[3].to_pybytes()
assert struct.unpack('qqq8xqq', values) == (1, 2, 3, 4, 5)
a = pa.array([(42, None), None, (None, 43)],
type=pa.struct([pa.field('a', pa.int8()),
pa.field('b', pa.int16())]))
buffers = a.buffers()
assert len(buffers) == 5
# The parent buffer
null_bitmap = buffers[0].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000101
# The child buffers: 'a'
null_bitmap = buffers[1].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000011
values = buffers[2].to_pybytes()
assert struct.unpack('bxx', values) == (42,)
# The child buffers: 'b'
null_bitmap = buffers[3].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000110
values = buffers[4].to_pybytes()
assert struct.unpack('4xh', values) == (43,)
def test_total_buffer_size():
a = pa.array(np.array([4, 5, 6], dtype='int64'))
assert a.nbytes == 8 * 3
assert a.get_total_buffer_size() == 8 * 3
assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes
a = pa.array([1, None, 3], type='int64')
assert a.nbytes == 8*3 + 1
assert a.get_total_buffer_size() == 8*3 + 1
assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes
a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64()))
assert a.nbytes == 62
assert a.get_total_buffer_size() == 1 + 4 * 4 + 1 + 6 * 8
assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes
a = pa.array([[[5, 6, 7]], [[9, 10]]], type=pa.list_(pa.list_(pa.int8())))
assert a.get_total_buffer_size() == (4 * 3) + (4 * 3) + (1 * 5)
assert a.nbytes == 21
a = pa.array([[[1, 2], [3, 4]], [[5, 6, 7], None, [8]], [[9, 10]]],
type=pa.list_(pa.list_(pa.int8())))
a1 = a.slice(1, 2)
assert a1.nbytes == (4 * 2) + 1 + (4 * 4) + (1 * 6)
assert a1.get_total_buffer_size() == (4 * 4) + 1 + (4 * 7) + (1 * 10)
def test_nbytes_size():
a = pa.chunked_array([pa.array([1, None, 3], type=pa.int16()),
pa.array([4, 5, 6], type=pa.int16())])
assert a.nbytes == 13
def test_invalid_tensor_constructor_repr():
# ARROW-2638: prevent calling extension class constructors directly
with pytest.raises(TypeError):
repr(pa.Tensor([1]))
def test_invalid_tensor_construction():
with pytest.raises(TypeError):
pa.Tensor()
@pytest.mark.parametrize(('offset_type', 'list_type_factory'),
[(pa.int32(), pa.list_), (pa.int64(), pa.large_list)])
def test_list_array_flatten(offset_type, list_type_factory):
typ2 = list_type_factory(
list_type_factory(
pa.int64()
)
)
arr2 = pa.array([
None,
[
[1, None, 2],
None,
[3, 4]
],
[],
[
[],
[5, 6],
None
],
[
[7, 8]
]
], type=typ2)
offsets2 = pa.array([0, 0, 3, 3, 6, 7], type=offset_type)
typ1 = list_type_factory(pa.int64())
arr1 = pa.array([
[1, None, 2],
None,
[3, 4],
[],
[5, 6],
None,
[7, 8]
], type=typ1)
offsets1 = pa.array([0, 3, 3, 5, 5, 7, 7, 9], type=offset_type)
arr0 = pa.array([
1, None, 2,
3, 4,
5, 6,
7, 8
], type=pa.int64())
assert arr2.flatten().equals(arr1)
assert arr2.offsets.equals(offsets2)
assert arr2.values.equals(arr1)
assert arr1.flatten().equals(arr0)
assert arr1.offsets.equals(offsets1)
assert arr1.values.equals(arr0)
assert arr2.flatten().flatten().equals(arr0)
assert arr2.values.values.equals(arr0)
@pytest.mark.parametrize('list_type', [
pa.list_(pa.int32()),
pa.list_(pa.int32(), list_size=2),
pa.large_list(pa.int32())])
def test_list_value_parent_indices(list_type):
arr = pa.array(
[
[0, 1],
None,
[None, None],
[3, 4]
], type=list_type)
expected = pa.array([0, 0, 2, 2, 3, 3], type=pa.int64())
assert arr.value_parent_indices().equals(expected)
@pytest.mark.parametrize(('offset_type', 'list_type'),
[(pa.int32(), pa.list_(pa.int32())),
(pa.int32(), pa.list_(pa.int32(), list_size=2)),
(pa.int64(), pa.large_list(pa.int32()))])
def test_list_value_lengths(offset_type, list_type):
# FixedSizeListArray needs fixed list sizes
if getattr(list_type, "list_size", None):
arr = pa.array(
[
[0, 1],
None,
[None, None],
[3, 4]
], type=list_type)
expected = pa.array([2, None, 2, 2], type=offset_type)
# Otherwise create variable list sizes
else:
arr = pa.array(
[
[0, 1, 2],
None,
[],
[3, 4]
], type=list_type)
expected = pa.array([3, None, 0, 2], type=offset_type)
assert arr.value_lengths().equals(expected)
@pytest.mark.parametrize('list_type_factory', [pa.list_, pa.large_list])
def test_list_array_flatten_non_canonical(list_type_factory):
# Non-canonical list array (null elements backed by non-empty sublists)
typ = list_type_factory(pa.int64())
arr = pa.array([[1], [2, 3], [4, 5, 6]], type=typ)
buffers = arr.buffers()[:2]
buffers[0] = pa.py_buffer(b"\x05") # validity bitmap
arr = arr.from_buffers(arr.type, len(arr), buffers, children=[arr.values])
assert arr.to_pylist() == [[1], None, [4, 5, 6]]
assert arr.offsets.to_pylist() == [0, 1, 3, 6]
flattened = arr.flatten()
flattened.validate(full=True)
assert flattened.type == typ.value_type
assert flattened.to_pylist() == [1, 4, 5, 6]
# .values is the physical values array (including masked elements)
assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6]
@pytest.mark.parametrize('klass', [pa.ListArray, pa.LargeListArray])
def test_list_array_values_offsets_sliced(klass):
# ARROW-7301
arr = klass.from_arrays(offsets=[0, 3, 4, 6], values=[1, 2, 3, 4, 5, 6])
assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6]
assert arr.offsets.to_pylist() == [0, 3, 4, 6]
# sliced -> values keeps referring to full values buffer, but offsets is
# sliced as well so the offsets correctly point into the full values array
# sliced -> flatten() will return the sliced value array.
arr2 = arr[1:]
assert arr2.values.to_pylist() == [1, 2, 3, 4, 5, 6]
assert arr2.offsets.to_pylist() == [3, 4, 6]
assert arr2.flatten().to_pylist() == [4, 5, 6]
i = arr2.offsets[0].as_py()
j = arr2.offsets[1].as_py()
assert arr2[0].as_py() == arr2.values[i:j].to_pylist() == [4]
def test_fixed_size_list_array_flatten():
typ2 = pa.list_(pa.list_(pa.int64(), 2), 3)
arr2 = pa.array([
[
[1, 2],
[3, 4],
[5, 6],
],
None,
[
[7, None],
None,
[8, 9]
],
], type=typ2)
assert arr2.type.equals(typ2)
typ1 = pa.list_(pa.int64(), 2)
arr1 = pa.array([
[1, 2], [3, 4], [5, 6],
[7, None], None, [8, 9]
], type=typ1)
assert arr1.type.equals(typ1)
assert arr2.flatten().equals(arr1)
typ0 = pa.int64()
arr0 = pa.array([
1, 2, 3, 4, 5, 6, 7, None, 8, 9,
], type=typ0)
assert arr0.type.equals(typ0)
assert arr1.flatten().equals(arr0)
assert arr2.flatten().flatten().equals(arr0)
def test_fixed_size_list_array_flatten_with_slice():
array = pa.array([[1], [2], [3]],
type=pa.list_(pa.float64(), list_size=1))
assert array[2:].flatten() == pa.array([3], type=pa.float64())
def test_map_array_values_offsets():
ty = pa.map_(pa.utf8(), pa.int32())
ty_values = pa.struct([pa.field("key", pa.utf8(), nullable=False),
pa.field("value", pa.int32())])
a = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], type=ty)
assert a.values.type.equals(ty_values)
assert a.values == pa.array([
{'key': 'a', 'value': 1},
{'key': 'b', 'value': 2},
{'key': 'c', 'value': 3},
], type=ty_values)
assert a.keys.equals(pa.array(['a', 'b', 'c']))
assert a.items.equals(pa.array([1, 2, 3], type=pa.int32()))
assert pa.ListArray.from_arrays(a.offsets, a.keys).equals(
pa.array([['a', 'b'], ['c']]))
assert pa.ListArray.from_arrays(a.offsets, a.items).equals(
pa.array([[1, 2], [3]], type=pa.list_(pa.int32())))
with pytest.raises(NotImplementedError):
a.flatten()
def test_struct_array_flatten():
ty = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
xs, ys = a.flatten()
assert xs.type == pa.int16()
assert ys.type == pa.float32()
assert xs.to_pylist() == [1, 3, 5]
assert ys.to_pylist() == [2.5, 4.5, 6.5]
xs, ys = a[1:].flatten()
assert xs.to_pylist() == [3, 5]
assert ys.to_pylist() == [4.5, 6.5]
a = pa.array([(1, 2.5), None, (3, 4.5)], type=ty)
xs, ys = a.flatten()
assert xs.to_pylist() == [1, None, 3]
assert ys.to_pylist() == [2.5, None, 4.5]
xs, ys = a[1:].flatten()
assert xs.to_pylist() == [None, 3]
assert ys.to_pylist() == [None, 4.5]
a = pa.array([(1, None), (2, 3.5), (None, 4.5)], type=ty)
xs, ys = a.flatten()
assert xs.to_pylist() == [1, 2, None]
assert ys.to_pylist() == [None, 3.5, 4.5]
xs, ys = a[1:].flatten()
assert xs.to_pylist() == [2, None]
assert ys.to_pylist() == [3.5, 4.5]
a = pa.array([(1, None), None, (None, 2.5)], type=ty)
xs, ys = a.flatten()
assert xs.to_pylist() == [1, None, None]
assert ys.to_pylist() == [None, None, 2.5]
xs, ys = a[1:].flatten()
assert xs.to_pylist() == [None, None]
assert ys.to_pylist() == [None, 2.5]
def test_struct_array_field():
ty = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
x0 = a.field(0)
y0 = a.field(1)
x1 = a.field(-2)
y1 = a.field(-1)
x2 = a.field('x')
y2 = a.field('y')
assert isinstance(x0, pa.lib.Int16Array)
assert isinstance(y1, pa.lib.FloatArray)
assert x0.equals(pa.array([1, 3, 5], type=pa.int16()))
assert y0.equals(pa.array([2.5, 4.5, 6.5], type=pa.float32()))
assert x0.equals(x1)
assert x0.equals(x2)
assert y0.equals(y1)
assert y0.equals(y2)
for invalid_index in [None, pa.int16()]:
with pytest.raises(TypeError):
a.field(invalid_index)
for invalid_index in [3, -3]:
with pytest.raises(IndexError):
a.field(invalid_index)
for invalid_name in ['z', '']:
with pytest.raises(KeyError):
a.field(invalid_name)
def test_struct_array_flattened_field():
ty = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty,
mask=pa.array([False, True, False]))
x0 = a._flattened_field(0)
y0 = a._flattened_field(1)
x1 = a._flattened_field(-2)
y1 = a._flattened_field(-1)
x2 = a._flattened_field('x')
y2 = a._flattened_field('y')
assert isinstance(x0, pa.lib.Int16Array)
assert isinstance(y1, pa.lib.FloatArray)
assert x0.equals(pa.array([1, None, 5], type=pa.int16()))
assert y0.equals(pa.array([2.5, None, 6.5], type=pa.float32()))
assert x0.equals(x1)
assert x0.equals(x2)
assert y0.equals(y1)
assert y0.equals(y2)
for invalid_index in [None, pa.int16()]:
with pytest.raises(TypeError):
a._flattened_field(invalid_index)
for invalid_index in [3, -3]:
with pytest.raises(IndexError):
a._flattened_field(invalid_index)
for invalid_name in ['z', '']:
with pytest.raises(KeyError):
a._flattened_field(invalid_name)
def test_empty_cast():
types = [
pa.null(),
pa.bool_(),
pa.int8(),
pa.int16(),
pa.int32(),
pa.int64(),
pa.uint8(),
pa.uint16(),
pa.uint32(),
pa.uint64(),
pa.float16(),
pa.float32(),
pa.float64(),
pa.date32(),
pa.date64(),
pa.binary(),
pa.binary(length=4),
pa.string(),
]
for (t1, t2) in itertools.product(types, types):
try:
# ARROW-4766: Ensure that supported types conversion don't segfault
# on empty arrays of common types
pa.array([], type=t1).cast(t2)
except (pa.lib.ArrowNotImplementedError, pa.ArrowInvalid):
continue
def test_nested_dictionary_array():
dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b'])
list_arr = pa.ListArray.from_arrays([0, 2, 3], dict_arr)
assert list_arr.to_pylist() == [['a', 'b'], ['a']]
dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b'])
dict_arr2 = pa.DictionaryArray.from_arrays([0, 1, 2, 1, 0], dict_arr)
assert dict_arr2.to_pylist() == ['a', 'b', 'a', 'b', 'a']
def test_array_from_numpy_str_utf8():
# ARROW-3890 -- in Python 3, NPY_UNICODE arrays are produced, but in Python
# 2 they are NPY_STRING (binary), so we must do UTF-8 validation
vec = np.array(["toto", "tata"])
vec2 = np.array(["toto", "tata"], dtype=object)
arr = pa.array(vec, pa.string())
arr2 = pa.array(vec2, pa.string())
expected = pa.array(["toto", "tata"])
assert arr.equals(expected)
assert arr2.equals(expected)
# with mask, separate code path
mask = np.array([False, False], dtype=bool)
arr = pa.array(vec, pa.string(), mask=mask)
assert arr.equals(expected)
# UTF8 validation failures
vec = np.array([('mañana').encode('utf-16-le')])
with pytest.raises(ValueError):
pa.array(vec, pa.string())
with pytest.raises(ValueError):
pa.array(vec, pa.string(), mask=np.array([False]))
@pytest.mark.slow
@pytest.mark.large_memory
def test_numpy_binary_overflow_to_chunked():
# ARROW-3762, ARROW-5966
# 2^31 + 1 bytes
values = [b'x']
unicode_values = ['x']
# Make 10 unique 1MB strings then repeat then 2048 times
unique_strings = {
i: b'x' * ((1 << 20) - 1) + str(i % 10).encode('utf8')
for i in range(10)
}
unicode_unique_strings = {i: x.decode('utf8')
for i, x in unique_strings.items()}
values += [unique_strings[i % 10] for i in range(1 << 11)]
unicode_values += [unicode_unique_strings[i % 10]
for i in range(1 << 11)]
for case, ex_type in [(values, pa.binary()),
(unicode_values, pa.utf8())]:
arr = np.array(case)
arrow_arr = pa.array(arr)
arr = None
assert isinstance(arrow_arr, pa.ChunkedArray)
assert arrow_arr.type == ex_type
# Split up into 16MB chunks. 128 * 16 = 2048, so 129
assert arrow_arr.num_chunks == 129
value_index = 0
for i in range(arrow_arr.num_chunks):
chunk = arrow_arr.chunk(i)
for val in chunk:
assert val.as_py() == case[value_index]
value_index += 1
@pytest.mark.large_memory
def test_list_child_overflow_to_chunked():
kilobyte_string = 'x' * 1024
two_mega = 2**21
vals = [[kilobyte_string]] * (two_mega - 1)
arr = pa.array(vals)
assert isinstance(arr, pa.Array)
assert len(arr) == two_mega - 1
vals = [[kilobyte_string]] * two_mega
arr = pa.array(vals)
assert isinstance(arr, pa.ChunkedArray)
assert len(arr) == two_mega
assert len(arr.chunk(0)) == two_mega - 1
assert len(arr.chunk(1)) == 1
def test_infer_type_masked():
# ARROW-5208
ty = pa.infer_type(['foo', 'bar', None, 2],
mask=[False, False, False, True])
assert ty == pa.utf8()
# all masked
ty = pa.infer_type(['foo', 'bar', None, 2],
mask=np.array([True, True, True, True]))
assert ty == pa.null()
# length 0
assert pa.infer_type([], mask=[]) == pa.null()
def test_array_masked():
# ARROW-5208
arr = pa.array([4, None, 4, 3.],
mask=np.array([False, True, False, True]))
assert arr.type == pa.int64()
# ndarray dtype=object argument
arr = pa.array(np.array([4, None, 4, 3.], dtype="O"),
mask=np.array([False, True, False, True]))
assert arr.type == pa.int64()
def test_array_supported_masks():
# ARROW-13883
arr = pa.array([4, None, 4, 3.],
mask=np.array([False, True, False, True]))
assert arr.to_pylist() == [4, None, 4, None]
arr = pa.array([4, None, 4, 3],
mask=pa.array([False, True, False, True]))
assert arr.to_pylist() == [4, None, 4, None]
arr = pa.array([4, None, 4, 3],
mask=[False, True, False, True])
assert arr.to_pylist() == [4, None, 4, None]
arr = pa.array([4, 3, None, 3],
mask=[False, True, False, True])
assert arr.to_pylist() == [4, None, None, None]
# Non boolean values
with pytest.raises(pa.ArrowTypeError):
arr = pa.array([4, None, 4, 3],
mask=pa.array([1.0, 2.0, 3.0, 4.0]))
with pytest.raises(pa.ArrowTypeError):
arr = pa.array([4, None, 4, 3],
mask=[1.0, 2.0, 3.0, 4.0])
with pytest.raises(pa.ArrowTypeError):
arr = pa.array([4, None, 4, 3],
mask=np.array([1.0, 2.0, 3.0, 4.0]))
with pytest.raises(pa.ArrowTypeError):
arr = pa.array([4, None, 4, 3],
mask=pa.array([False, True, False, True],
mask=pa.array([True, True, True, True])))
with pytest.raises(pa.ArrowTypeError):
arr = pa.array([4, None, 4, 3],
mask=pa.array([False, None, False, True]))
# Numpy arrays only accepts numpy masks
with pytest.raises(TypeError):
arr = pa.array(np.array([4, None, 4, 3.]),
mask=[True, False, True, False])
with pytest.raises(TypeError):
arr = pa.array(np.array([4, None, 4, 3.]),
mask=pa.array([True, False, True, False]))
@pytest.mark.pandas
def test_array_supported_pandas_masks():
import pandas
arr = pa.array(pandas.Series([0, 1], name="a", dtype="int64"),
mask=pandas.Series([True, False], dtype='bool'))
assert arr.to_pylist() == [None, 1]
def test_binary_array_masked():
# ARROW-12431
masked_basic = pa.array([b'\x05'], type=pa.binary(1),
mask=np.array([False]))
assert [b'\x05'] == masked_basic.to_pylist()
# Fixed Length Binary
masked = pa.array(np.array([b'\x05']), type=pa.binary(1),
mask=np.array([False]))
assert [b'\x05'] == masked.to_pylist()
masked_nulls = pa.array(np.array([b'\x05']), type=pa.binary(1),
mask=np.array([True]))
assert [None] == masked_nulls.to_pylist()
# Variable Length Binary
masked = pa.array(np.array([b'\x05']), type=pa.binary(),
mask=np.array([False]))
assert [b'\x05'] == masked.to_pylist()
masked_nulls = pa.array(np.array([b'\x05']), type=pa.binary(),
mask=np.array([True]))
assert [None] == masked_nulls.to_pylist()
# Fixed Length Binary, copy
npa = np.array([b'aaa', b'bbb', b'ccc']*10)
arrow_array = pa.array(npa, type=pa.binary(3),
mask=np.array([False, False, False]*10))
npa[npa == b"bbb"] = b"XXX"
assert ([b'aaa', b'bbb', b'ccc']*10) == arrow_array.to_pylist()
def test_binary_array_strided():
# Masked
nparray = np.array([b"ab", b"cd", b"ef"])
arrow_array = pa.array(nparray[::2], pa.binary(2),
mask=np.array([False, False]))
assert [b"ab", b"ef"] == arrow_array.to_pylist()
# Unmasked
nparray = np.array([b"ab", b"cd", b"ef"])
arrow_array = pa.array(nparray[::2], pa.binary(2))
assert [b"ab", b"ef"] == arrow_array.to_pylist()
def test_array_invalid_mask_raises():
# ARROW-10742
cases = [
([1, 2], np.array([False, False], dtype="O"),
TypeError, "must be boolean dtype"),
([1, 2], np.array([[False], [False]]),
pa.ArrowInvalid, "must be 1D array"),
([1, 2, 3], np.array([False, False]),
pa.ArrowInvalid, "different length"),
(np.array([1, 2]), np.array([False, False], dtype="O"),
TypeError, "must be boolean dtype"),
(np.array([1, 2]), np.array([[False], [False]]),
ValueError, "must be 1D array"),
(np.array([1, 2, 3]), np.array([False, False]),
ValueError, "different length"),
]
for obj, mask, ex, msg in cases:
with pytest.raises(ex, match=msg):
pa.array(obj, mask=mask)
def test_array_from_large_pyints():
# ARROW-5430
with pytest.raises(OverflowError):
# too large for int64 so dtype must be explicitly provided
pa.array([int(2 ** 63)])
def test_numpy_array_protocol():
# test the __array__ method on pyarrow.Array
arr = pa.array([1, 2, 3])
result = np.asarray(arr)
expected = np.array([1, 2, 3], dtype="int64")
np.testing.assert_array_equal(result, expected)
# this should not raise a deprecation warning with numpy 2.0+
result = np.array(arr, copy=False)
np.testing.assert_array_equal(result, expected)
result = np.array(arr, dtype="int64", copy=False)
np.testing.assert_array_equal(result, expected)
# no zero-copy is possible
arr = pa.array([1, 2, None])
expected = np.array([1, 2, np.nan], dtype="float64")
result = np.asarray(arr)
np.testing.assert_array_equal(result, expected)
if Version(np.__version__) < Version("2.0"):
# copy keyword is not strict and not passed down to __array__
result = np.array(arr, copy=False)
np.testing.assert_array_equal(result, expected)
result = np.array(arr, dtype="float64", copy=False)
np.testing.assert_array_equal(result, expected)
else:
# starting with numpy 2.0, the copy=False keyword is assumed to be strict
with pytest.raises(ValueError, match="Unable to avoid a copy"):
np.array(arr, copy=False)
arr = pa.array([1, 2, 3])
with pytest.raises(ValueError):
np.array(arr, dtype="float64", copy=False)
# copy=True -> not yet passed by numpy, so we have to call this directly to test
arr = pa.array([1, 2, 3])
result = arr.__array__(copy=True)
assert result.flags.writeable
arr = pa.array([1, 2, 3])
result = arr.__array__(dtype=np.dtype("float64"), copy=True)
assert result.dtype == "float64"
def test_array_protocol():
class MyArray:
def __init__(self, data):
self.data = data
def __arrow_array__(self, type=None):
return pa.array(self.data, type=type)
arr = MyArray(np.array([1, 2, 3], dtype='int64'))
result = pa.array(arr)
expected = pa.array([1, 2, 3], type=pa.int64())
assert result.equals(expected)
result = pa.array(arr, type=pa.int64())
expected = pa.array([1, 2, 3], type=pa.int64())
assert result.equals(expected)
result = pa.array(arr, type=pa.float64())
expected = pa.array([1, 2, 3], type=pa.float64())
assert result.equals(expected)
# raise error when passing size or mask keywords
with pytest.raises(ValueError):
pa.array(arr, mask=np.array([True, False, True]))
with pytest.raises(ValueError):
pa.array(arr, size=3)
# ensure the return value is an Array
class MyArrayInvalid:
def __init__(self, data):
self.data = data
def __arrow_array__(self, type=None):
return np.array(self.data)
arr = MyArrayInvalid(np.array([1, 2, 3], dtype='int64'))
with pytest.raises(TypeError):
pa.array(arr)
# ARROW-7066 - allow ChunkedArray output
# GH-33727 - if num_chunks=1 return Array
class MyArray2:
def __init__(self, data):
self.data = data
def __arrow_array__(self, type=None):
return pa.chunked_array([self.data], type=type)
arr = MyArray2(np.array([1, 2, 3], dtype='int64'))
result = pa.array(arr)
expected = pa.array([1, 2, 3], type=pa.int64())
assert result.equals(expected)
class MyArray3:
def __init__(self, data1, data2):
self.data1 = data1
self.data2 = data2
def __arrow_array__(self, type=None):
return pa.chunked_array([self.data1, self.data2], type=type)
np_arr = np.array([1, 2, 3], dtype='int64')
arr = MyArray3(np_arr, np_arr)
result = pa.array(arr)
expected = pa.chunked_array([[1, 2, 3], [1, 2, 3]], type=pa.int64())
assert result.equals(expected)
def test_c_array_protocol():
class ArrayWrapper:
def __init__(self, data):
self.data = data
def __arrow_c_array__(self, requested_schema=None):
return self.data.__arrow_c_array__(requested_schema)
# Can roundtrip through the C array protocol
arr = ArrayWrapper(pa.array([1, 2, 3], type=pa.int64()))
result = pa.array(arr)
assert result == arr.data
# Will cast to requested type
result = pa.array(arr, type=pa.int32())
assert result == pa.array([1, 2, 3], type=pa.int32())
def test_concat_array():
concatenated = pa.concat_arrays(
[pa.array([1, 2]), pa.array([3, 4])])
assert concatenated.equals(pa.array([1, 2, 3, 4]))
def test_concat_array_different_types():
with pytest.raises(pa.ArrowInvalid):
pa.concat_arrays([pa.array([1]), pa.array([2.])])
def test_concat_array_invalid_type():
# ARROW-9920 - do not segfault on non-array input
with pytest.raises(TypeError, match="should contain Array objects"):
pa.concat_arrays([None])
arr = pa.chunked_array([[0, 1], [3, 4]])
with pytest.raises(TypeError, match="should contain Array objects"):
pa.concat_arrays(arr)
@pytest.mark.pandas
def test_to_pandas_timezone():
# https://issues.apache.org/jira/browse/ARROW-6652
arr = pa.array([1, 2, 3], type=pa.timestamp('s', tz='Europe/Brussels'))
s = arr.to_pandas()
assert s.dt.tz is not None
arr = pa.chunked_array([arr])
s = arr.to_pandas()
assert s.dt.tz is not None
@pytest.mark.pandas
def test_to_pandas_float16_list():
# https://github.com/apache/arrow/issues/36168
expected = [[np.float16(1)], [np.float16(2)], [np.float16(3)]]
arr = pa.array(expected)
result = arr.to_pandas()
assert result[0].dtype == "float16"
assert result.tolist() == expected
def test_array_sort():
arr = pa.array([5, 7, 35], type=pa.int64())
sorted_arr = arr.sort("descending")
assert sorted_arr.to_pylist() == [35, 7, 5]
arr = pa.chunked_array([[1, 2, 3], [4, 5, 6]])
sorted_arr = arr.sort("descending")
assert sorted_arr.to_pylist() == [6, 5, 4, 3, 2, 1]
arr = pa.array([5, 7, 35, None], type=pa.int64())
sorted_arr = arr.sort("descending", null_placement="at_end")
assert sorted_arr.to_pylist() == [35, 7, 5, None]
sorted_arr = arr.sort("descending", null_placement="at_start")
assert sorted_arr.to_pylist() == [None, 35, 7, 5]
def test_struct_array_sort():
arr = pa.StructArray.from_arrays([
pa.array([5, 7, 7, 35], type=pa.int64()),
pa.array(["foo", "car", "bar", "foobar"])
], names=["a", "b"])
sorted_arr = arr.sort("descending", by="a")
assert sorted_arr.to_pylist() == [
{"a": 35, "b": "foobar"},
{"a": 7, "b": "car"},
{"a": 7, "b": "bar"},
{"a": 5, "b": "foo"},
]
arr_with_nulls = pa.StructArray.from_arrays([
pa.array([5, 7, 7, 35], type=pa.int64()),
pa.array(["foo", "car", "bar", "foobar"])
], names=["a", "b"], mask=pa.array([False, False, True, False]))
sorted_arr = arr_with_nulls.sort(
"descending", by="a", null_placement="at_start")
assert sorted_arr.to_pylist() == [
None,
{"a": 35, "b": "foobar"},
{"a": 7, "b": "car"},
{"a": 5, "b": "foo"},
]
sorted_arr = arr_with_nulls.sort(
"descending", by="a", null_placement="at_end")
assert sorted_arr.to_pylist() == [
{"a": 35, "b": "foobar"},
{"a": 7, "b": "car"},
{"a": 5, "b": "foo"},
None
]
def test_array_accepts_pyarrow_array():
arr = pa.array([1, 2, 3])
result = pa.array(arr)
assert arr == result
# Test casting to a different type
result = pa.array(arr, type=pa.uint8())
expected = pa.array([1, 2, 3], type=pa.uint8())
assert expected == result
assert expected.type == pa.uint8()
# Test casting with safe keyword
arr = pa.array([2 ** 63 - 1], type=pa.int64())
with pytest.raises(pa.ArrowInvalid):
pa.array(arr, type=pa.int32())
expected = pa.array([-1], type=pa.int32())
result = pa.array(arr, type=pa.int32(), safe=False)
assert result == expected
# Test memory_pool keyword is accepted
result = pa.array(arr, memory_pool=pa.default_memory_pool())
assert arr == result
def check_run_end_encoded(ree_array, run_ends, values, logical_length, physical_length,
physical_offset):
assert ree_array.run_ends.to_pylist() == run_ends
assert ree_array.values.to_pylist() == values
assert len(ree_array) == logical_length
assert ree_array.find_physical_length() == physical_length
assert ree_array.find_physical_offset() == physical_offset
def check_run_end_encoded_from_arrays_with_type(ree_type=None):
run_ends = [3, 5, 10, 19]
values = [1, 2, 1, 3]
ree_array = pa.RunEndEncodedArray.from_arrays(run_ends, values, ree_type)
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0)
def test_run_end_encoded_from_arrays():
check_run_end_encoded_from_arrays_with_type()
for run_end_type in [pa.int16(), pa.int32(), pa.int64()]:
for value_type in [pa.uint32(), pa.int32(), pa.uint64(), pa.int64()]:
ree_type = pa.run_end_encoded(run_end_type, value_type)
check_run_end_encoded_from_arrays_with_type(ree_type)
def test_run_end_encoded_from_buffers():
run_ends = [3, 5, 10, 19]
values = [1, 2, 1, 3]
ree_type = pa.run_end_encoded(run_end_type=pa.int32(), value_type=pa.uint8())
length = 19
buffers = [None]
null_count = 0
offset = 0
children = [run_ends, values]
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers,
null_count, offset,
children)
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0)
# buffers = []
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, [],
null_count, offset,
children)
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0)
# null_count = -1
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers,
-1, offset,
children)
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0)
# offset = 4
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length - 4, buffers,
null_count, 4, children)
check_run_end_encoded(ree_array, run_ends, values, length - 4, 3, 1)
# buffers = [None, None]
with pytest.raises(ValueError):
pa.RunEndEncodedArray.from_buffers(ree_type, length, [None, None],
null_count, offset, children)
# children = None
with pytest.raises(ValueError):
pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers,
null_count, offset, None)
# len(children) == 1
with pytest.raises(ValueError):
pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers,
null_count, offset, [run_ends])
# null_count = 1
with pytest.raises(ValueError):
pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers,
1, offset, children)
def test_run_end_encoded_from_array_with_type():
run_ends = [1, 3, 6]
values = [1, 2, 3]
ree_type = pa.run_end_encoded(pa.int32(), pa.int64())
expected = pa.RunEndEncodedArray.from_arrays(run_ends, values,
ree_type)
arr = [1, 2, 2, 3, 3, 3]
result = pa.array(arr, type=ree_type)
assert result.equals(expected)
result = pa.array(np.array(arr), type=ree_type)
assert result.equals(expected)
ree_type_2 = pa.run_end_encoded(pa.int16(), pa.float32())
result = pa.array(arr, type=ree_type_2)
assert not result.equals(expected)
expected_2 = pa.RunEndEncodedArray.from_arrays(run_ends, values,
ree_type_2)
assert result.equals(expected_2)
run_ends = [1, 3, 5, 6]
values = [1, 2, 3, None]
expected = pa.RunEndEncodedArray.from_arrays(run_ends, values,
ree_type)
arr = [1, 2, 2, 3, 3, None]
result = pa.array(arr, type=ree_type)
assert result.equals(expected)
run_ends = [1, 3, 4, 5, 6]
values = [1, 2, None, 3, None]
expected = pa.RunEndEncodedArray.from_arrays(run_ends, values,
ree_type)
mask = pa.array([False, False, False, True, False, True])
result = pa.array(arr, type=ree_type, mask=mask)
assert result.equals(expected)
def test_run_end_encoded_to_numpy():
arr = [1, 2, 2, 3, 3, 3]
ree_array = pa.array(arr, pa.run_end_encoded(pa.int32(), pa.int64()))
expected = np.array(arr)
np.testing.assert_array_equal(ree_array.to_numpy(zero_copy_only=False), expected)
with pytest.raises(pa.ArrowInvalid):
ree_array.to_numpy()
@pytest.mark.pandas
def test_run_end_encoded_to_pandas():
arr = [1, 2, 2, 3, 3, 3]
ree_array = pa.array(arr, pa.run_end_encoded(pa.int32(), pa.int64()))
assert ree_array.to_pandas().tolist() == arr
with pytest.raises(pa.ArrowInvalid):
ree_array.to_pandas(zero_copy_only=True)
@pytest.mark.parametrize(('list_array_type', 'list_type_factory'),
[(pa.ListViewArray, pa.list_view),
(pa.LargeListViewArray, pa.large_list_view)])
def test_list_view_from_arrays(list_array_type, list_type_factory):
# test in order offsets, similar to ListArray representation
values = [1, 2, 3, 4, 5, 6, None, 7]
offsets = [0, 2, 4, 6]
sizes = [2, 2, 2, 2]
array = list_array_type.from_arrays(offsets, sizes, values)
assert array.to_pylist() == [[1, 2], [3, 4], [5, 6], [None, 7]]
assert array.values.to_pylist() == values
assert array.offsets.to_pylist() == offsets
assert array.sizes.to_pylist() == sizes
# with specified type
typ = list_type_factory(pa.field("name", pa.int64()))
result = list_array_type.from_arrays(offsets, sizes, values, typ)
assert result.type == typ
assert result.type.value_field.name == "name"
# with mismatching type
typ = list_type_factory(pa.binary())
with pytest.raises(TypeError):
list_array_type.from_arrays(offsets, sizes, values, type=typ)
# test out of order offsets with overlapping values
values = [1, 2, 3, 4]
offsets = [2, 1, 0]
sizes = [2, 2, 2]
array = list_array_type.from_arrays(offsets, sizes, values)
assert array.to_pylist() == [[3, 4], [2, 3], [1, 2]]
assert array.values.to_pylist() == values
assert array.offsets.to_pylist() == offsets
assert array.sizes.to_pylist() == sizes
# test null offsets and empty list values
values = []
offsets = [0, None]
sizes = [0, 0]
array = list_array_type.from_arrays(offsets, sizes, values)
assert array.to_pylist() == [[], None]
assert array.values.to_pylist() == values
assert array.offsets.to_pylist() == [0, 0]
assert array.sizes.to_pylist() == sizes
# test null sizes and empty list values
values = []
offsets = [0, 0]
sizes = [None, 0]
array = list_array_type.from_arrays(offsets, sizes, values)
assert array.to_pylist() == [None, []]
assert array.values.to_pylist() == values
assert array.offsets.to_pylist() == offsets
assert array.sizes.to_pylist() == [0, 0]
# test null bitmask
values = [1, 2]
offsets = [0, 0, 1]
sizes = [1, 0, 1]
mask = pa.array([False, True, False])
array = list_array_type.from_arrays(offsets, sizes, values, mask=mask)
assert array.to_pylist() == [[1], None, [2]]
assert array.values.to_pylist() == values
assert array.offsets.to_pylist() == offsets
assert array.sizes.to_pylist() == sizes
@pytest.mark.parametrize(('list_array_type', 'list_type_factory'),
[(pa.ListViewArray, pa.list_view),
(pa.LargeListViewArray, pa.large_list_view)])
def test_list_view_from_arrays_fails(list_array_type, list_type_factory):
values = [1, 2]
offsets = [0, 1, None]
sizes = [1, 1, 0]
mask = pa.array([False, False, True])
# Ambiguous to specify both validity map and offsets or sizes with nulls
with pytest.raises(pa.lib.ArrowInvalid):
list_array_type.from_arrays(offsets, sizes, values, mask=mask)
offsets = [0, 1, 1]
array = list_array_type.from_arrays(offsets, sizes, values, mask=mask)
array_slice = array[1:]
# List offsets and sizes must not be slices if a validity map is specified
with pytest.raises(pa.lib.ArrowInvalid):
list_array_type.from_arrays(
array_slice.offsets, array_slice.sizes,
array_slice.values, mask=array_slice.is_null())
@pytest.mark.parametrize(('list_array_type', 'list_type_factory', 'offset_type'),
[(pa.ListViewArray, pa.list_view, pa.int32()),
(pa.LargeListViewArray, pa.large_list_view, pa.int64())])
def test_list_view_flatten(list_array_type, list_type_factory, offset_type):
arr0 = pa.array([
1, None, 2,
3, 4,
5, 6,
7, 8
], type=pa.int64())
typ1 = list_type_factory(pa.int64())
arr1 = pa.array([
[1, None, 2],
None,
[3, 4],
[],
[5, 6],
None,
[7, 8]
], type=typ1)
offsets1 = pa.array([0, 3, 3, 5, 5, 7, 7], type=offset_type)
sizes1 = pa.array([3, 0, 2, 0, 2, 0, 2], type=offset_type)
typ2 = list_type_factory(
list_type_factory(
pa.int64()
)
)
arr2 = pa.array([
None,
[
[1, None, 2],
None,
[3, 4]
],
[],
[
[],
[5, 6],
None
],
[
[7, 8]
]
], type=typ2)
offsets2 = pa.array([0, 0, 3, 3, 6], type=offset_type)
sizes2 = pa.array([0, 3, 0, 3, 1], type=offset_type)
assert arr1.flatten().equals(arr0)
assert arr1.offsets.equals(offsets1)
assert arr1.sizes.equals(sizes1)
assert arr1.values.equals(arr0)
assert arr2.flatten().equals(arr1)
assert arr2.offsets.equals(offsets2)
assert arr2.sizes.equals(sizes2)
assert arr2.values.equals(arr1)
assert arr2.flatten().flatten().equals(arr0)
assert arr2.values.values.equals(arr0)
# test out of order offsets
values = [1, 2, 3, 4]
offsets = [3, 2, 1, 0]
sizes = [1, 1, 1, 1]
array = list_array_type.from_arrays(offsets, sizes, values)
assert array.flatten().to_pylist() == [4, 3, 2, 1]
# test null elements backed by non-empty sublists
mask = pa.array([False, False, False, True])
array = list_array_type.from_arrays(offsets, sizes, values, mask=mask)
assert array.flatten().to_pylist() == [4, 3, 2]
assert array.values.to_pylist() == [1, 2, 3, 4]
@pytest.mark.parametrize('list_view_type', [pa.ListViewArray, pa.LargeListViewArray])
def test_list_view_slice(list_view_type):
# sliced -> values keeps referring to full values buffer, but offsets is
# sliced as well so the offsets correctly point into the full values array
# sliced -> flatten() will return the sliced value array.
array = list_view_type.from_arrays(offsets=[0, 3, 4], sizes=[
3, 1, 2], values=[1, 2, 3, 4, 5, 6])
sliced_array = array[1:]
assert sliced_array.values.to_pylist() == [1, 2, 3, 4, 5, 6]
assert sliced_array.offsets.to_pylist() == [3, 4]
assert sliced_array.flatten().to_pylist() == [4, 5, 6]
i = sliced_array.offsets[0].as_py()
j = sliced_array.offsets[1].as_py()
assert sliced_array[0].as_py() == sliced_array.values[i:j].to_pylist() == [4]